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Abstract- Many machine learning problems involve changes in
both feature distribution and label distribution, such as domain
adaptation and learning drifting concepts from data streams.
Correctly detecting, identifying, and understanding the changes
of data distributions can help us properly select data samples
or algorithms for learning models. However, since the training
datasets are often in high dimensionality and large size, it has
been difficult to effectively analyze them. Furthermore, the joint
distribution between features and labels makes the problem
more difficult to handle. In this paper, we propose a visual
analysis method (VisGBT) that combines the gradient-boosting­
trees (GBT) modeling method, regression analysis, and multi­
dimensional visualization to capture the mismatches between
datasets and models. The GBT model consists of a series of
trees with a predefined number of terminal (leaf) nodes per tree.
These terminal nodes partition the high dimensional space with
a few most informative features to minimize the label prediction
error. VisGBT maps various kinds of detailed model information
to the terminal node matrix (TNM) and visualizes it with an
appropriate design. With this visual analysis method, we can
easily find out the detailed differences between datasets with the
help of a learned model. We will illustrate the use of various
visual patterns and in particular show how this method can help
us analyze domain similarity for domain adaptation.

I. INTRODUCTION

In traditional machine learning problems, we often assume
that the underlying data distribution does not change when we
apply the learned model to new data. However, the assumption
does not hold when we want to learn models for similar
domains with significant differences or for data streams where
concepts (models) keep changing. In such a setting, an old
model may need to be renovated to adapt to the changes of
data distribution, or datasets from one domain is adopted by
another domain for learning models, i.e., so called adaptive
learning. However, model renovation or adaptation may be
difficult and costly to perform for several reasons.

First of all, renovating models often involves significant cost
in training data collecting, model training, model validation,
and deployment. If the change is not significant, or caused
by noises, we may want to apply existing models to different
domains or keep using existing models for a data stream. It
is thus important to help domain experts understand how the
data change happens and determine what model renovation is
required. Visualization will be an ideal tool for serving such
a purpose under a collaborative environment.

Second, since in supervised learning labeled training exam­
ples are often expensive to obtain - we need domain experts
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to manually judge and label the training examples, it is often
desired to reuse existing labeled training data from similar
domains to improve the model in the target domain [1], [18],
[4], [20], [25], [12], [10]. However, blindly migrating datasets
from one domain to another domain may result in useless
models. An important step to successfully perform domain
adaptation is to understand how similar the candidate domains
are [20], [10], where visualization tools can help.

In a collaborative mining scenario, we want domain experts
(maybe from different application domains) to understand
and monitor the mismatch between the data and the model
or between datasets, and thus be able to properly renovate
the model or adapt to changes in minimum cost. In this
paper, we propose the VisGBT method to visualize the data
distribution based the Gradient Boosting Trees (GBT) [14]
learning model. There is extensive research in visualizing
multidimensional data [30] and visualizing learning models,
such as decision tree models [2]. However, to our knowledge,
there is no well-developed visualization method for visualizing
the change of data distribution for machine learning. The
challenge of this problem lies in two aspects. First, visualizing
multidimensional data in general is well recognized as a
difficult problem. It is still one of the major research challenges
in visual analytics [30], [23], [28]. Second, since each training
example consists of a feature vector Xi and a label, or target
value, Yi, it is difficult to design appropriate visualization
methods to capture the differences in the joint distribution of
features and labels in a useful and scalable manner.

The basic idea of our proposed approach is to use the
GBT learning method to partition the multidimensional feature
space of one training dataset, while minimizing the prediction
error on its label distribution. With the trained model, we can
map another dataset onto this partitioned subspaces to under­
stand the difference of both sample distributions and label
distributions between the two datasets. The unique benefit is
that GBT will automatically pick up a few most important
features among possibly hundreds or thousands of features, in
modeling the corresponding label distribution. Thus, we can
explore the high-dimensional space with much less number
of features that are most relevant to the model. Concretely, a
GBT model consists of a series of regression trees [15] and
each tree has a fixed number of terminal nodes, i.e., leaf nodes.
Figure 1 shows a typical regression tree and how it cuts the
space. Since each training example will be directed to one and



only one of the terminal node for each tree, the terminal node
becomes the most informative unit in the model.

* Colors represent different target values

with the real application, and Yi is the target value that we want
to predict. The difference between regression modeling and
classification modeling is the type of labels. For regression, Yi
is continuous or ordinal (ordinal regression [16]) in a confined
domain . For classification Yi is categorical and the number of
classes is often small. In this paper, we assume the features are
numerical, i.e., continuous or ordinal values, and categorical
features have been transformed to boolean features, so that
the described method can be applied. As a convention, we will
use capitals to represent variables and lower cases to represent
constants .
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Fig, L A perfectly fitted tree perfectly partitions the data
space according to the joint feature-label distribution,

Our visual analysis method is based on the terminal node
matrix (TNM) (the number of trees x the number of terminal
nodes per tree). We can map various types of information
derived from the terminal node matrix (TNM) to a "bar matrix"
and visually compare different sets of information on the bar
matrix. In particular, we will describe how to apply TNM­
based visualizations to characterize the fitness of a model to
datasets and analyze domain similarity for domain adaptation.

The rest of the paper is organized as follows. Section 2 gives
some background knowledge about the gradient-boosting-trees
modeling method. In Section 3, we start with the problems
with the mismatch of data and model, and then develop a
visual analysis method based on the GBT model to address
these problems . Section 4 is dedicated to some use cases
and show how this visual analysis method can be possibly
used to improve the understanding and capture the changes of
the underlying datasets. Section 5 will show one application
of the visual analysis method to a real dataset for domain
adaption in the ranking problem. Section 6 will give some
related work in domain adaptation, drifting concept learning,
and multidimensional data visualization .

II . PRELIMINARY

In this section we will give the definition of the training data
and briefly cover the knowledge of the regression tree model­
ing and the gradient-boosting-trees method, to help understand
the visual analysis methods. The reason of using the GBT
method is for its unique benefits (1) The boosting methods,
including the GBT method, give high-quality models, with
low overfitting [27], [14], among the best learning algorithms,
such as Support Vector Machine(SVM) . (2) Although it is
designed for regression modeling, the GBT method can also
be applied to solve classification problems as well. (3) Each
regression tree in the GBT model partitions the feature vector
space geometrically, which makes visualization possible [15],
while it is hard to visualize learning models like SVM.

A. Training Data and Regression Modeling

In supervised learning, i.e., regression or classification,
each training example is represented as {(Xi,Yin, where Xi
represents the feature vector describing the features associated

B. Regression Tree Modeling

Figure 1 shows a sample regression tree, which is a binary
tree with one predicate at each internal node. The predicate
consists of a variable (feature) and a splitting value, typically
in form of F < r ? In such a tree, an internal tree node
partitions the training data that reach the node into two parts
with the predicate. The tree is grown with a top-down manner,
i.e., starting from the root and terminating when the fixed
number of terminal nodes, i.e., leaf nodes, is reached. In the
following, we describe how the training algorithm decides
which feature and splitting value are used for growing child
nodes.

Splitting a leaf node to grow a tree should give some kind
of "gain", namely, optimizing the goal of regression , i.e.,
minimizing the square error between the predicted value and
the target value. We assume that there are n, training records
reaching the node i, each of which, s ] , has a target value
r ij to fit at the node i. r ij = Yj if the current node is the
root, otherwise, rij is the residual by fitting the parent node. It
represents how well this example is fit so far from the existing
part of tree. The best-effort predictor for all records falling
onto the current node is the mean of all rij , i.e., r i = t I~~l r ij
[15]. With ri , the square error E for the current nod~ is

n j

E = I, (rij -ri)2
j=l

Finding the Best Split for a Node.
Let Fp denote the feature and Vp,q is a feasible value for Fp .

(Fp , Vp ,q) partitions the data into two parts: those records with
Fp < Vp ,q go to the left subtree and the rest records go to
the right subtree. After performing this partition, similarly, we
can get the square error EL for the left subtree, and ER for
the right subtree. We define the gain by splitting this node as
gain = E - EL - ER. By scanning through all possible features
and feasible splitting values for each feature, we can find the
best splitting condition, which satisfies

argmin(Fp,vp,q){EL+ER} ,for all possible p, q.

With the above criterion, a greedy but efficient search
procedure is often used to determine the leaf node - find the
one that brings the highest gain among all existing leaf nodes
for splitting. It is a hill-climbing procedure, which does not
necessarily result in the globally optimal tree. However, it is
efficient since the cost is linear to the number of features and
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often the result is very satisfactory. Figure 1 shows a perfectly
fitted tree to the underlying target value distribution. To extend
it to general multidimensional cases, we can understand that
each node represents a "multidimensional bounding box"
defined by the disjointed partitioning conditions along the
path from the root to that node. For example, the leaf node
labeled with R2 in Figure 1 is defined by the bounding box
FI < a l\F2 < boo

Fig. 2. Imagine the multidimensional
space is partitioned by a regression tree
and each block has different target val­
ues which are represented by different
colors.

In Figure 2, we use the small blocks to illustrate the
local areas in the high-dimensional space (i.e., "the high­
dimensional bounding boxes" in regression tree modeling)
that are covered by the training data. Different colors
represent different target values for the blocks. In regression
tree modeling, each leaf node tries to approximately model
one of these blocks, and each internal node groups a few
nearby blocks with close target values.

Calculating Leaf Node Response.
In the above algorithm, during the growing phase the predicted
value Pi for the node i is recorded , and the residuals Tt] - Pi are

used as the new target values for its child nodes. Let {P~eo),
node i in the path from the root to any node (O} denote the
predicted values along the path from the root to the leaf node
t . The final predicted response Reo for the leaf node (0 is

Reo = Lr~eo)

When a training example (a feature vector) is directed to the
terminal node (0 according to the conditions, the value Reo is
given as the predicted target value of the regression tree.

Note that regression tree can be used to model both regres­
sion and classification problems. For a classification problem,
there are methods to transform the class labels or to change
the loss function [15]. For simplicity, we will only discuss
regression modeling in this paper.

C. Gradient Boosting Trees

Gradient boosting trees are a series of regression trees, de­
noted by hi(x) . The final function is based on these regression
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trees.
k

H(x) = L Yihi(x)
i=1

where Yi is the learning rate, which is often small, e.g., 0.05.
A formal description of the training algorithm can be found
in the literature [14]. The GBT learning method trains the
k-th tree, based on the previous trees b], 1 S j < k, with a set
of random samples from the training dataset. The steps can
be briefly described as follows.

1) randomly sample the training data with certain sample
rate to get a subset of training examples Y'k;

2) set the target r, of the example in Y'k to the original
target Yi for k=1, or to the residual of the previous trees
h ], for k > 1, 1 S j < k, r, =Yi - I;:: Yjhj{Xi)'

3) train the regression tree hk with the examples {(Xi,ri)},
Xi E Y'k.

Note these trees are highly related - the tree i is trained to
fit the residuals from the previous i-I trees. Therefore, it is
meaningful to observe the data distribution over a series of
trees.

III. VIsGBT: A VISUALIZATION ApPROACH FOR
ANALYZING LEARNING MODELS

To trace the change of data distribution for models, two
key distributions should be monitored: the feature vector
distribution and the label distribution. We will discuss how to
observe these distributions and derive other information with
the visualized Terminal Node Matrix (TNM). First, we will
present the basic method for using the TNM to observe the
overall and local fitness of the model. Three simple synthetic
datasets will be used to demonstrate how a TNM looks like
according to the underlying data distribution. Second, we show
the basic method for detecting the change of feature vector
distribution and label distribution.

A. Properties of Trees in the Model

The rationale of the TNM-based visualization method is
based on the properties of regression tree and the GBT model.
Let's revisit the meaning of a node in a regression tree. Let d
represent the total number of features, and range(F;) represent
the value range of F; selected by the conditions along the path
from the root to the node. Note that the same feature may
appear several times in the path, which results in a continuous
range . A typical range is like Vi,l < F; S Vi,2, where Vi,1 can
be - 00 and Vi,2 can be +00, according to the splitting process.
If the feature does not appear in the path from the root to the
node, we consider range(F;) containing the full range of F;
values. Therefore, we have the following Lemma

Lemma 1: A node represents a partition U1=1 range(F;) and
this partition is continuous .
Based on the definition of the tree, we can also derive

Lemma 2: The entire feature space is completely parti­
tioned by the terminal nodes in the same tree.



Fig. 4. (I) Terminal nodes (leaf nodes) are labeled in the
order from left to right. (2) showing two contrasting metrics
for each cell. (3) showing one metric for each cell.

(3)(2)

Fig. 5. Using the VISTA system to explore the subsect of points in
the selected terminal node; The conditions for generating the terminal
node can be observed when the user pointing to the node.

[8] to explore the subset of points that are covered by the target
terminal node (Figure 5. In the VISTA visualization, only the
selected features in the path from the root to the terminal node
are used in exploration, while other features can certainly be
added later if the user is interested in them. Each point in the
VISTA visualization is colored according to its target value
(for tree 1, it is the original target value; for tree i, i > 1, it is
the residual from previous trees). Since the focus of this paper
is on the VisGBT method, we will ignore the detail of the
VISTA visualization. Interested user can refer to our previous
papers [8], [9]. In addition, the specific information about the
node will be shown when the user points to a particular node.

From the construction process described in the Preliminary
section, it is straightforward to derive these two lemmas. We
will ignore the proofs.

In addition, the GBT modeling process also implies the
following properties

• A new tree tries to fit the residuals of the target values
from the previous trees for the sampled training data.
Ideally, if there exists a meaningful model, the residuals
are decreasing with the increasing number of trees.

• Since we use the same sample rate crossing trees, each
tree uses a same number of samples, which allows us to
normalize the data distribution crossing trees.

In summary, with appropriate normalization and alignment,
the above properties allow us to use the terminal node matrix
to model the overall distribution of the feature vectors and the
labels.

B. The Basic Visual Design

Concretely, we use the "bar matrix" to represent the metrics
defined on the terminal node matrix. Figure 3 shows the basic
design. In the bar matrix, columns represent the nodes and
rows represents the trees. For each tree, we order the nodes
by their positions from the left to right and encode them
by the sequence [l..m] , where m is the number of terminal
nodes per tree (Figure 4). The node ID is mapped to the
column ID. Each cell in the the matrix can be used to show
either a pair of metrics to contrast them or to show just one
metric to see the overall patterns crossing nodes and trees. The
lengths of the bars can be normalized according to the overall
value distribution of the represented metric. The advantage
of bar matrix is that we can accommodate a large number
of trees easily and we can easily see the overall distribution
crossing nodes and trees, while the detailed information of
each node can also be observed under its context, i.e., the
neighboring nodes in the same tree and crossing neighboring
trees. Note that we haven't discussed what the bars represent
- the concrete design will depend on the semantics we want
to represent. We leave the details in later discussion.

The bar-matrix based visualization can also be combined
with our previously developed VISTA cluster rendering system

# of
trees

# of nodes per tree One column
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Fig. 3. Mapping metrics to the terminal node matrix

C. Basic Visual Analysis Methods

In this section, we demonstrate a few use cases for the
TNM-based model visualization method. We will show how
to use the visualization to analyze the fitness of the model
to a dataset. Note the datasets can be the training dataset
that is used to generate the model, or a pair of datasets, the
training dataset and the candidate dataset for comparison. We
will particularly discuss how to compare two datasets in next
section.

1) Basic Metrics Visualized with TNM.: Three basic metrics
can be visualized with the TNM structure. The first one is
the number of samples falling on the terminal node, i.e.,
the feature vector distribution, which is visualized with the
single-bar method ( (3) in Figure 4). We name it Feature­
Mass visualization. This visualization gives an overall feeling
of data distribution. The longer the bar is, the more samples
the terminal node has.
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Fig. 8. Skewed long tail distribution

Fig. 7. For the Gaussian dataset, left: Feature-MSE-contrast visualization;
right: MSE-only visualization

Fig. 9. For the long-tail dataset, left: Feature-MSE-contrast visualization;
right: MSE-only visualization

The third dataset is similar to the Gaussian dataset. How­
ever, we tune the feature value distribution to a skewed long­
tail distribution (Figure 8). The target value of a feature vector
is defined as the distance of the feature vector to the mean
it We also add in 10% noises, of which the target values
are perturbed randomly. We use the same setting to generate
the GBT model. Figure 9 shows the Feature-MSE-contrast
visualization and the MSE visualization. Now the mass of
data has been moved to the first few terminal nodes of the
tree, which matches our expectation .

and the node labeling sequence, the data should distributed
symmetrically around the middle node in the tree. The result
confirms that most samples are in the middle terminal nodes.
The MSE visualization also shows some unique pattern that
is very different from the pattern from uniform data.
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The second one is the metric representing model fitness.
Let R, represent the response value of the terminal node i,
and there are n, samples reaching this terminal node. Let rij
represent the target value of the point j. We define the mean
square error (MSE) of the terminal node i as follows.

1 n j

MSEi = - L (rij - Ri)2
ni j = !

Since MSE is the loss function the regression modeling wants
to minimize, MSEi is used to represent the fitness of this node
to the training examples. Note that a perfect node splitting
in growing the tree will result in zero MSE in the two new
terminal nodes. We name such a visualization as a MSE
visualization. It is also visualized with the single-bar method.

The third one is the combination of the feature vector
distribution and model fitness, which is visualized with the
contrasting-bar method ( (2) in Figure 4). We use MSEi to
categorize the samples into two categories: those having their
errors greater than MSEi are counted by the red bar and
the remaining are counted by the green bar, i.e., the red bar
represents the examples not well fitted by the model. We name
this visualization as MSE-contrast visualization.

Overall, the combination of the three types of metrics can
help us visually understand the underlying data and the fitness
of the model to the data.

2) Observing Distributions: We will use three simple syn­
thesized datasets to show how the visualizations look like. All
of the three datasets have 10 feature dimensions and 10,000
samples. The first dataset is generated by randomly fetching
feature values from uniform distribution D(O,I) and the target
values are generated in the same manner. Therefore, there is no
meaningful model in the data. We use a 100 trees x 10 nodes
setting to generate the GBT model. Figure 6 shows that in
its MSE-contrast visualization the bars are almost distributed
uniformly randomly. Most importantly, the MSE visualization
shows that MSEs are almost same crossing different nodes
and different trees, which indicates no meaningful model. If
we see any dataset has a similar visualization like this, we can
assert there is no meaningful model with the dataset.

Fig. 6. For the uniform dataset, left: Feature-MSE-contrast visualization;
right: MSE-only visualization

The feature values in the second dataset follow a standard
Gaussian distribution with mean 0 and variance 1, N(O,I). The
target value of a feature vector is defined as the distance of
the feature vector to the center O. Similarly, we use the 100
trees x 10 nodes setting to generate the GBT model. Figure 7
shows the Feature-MSE-contrast visualization and the MSE­
only visualization. According to the node generation procedure

We use these examples to demonstrate that the proposed
visualizations can well capture the fitted models - if there is
one, and each meaningful model will have a particular "visual
signature".

3) Observing Noises.: Note that the Feature-MSE-contrast
visualization can also be used to detect noises. Within the
subspace (the bounding box) defined by the terminal node,
noises are those samples that have their target values signifi­
cantly deviated from the MSE of that terminal node. If noises
exist, the length difference between the red and green bars
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might be significant. We use a new design called Feature­
MSE-difference visualization to observe the possible noise
distributions . Let the length of the original red bar and green
bar be l; and Ig , respectively. We define the length of red/green
bar, notated as I; and I~ in the visualization as follows.

{
I; = Ir -Ig , I~ = 0 if t; > Ig
I; = 0, I~ = Ig -t; otherwise

Note that the long-tail dataset contains 10% noises, of which
the target values are perturbed randomly. Using the Feature­
MSE-difference visualization, we can clearly observe that the
long-tail dataset contains a significant amount of noises, while
the Gaussian dataset almost has no noise (Figure 10).

Fig. 10. Feature-MSE-difference, left: the Gaussian dataset has no noise;
right: the long-tail dataset has many noises

IV. ANALYZING THE SIMILARITY OF TRAINING DATASETS

FOR DOMAIN ADAPTATION

It is well known if the training data are not sufficiently
large, the generated models might be of low quality. In
domain adaptation, it is preferred to pool small labeled training
datasets from similar domains to create a larger training dataset
in the hope of achieving better models [20], [10]. However, it
is also risky because one domain's data may not necessarily
help the other, and sometimes it may deteriorate the quality
of the data. The key of effective model adaptation is to find
out domains that (1) similar feature vectors from different
domains should give similar labels, (2) for less-overlapped
or non-overlapped feature subspaces, one domain 's data can
complement the other 's . In other words, if feature distributions
overlap the two domains should agree on labels, otherwise, one
set of data should dominate the other. The TNM visualization
model can be used to identify both types of training examples .

It is difficult to compare the similarity of two datasets
and finding out the dissimilar subspaces in terms of the
joint distribution of feature vectors and labels . For a single
dimension, it is quite easy to compare a pair of distributions
and see the similarity/dissimiarity of label distributions. A
normal way is to plot two two-dimensional figures (e.g., x-axis
is the investigated feature dimension and y-axis is the label) for
the two datasets, respectively, and compare their distributions.
However, it would be tedious to do so for hundreds of
dimensions and it is also difficult to synthesize the differences
from so many dimensions. There are tools for visualizing
clustering structures in multidimensional large datasets [8],
but data analysis for supervised learning (classification and
regression) imposes very different challenges, which requires
different visual design .
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We design a visualization method for evaluating the dataset
similarity based on the TNM visualization and regression
modeling. The basic idea can be described as follows. Let's
take one of the two domains as the reference domain. Without
loss of generality, we use D, domain for the reference domain ,
and the other domain is D t . We train a GBT model with
the domain-specific data from Ds . Then, we use this GBT
model as the reference model and map the data from the
both domains onto the subspaces formed by the terminal
nodes . This mapping of records is easily done by following
the condition on each internal node. After all records are
mapped , the mean target value for each terminal node can
be calculated for both domains , respectively. We compare the
feature vector distributions and the label distributions based
on TNM visualizations. Below we discuss the metric design
first and then describe the visual design .

A. Metric Design

We generate a couple of statistics to describe the samples
from one domain using the terminal node information. Let p
be the number of terminal nodes per tree.

1) The normalized number of samples falling onto each
terminal node, n..i = 1. . .p . Since the total number of
samples may not be the same for a pair of domains, we
need to normalize this number. Assume the sample is
uniformly drawn from the domain, i.e., with the increase
of total population, the samples in each subspace will
be increased proportionally. Let the rate r between two
sample sets is r = Ns / M, where M and Ns are the num­
ber of samples in the domain D, and Ds , respectively.
The number of domain D, samples, n?), is normalized
to r x n~t) .

I

2) The mean square errors (MSE), ei.i = 1. . .p. Since a
terminal node models a part of the regression function ,
it is also meaningful to compare the terminal-node-level
response and modeling error for both the source and
target domains.

For each domain we will get two sets of the above metrics,
n; and ei, notated by (s) and (t) for the domain D, and
Dr, respectively. According to the definition, we have the
following interpretation to the above vectors: the difference
of n}s) and n}t) series can roughly describe the difference
between the sample feature distributions, while the difference
between e}s) and e?) series represents the difference between
joint feature-label distributions. Therefore, with the regression
tree structure, we can reduce the complicated high dimensional
distribution analysis to a comparison between the series of
values. By visualizing these series of values and contrasting
them between two domains , we can find whether they are
similar overall and dissimilar in particular subspaces.

Similar data distributions will surely give similar n, and
e, series, while the difference observed in the comparison can
help us understand the domain disimilarity/similarity. To make
the result easier to visually understand and analyze, we use the
following visual design.



right : sample differe n~ l eft : M SEdifference

Fig. II . Composite visualization for comparing both sample
distributions and MSE distributions.

represent the source domain and green to represent the target
domain . For the same cell, the left bar is used to represent the
sample difference - if the source domain has more samples,
it is painted red, otherwise green. The right bar is used to
represent the MSE difference and the same coloring scheme
is applied. If the target domain has no samples on some nodes,
then the color of both bars is yellow.

We can also use TNM visualizations to identify special
training examples. Let -r and v be some small values much
less than 1. (1) Those terminal nodes satisfying the conditions:
I (s) (I) I (s) (I)
m

j
(~j I > r (significant label difference) and nj <s~j I <= v

1m. In.
(no significant sample difference) are marked as potential
conflicts of interest. In domain adaptation, we may exclude
the source domain training examples in these terminal nodes,
because they contradict the target domain labels. (2) Those

I (s) (1)1
terminal nodes satisfying the conditions: mj (%j <= -r (no

1m;
(s) (I)

significant label difference) and nj (s); > 1 - v (dominating
In.

source domain samples) indicate that the source domain may
contain complementary examples at these nodes. It is possible
that adding only these complementary examples to the target
domain will be sufficient to improve the model quality.

V. EXPERIMENT: VISUALIZING DOMAIN DIFFERENCE FOR

LEARNING TO RANK

In last section, we present the basic methods for visually
analyzing domain similarity with TNM based visualizations.
In this section, we will show how to apply these methods to
some real datasets for learning to rank [26]. First of all, we
will give a brief description about these datasets. The major
task is to understand the similarity between domains for the
ranking problem and explore the relationship between domain
similarity and the effectiveness of domain adaptation.

A. Datasets

We will use the preprocessed TREC web track data in
the publicly available LETOR datasets [26] for experiments.
TREC web track datasets are designed to study the retrieval
behaviors when the collection to be searched is in a large
hyperlinked structure such as the World Wide Web. There
are three search tasks in TREC Web track: topic distillation
(TD), homepage finding (HP) and named page finding (NP).
Topic distillation aims to find a list of entry points for good
websites principally devoted to the topic. Homepage finding
task is required to return the homepage of the query, and
named page finding task aims to return the page whose name
is exactly the query. Generally speaking, there is only one
answer for homepage finding query or named page finding
query, while topic distillation may have multiple answers.
TREC evaluators provide two-grade judgments for these tasks,
i.e., {relevant, irrelevant}. The recent LETOR datasets (version
3.0) include six TREC web track datasets, i.e., 200312004
TDIHPINP data. Note that the same type of datasets may
have different distributions from year to year due to the
evolution of the Web. Because they share the same set of

Yello w :
Target Domain
has no samples

Green:
Target domain
has higher value
(Sample orMSE)

""". red :
Source do mai n
hashigher value
(Samp le orMSEI

We can synthesize the comparisons on sample distributions
and MSE distributions into one visualization. Figure 11 shows
how such a composite visualization is designed. We use red to

B. Visual Design and Analysis

First, we design two basic TNM visualizations. The first
TNM visualization visualizes the series n~s) and n~t). On the

same terminal node, n~s) is represented as the red bar on the

left and n?) the green bar on the right. In a similar design, the

second TNM visualization is used to visualize eV) and e?) .
Linking the two visualizations together, we can get several

important indications. The final composite visualization will
be designed to capture the following information. First, we
look at the sample distributions. (I)If we see well matched
sample distributions in the first TNM visualization, we have
good chances that the label distributions will be matched as
well. (2) If we see some nodes do not have samples from
the target domain, this may be caused by several reasons and
indicate some opportunities. The missing samples are possibly
caused by small sample size or incomplete sampling due to
the scale and the complexity of the domain. This pattern
indicates a good opportunity that the source domain data
can possibly complement the target domain dataset. Domain
adaptation [20], [10] may help the target domain - the missing
part can be possibly patched by the source domain data with
appropriate domain adaptation algorithms.

If the sample distributions are very similar except for some
missing parts, we can turn to check the MSE distribution.
(1) If we see MSE distributions have no big difference, it is
highly possible that the two domains are very similar and the
source domain function can often be directly applied to the
target domain. (2) If the MSEs of the target domain are much
higher than that of source domain data, it is confirmed that the
label distribution of the target domain is very different from
that of the source domain. The source domain data may not
help in modeling. (3) In some rare cases, we can also see the
target domain data have lower MSEs on average, which means
the reference model fits the target domain even better than the
original source domain. This can happen if the source domain
labels are noisier than the target domain. In this situation, the
two datasets may also have high similarity.
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Fig. 14. Comparison on NP04 and HP04.

Fig. 13. Comparison on TD04 and TD03.

Fig. 12. Comparison on TD04 and HP04.

The experimental study on model adaption has shown that
the effectiveness of domain adaptation could be characterized
by the domain similarity [7]. We include some of the experi­
mental results that are related to the three pairs of datasets to
make the comparison more interesting.

We test two adaptation algorithms in the experiment: data

very similar, i.e., the differences are small as shown in the
Figure. We then look at the sample distributions (left subgraph
at Figure 15) and MSE distributions (right subgraph Figure 15)
separately. It shows that most samples are absorbed by the first
node of each tree, while only a few nodes show large MSEs.
It seems both datasets have the particular distributions and the
reference model fits both datasets very well.

1hnp://research.microsoft.com/usersILETORI

B. Similarity Analysis and Effectiveness ofAdaptation

We study three pairs of domains, which have been shown
with different level of domain similarity in terms of training
ranking functions [7]: HP04 and TD04 with high similarity,
TD04 and TD03 with very low similarity, and NP04 and HP04
with medium high similarity.

We use the composite visualization (as shown in Figure
11) to compare both the difference of sample distributions
and the difference of label distributions. For the pair TD04
and HP04, we use TD04 data to train the reference model
(presented in red), with parameters: 10 trees and 10 terminal
nodes. Figure 12 shows that HP04 and TD04 have very similar
sample distribution (left columns that represent the difference
of sample distributions are almost empty) and HP04 data also
have lower MSEs on TD04 model (most right columns are
red).

Again, we use TD04 as the reference model to compare the
pair TD04 and TD03. Figure 13 shows that TD04 and TD03
have very different sample distributions and MSE distributions.
Even on some nodes, TD03 has no samples. The visualization
confirms that TD04 and TD03 may have low similarity.

The composite visualization on NP04 (the reference model)
and HP04 shows a very special pattern (Figure 14), where
both the sample distributions and the MSE distributions are

features, we are able to use them to simulate six different do­
mains {TD03,HP03,NP03,TD04,HP04,NP04}. These datasets
are used in two sets of experiments: (1) for studying the
similarity between these domains with the proposed methods:
relevance correlation and sample distribution similarity anal­
ysis; (2) for verifying the results from the simulated domain
similarity.

In the LETOR package, each dataset has been randomly
sampled and partitioned to generate five folds for cross
validation. All of our results are the average performance
over the five folds. We use the normalized version that has
all values normalized to the range [0,1], to maximize the
possibility of the overlapping on feature vector distribution
between the source and the target domain. Readers can find
detailed information in the paper [26] or from the web site" ,
Features for Learning to Rank The features for learning to
rank are generated in three categories: query-only, document­
only, and query-document. We briefly describe these three
categories of features. (1) Features that model the user query
only do not change over different documents in the document
set, such as the number of terms in the query and the frequency
of a term in the corpus. (2) Features that model the web
document only are constant across all the queries, such as the
number of inbound links to the document and PageRank. (3)
Features that model the query-document relationship describe
the matching between the query and the document, such as
the frequency of each query term in the title of the document.
The list of features defined in LETOR datasets can be found
in LETOR description[26].
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Fig. 15. Comparison on NP04 and HP04 (left: sample
distribution, right, MSE distribution).

combination [20] and Trada [10], and use the source domain
function (applying the source domain function directly to the
target domain) as the baseline for comparison. In applying the
Trada algorithm, we also use the baseline function as the base
function in training [10]. All models use the setting of 100
trees and 10 terminal nodes per tree. Figures 16, 17, and 18
show the performance of different adaptation algorithms. For
each figure, we also give a brief description in the caption.
Due to the space limitation, we will not go to details.

0.75 -,---------------,
--+_.HP04 Function
_ Trada on HP04

0.7 - -&- HP04+NP04 Combination

LO
C>
UO.65 ­
Cl
Z

0.6 -

0.55 -t------,,------..,.-----r----,-------1

5 10 20 30 40
# of NP04 Training Queries

Fig. 17. NP04 and HP04 have medium high correlation.
Applying NP04 function directly to HP04 yields moderate
performance. With the increase of data size, data combination
becomes worse than Trada. Trada can generate statistically
significant improvement on larger target training data.
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Fig. 16. TD04 and HP04 have high ranking correlation [7].
Using TD04 data can generate good models for both domains.
Data combination can slightly help and it is slightly better than
Trada (not statistically significant).

VI. RELATED WORK

Visual analytics [30] studies techniques that combine in­
formation visualization with statistical analysis, data mining
and machine learning. Visually analyzing multidimensional
data is one important issue in visual analytics. The major
techniques include parallel coordinates [19], star coordinates
[22], [8], [29], and Grand Tour [11]. We have studied the
interactive visualization techniques for cluster analysis [8],
[9]. In this paper, we study the classification problem with
the combination of visualization, statistical analysis, and the
Gradient Boosting Trees method [14].

Model adaptation has been of great interest in some areas,
such as natural language processing [1], [18], [4], [20], speech
recognition [25], [12], and learning to rank [10], [7]. In model
adaptation, we try to reuse the training samples or models
from one domain to enhance the models in another domain.
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Fig. 18. TD04 and TD02 have low correlation. Domain
adaptation helps in this case. However, it will not be better
than the function from a highly correlated domain (i.e., HP04
function used for TD04).

From domain to domain, both the feature distribution and the
label distribution change. Thus, understanding how similar
between the two domains is critical to the performance of
model adaptation. It has been observed that the effectiveness
of model adaptation may vary from dataset to dataset [20],
[10]. The proposed visual analysis method can be applied to
analyze domain similarity as we have shown in the experiment.

Concept drifting is a well known problem with learning
from data streams [33], [17], which is also characterized by
changing featurellabel distributions. There are two types of
concept drift: sudden drift or gradual drift. The challenge is
distinguishing between true concept drift and noise, since it
is often difficult to tell sudden drift from noise. Concept drift
caused by the change of underlying data(feature) distribution is
also called virtual concept drift, since the real label distribution
may not change [33]. Therefore, it is important to monitor such



cases and not overact to any change of data. The common

approaches to learning drifting concepts are sample selection,

sample weighting [24], and ensemble learning [32]. Ensemble

learning methods include boosting and bagging [3], [27].
Gradient boosting trees [14] is one type of boosting methods.

Understanding the change of concepts and distinguishing real

concept drift and noisy drift are two important topics in this

area. We will investigate these topics with the proposed visual

analysis method as well.

VII. CONCLUSION

Understanding the similarity between datasets is impor­

tant for many learning problems, such as domain adaptation

and concept drift learning, where the underlying feature and

label distributions between datasets may change. However,

due to the complexity of multidimensional data distribution,

it has been difficult to effectively analyze such changes.

We propose a visual analysis method VisGBT based on

the gradient-boosting-trees (GBT) learning model. The GBT

learning model consists of an array of trees, each of which

has fixed number of terminal nodes. We map the important

statistics onto the matrix of terminal nodes - Terminal Node

Matrix (TNM), so that the multidimensional data distribution

and the model fitness information can be visualized in a

convenient way. We also showed how to use this technique to

perform model fitness analysis and domain similarity analysis.

The TNM based visualization can be combined with other

point-wise exploration tools, such as VISTA cluster rendering

system [8], to conveniently provide more information. Fur­

ther study will be performed on enhancing the interactive

operations, exploring more analytic tasks with the VisGBT

method, and providing a toolkit for conveniently integrating

this method into real applications.
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