
A Scale-freeAnd Self-organizedP2POverlayForMassiveMultiuserVirtual
Environments

Markus Esch
University of Luxembourg

Faculte des Sciences, de la Technologie et de la Communication
Luxembourg, Luxembourg

Email: markus.esch@uni.lu

Ingo Scholtes
University of Trier

Department of Computer Science
Trier, Germany

Email: scholtes@syssoft.uni-trier.de

Abstract-Massive Multiuser Virtual Environments have
recently grown popular, and commercialvirtual online worlds
like Second Life or World ofWarcraftattracta lot ofattention.
In this context, for theresearchon distributedsystems, espe­
cially the idea of a 3D Web as a global scalevirtual environment
is very interesting,since it poses severe technical challenges to
the underlyinginfrastructure.It is generally accepted,that the
realizationof such a global scale scenario can not be realized
in a traditional centralizedfashion. For this reason in the

of scale-free networks, self­
organizationand epidemicaggregationin order to tackle the
severe challenges of the scenario in a fullydistributedfashion
without anycentralcontrol.

Keywords-MMVE, DVE, P2P Overlay, Self-organization,
Complex Networks

I. INTRODUCTION

The popularity of Massive Multiuser Virtual Environ­
ments (MMVEs) like Internet communities (e.g.Second
Life) or Massive Multiplayer Online Games (MMOGs) (e.g.
World of Warcraft) is constantly increasing. This surge of
interest influences also the research on distributed systems,
since a lot of work is done in the field of distributed

http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B279

challenges. The central question is how scalability and
interactivity along with consistency and persistency can be
reached in a way that potentially all 3D Web users are able to
use the same instance of the virtual world at the same time.
The commercial precursors of a 3D Web, for the most part
rely on centralized client/server architectures and the parallel
provision of hundreds of separated world instances, each
supporting at most a few thousand concurrent participants.
While this has advantages in terms of manageability and
controllability for the providers, these approaches can not
reach the envisioned global-scale user number of a 3D Web.
It is however generally accepted that realizing a global-scale
MMVE based on a traditional client/server architecture with
a centralized server farm is not practicable.

In a current research project called HyperVerse, we aim at
the provision of a federated infrastructure that supports such
a scenario on a global-scale while retaining the decentral­
ized nature and reliability of theWWW.In [4] we have
presented the concept of a two-tier Peer-to-Peer network
as an infrastructure for a global-scale MMVE. The basic
idea is to combine a loosely structured Peer-to-Peer network,
that interconnects the user clients for a Torrent-based data
distribution with a highly-structured Peer-to-Peer overlay of
reliable server machines (so-called Public Servers) in order
to provide a reliable and persistent backbone service. Tasks
of the federated backbone service involve avatar tracking as
well asobject-hosting

tecture is presented in order to enable a better understanding
of the entire concept. In the subsequent section III objectives
as well as the idea of the concept is presented, before
section IV describes the actual realization of the scale-free
P2P overlay network in a self-organized fashion. Section
V compares our work to other approaches in this field. The
paper concludes with a discussion of our main contributions,
open issues and future work in section VI.

II. THE HYPERVERSE INFRASTRUCTURE

In this section we give a brief introduction to the Hy­
perVerse project. Figure I presents a schematic overview of
the architecture. Our concept distinguishes between reliable
peers, so-called Public Servers, and relatively unreliable user
clients. Public Servers are machines that resemble today's
Web Servers and they are not required to be under control
of any centralized authority. Similar to today's Web for their
provision we rely on the incentive of being able to publish
information in the HyperVerse. The federation of these
Public Servers constitutes the backbone of the HyperVerse
and provides the huge amount of data in an efficient and ­
most important - reliable manner to clients. This is required
since the huge amount of world data in our scenario is
highly dynamic, due to fact that world objects can be added,
modified and removed at any time by users or content
providers. For this reason a predistribution of world data,
like it is done in today's MMOGs, is not feasible.

Due to the fact that the clients' bandwidth is constantly
increasing, it is mandatory to engage the clients in the data
distribution. Since it is foreseeable that the clients exhibit
high churn rates we propose a loosely structured peer-to­
peer overlay to interconnect them. Our approach is based on
a scheme similar to the BitTorrent protocol [6]. Each client
makes cached data accessible in a Torrent-like manner, i.e.
data are split into individually addressable pieces. By this
means it is possible to download object and world data in
parallel from a set of clients. In order to figure out which
clients hold data of interest we can utilize the fact that clients
in virtual proximity need to possess a similar set of data,
since they have to render more or less the same objects.
Hence a client can always download the required data from
other users in its virtual proximity once client density is
high enough. Taking advantage of the supposed, primarily
continuous movement through the virtual world we can en­
hance this mechanism by applying prefetching and caching
strategies. A detailed description of the Torrent-based data
distribution mechanism in HyperVerse is presented in [4]
and [19]. One main advantage of this Torrent mechanism is
that it implicitly tackles the problem of flash crowds. Due
to the rise of available bandwidth for data distribution with
increasing user numbers in a given region, the flash crowd
problem can be handled in a self-organizing manner.

Each Torrent system relies on a tracker service that
enables the clients to find the required data pieces. In

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8279
http://dx.doi.org/10.41081ICST.COLLABORATECOM2009.8279

HyperVerse the Torrent tracking can be realized as piggy­
back mechanism to the avatar interaction. Because clients
in virtual proximity have with a high probability the same
object data and these clients anyway need to be informed
about each other in order to allow mutual rendering and
interaction. In our setting the backbone service is responsible
for the interconnection of clients in proximity. For this
the clients have to send periodical position updates to the
backbone. In order to keep the update frequency low we
utilize a scheme that differentiates a client's Field of View
(FoV) and its Area of Interest (AoI), which is also described
in detail in [4]. Receiving frequent movement updates of
the clients, the backbone service is able to interconnect two
clients when their AoIs intersect.

Figure 1. Overview Of The Two-Tier HyperVerse Infrastructure

In addition to the avatar tracking further tasks of the
backbone service involve object hosting and object indexing.
As mentioned, world objects are distributed in a Torrent­
based fashion whenever possible. However in order to
provide a persistent and reliable world and to realize the
initial distribution of the object data, the backbone hosts
all world objects and acts as initial seed for these objects.
Hereby an object is hosted by its publisher. For this reason
someone who wants to publish an object in the HyperVerse
has to run or have access to a Public Server that hosts this
object and constitutes a part of the backbone overlay. This
is similar to today's WWW where publishing information
at least requires access to some Web server. To enable a
client to load the objects in its proximity the HyperVerse
backbone works as indexing service mapping an object's
position to the Public Server that hosts this object. Summing
up, a Public Server has two independent tasks, at first hosting
of world objects and second being a part of the backbone
overlay that is responsible for avatar tracking and object
indexing. An avatar entering a certain region first obtains a
list of avatars and objects in proximity from the backbone
and thereupon starts downloading the object data from the
providing Public Server or, if possible, in Torrent fashion.
For this purpose the whole surface of the world needs to
be distributed among all Public Servers, each managing
a certain area of the world. Moreover the Public Servers
need to be interconnected by any scheme in order to allow

totally distributed and self-organized. For this reason we
are using epidemic aggregation to enable peers to obtain
certain information about the network state. The aggregation
mechanism is explained in section IV-C.

With mo being a constant rest mass equal for all entities,
and v(x) being an entities velocity. Using these masses, a
Public Server can calculate the absolute mass of the objects
in its cell as well as the center of mass. While the absolute
mass of a cell is just the sum of the masses, the center of
mass C of a cell is calculated by the following formula:

IV. REALIZATION OF THE SCALE-FREE P2P OVERLAY

This section describes how the concept presented in the
previous section can be realized. The self-organized plane
distribution based on the application of a set of rules is
explained in section IV-A. Section IV-B explains how links
between nodes can be established in a distributed fashion,
so that a scale-free node degree distribution emerges. The
epidemic aggregation mechanisms used to gather certain
information required for the algorithm are presented in
section IV-C.

A. Plane Distribution

As already mentioned virtual positions of Public Servers
need to be assigned in a way that crowded regions are man­
aged by machines with high bandwidth and computational
power, while less powerful machines are responsible for
less crowded regions. Public Server apply several simple
rules to adjust their virtual position to the current load
distribution in a way that ensures this requirement. We
distinguish so-called local rules and global rules. The local
rules require information about the own state and the state
of the bordering nodes and have only local effect. Their
purpose is to adapt the local world distribution to local
load variances. The global rules are applied to equalize
global imbalances in the load distribution detected based on
aggregated information.

1) Local Rules: Using the local rules each Public Server
balances the load distribution between itself and its border­
ing neighbors. For the application of subsequent rules a mass
is assigned to each object or avatar, its mass reflecting the
load it induces on the server backbone. As the backbone's
purpose is object and avatar tracking and indexing rather
than actual data hosting, an object's mass is independent of
the transmission size and depends on its velocity. This is
because faster moving items induce a higher load, due to
the required position tracking. The mass m of an entity x
is given by:

(2)

(1)m(x) = mo + v(x)

L~=l Pi . m(i)
C= n

Li=l m(i)

is determined by the tolerance against node failures. Here
two different scenarios need to be distinguished. Random
node failures and targeted attacks against the network. It has
been shown that scale-free networks are very robust against
random node failures, since the probability that a high degree
node fails is extremely low. But, since attacks are targeted on
the most important nodes, scale-free networks are less robust
against selective attacks compared to Erdos/Renyi random
networks.

B. Concept

This section presents our concept for a scale-free P2P
overlay incorporating advantages of scale-free networks,
epidemic information aggregation and self-organization. The
overlay has been built considering the above mentioned
assumptions of unequal load distribution and different server
capacities. The basic idea is to build an overlay, that self­
organized emerges to a scale-free state in order to benefit
from the particular advantages of this network type.

The task of the backbone is indexing of world objects, as
well as interconnecting clients in virtual proximity in order
to allow interaction and mutual rendering. For this purpose
the world surface gets subdivided into small cells, each cell
managed by one Public Server. For subdividing the plane we
are using a Voronoi diagram. To define a Voronoi diagram
distributing the plane, a virtual position on the world surface
is assigned to all Public Servers. In the resulting Voronoi
decomposition each Public Server manages the Voronoi cell
surrounding its virtual position. To allow for the assumptions
about the particular properties of an MMVE, servers handle
regions with a object and avatar density equivalent to the
own capacities. By this means hotspots get managed by
machines with high capacities, while less crowded areas can
be handled by less powerful machines. In order to be able
to adapt the overlay to dynamic load shifts in the online
world, the virtual positions are not fixed. Rather, the servers
modify their position according to the load induced by the
users of the online world. The virtual positions are managed
in a self-organized fashion, based on a set of rules applied
by each server as described in section IV-A.

In addition to the distribution of the world surface, it is an
important issue how the Public Servers are linked together.
In first place all nodes have links to the nodes managing the
bordering Voronoi cells. Additionally links to other nodes in
the network are established in order to get a scale-free degree
distribution and to allow fast routing to all positions in the
virtual world. To get a network, that emerges into a scale­
free state, links are established by a preferential attachment
scheme, based on bandwidth and computational power. This
mechanism is described in section IV-B.

For the management of both, the virtual positions and
the link structure, the servers require certain aggregated
information like e.g. load distribution and network size. But,
a global system view is not existing, since the system is

Digital Object Identifier: 10.41OB/ICST.COLLABORATECOM2009. B279
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B279

(3)

• D
p: 95o• E

p: 50

G

•

•

p = payload ; m = ce ll mass; iz = overlo aded

• E
p:30
m:lO

•

•

Figure 4. Applying The Local Rule Unload Neighbors

Figure 5. Applying The Local Rule Swapping

p = payload ;0 = hotspot wit h mass x; It = co nflict

•

m of a Public Server can be calculated by the following
formula:

With P being the current posinon , LI, .. ., Ln being the
nodes with reversed mass order, i , being the speed away
from L i , 0 1, . .. , On being the overburdened neighbors and
Oi being the speed towards Oi.

For the adjustment of the algorithm it may be useful
to weight a certain rule more than others. For this reason
we introduce weights WI, W2 and W3 that can take values
between a and 1. Using the weights the motion vector is

• DA p:l00
m:80

p:30
m:lO

•

M • E

p: 120
m: 100

p = payload ; m = ce ll mass; iz = confli ct

p = payload ; m = cell mass; iz = conflict

•

justified by two reasons: At first this rule essentially
contributes to the stability of the overlay since heavy
hotspots are always managed by the most powerful
machines available. Second, it can be expected that
swapping will be necessary quite infrequently, due to
the threshold and the relative stability of hotspots.
That means, popular and crowded regions are expected
to remain hotspots for quite a while and due to the
rule Centering, a hotspot once managed by a powerful
server remains in this cell.

•

•

Figure 2. Applying The Local Rule Keeping The Mass-O rder

Figure 3. Applying The Local Rule Keeping The Mass-Order For Several
Neighbors

It is likely that the rules I , I I and I I I need to be applied
at the same time. For this reason the absolute motion vector

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8279
http://dx.doi.orgI10.41081ICST.COLLABORATECOM2009.8279

given by:

_ n LP m POi
m= Wl . PC +W2 . L ·Ii +W3 . L -_- .0 i (4)

i=l ILiPI i=l WOil

To avoid constantly moving and oscillating Public Servers
it may be necessary to introduce a notion of inertia damping
the motion of the Public Servers. Finding an appropriate
damping function that on the one hand guarantees a good
load distribution and on the other hand keeps the dynamic
in the backbone overlay as low as possible needs to be
considered future work.

2) Global Rules:The local rules described above manage
the load distribution based on local information in the
neighborhood of each node. By this means, a collective
behavior, distributing the load according to the server's
payload, emerges in a self-organized fashion without any
central control.

Figure 6. Emergence Of Local Maximums By The Application Of Local
Rules Only

In addition to the local rules, some global rules have
been defined. These are required to balance global inequal­
ities in the load distribution, that can not be detected and
solved solely based on local knowledge and rules. Because,
situations can occur where all nodes remain stable and
balanced around local load maximums. Since they only have
local knowledge, they don't know about any global load
maximums bigger than the known local maximum. Such a
situation is depicted in figure 6. In this example the nodes
A and B remain at their hotspot, being a local maximum,
and the condition is fulfilled in the surrounding of A and
B. But since A and B have only local knowledge, they can
not become aware of the global maximums at C and D. For
this reason, to overcome the border of the local maximums
some global rules utilizing aggregated information need to
be used. In order to apply the global rules, the following

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8279
http://dx.doi.org/10.41081ICST.COLLABORATECOM2009.8279

global information needs to be aggregated using gossip­
based aggregation as described in IV-C:

• Density Distribution: The Public Servers require in­
formation about the distribution of the avatar and object
density in order to be able to adjust their positions
accordingly. It is obviously not possible to determine
the position of all objects and avatars in order to get
an exact map of the density distribution. Because this
would on the one hand imply a unjustifiable overhead,
and on the other hand it is likely to be impossible due to
the avatar dynamics. For this reason only information
about the biggest hotspots is required. However, in a
growing and scalable environment it is not possible
to define a constant number of hotspots for which
information is aggregated. For this reason, a fixed
preview radius r is defined, and all nodes aggregate
only information about this preview area. Since this
area has a fixed size, we can define a constant value
n, and aggregate the n most crowded hotspots within
this area. For the hotspot aggregation we are using the
same definition of a hotspot as applied in the local rule
Swapping .

• Payload: Along with information about the hotspots,
the maximum payload of the nodes currently managing
the Voronoi cell surrounding the hot spots is aggre­
gated.

Using these information, the following global rules are
used by the Public Servers:

I) Jumping: Based on the aggregated hotspot informa­
tion a Public Server can detect if there is a position
within its preview radius suiting better to its payload.
For example consider figure 7, here node A becomes
aware of the hotspot h-i- Since A has a much high
payload than required at its current position, it sets
the hotspot hl as new position. Node B is thereupon
pushed aside by the application of the local rules. The
nodes previously bordering A than have to manage its
old cell and may be moved towards A's old position
by local rules in order to handle the load. Here again
a threshold needs to be defined in order to avoid
constantly jumping servers. By application of this
rule the most powerful server machines concentrate
around the heaviest hotspots and the payload of the
Public Servers decreases with increasing distance from
hotspots. After jumping to another position, the Public
Servers have a new preview radius. Hence, the jumping
may recursively proceed until the servers have found
their global optimum.

II) Active Search: If a Public Server with a high excess
payload can not find an appropriate hotspot within
its own preview area, it can start a active search for
a hotspot matching its payload. For this purpose the
server sends requests to other world regions outside

the own preview radius to find heavier hotspots. Due
to the scale-free link structure of the network and the
associated small path length (see section III-A), this
hotspot search can be performed very efficiently. If an
appropriate hotspot with a managing server having a
lower payload is found , a swapping is performed. A
threshold has to ensure that always the rule Jumping
is applied first before executing this rule. Only, if no
hotspot using the server to full capacity can be found
the active search is started .

III) Active Pull: If a Public Server managing a hotspot
region is running into the risk of getting overburdened
and the minimum cell size is already reached and
no server with higher payload is available within the
own preview area, it can actively pull more powerful
machines. Like for the Active Search rule, a search
outside of the own preview area is started and if a
Public Server with higher payload , managing currently
a less crowded region, is found these two servers can
swap their cells.

Figure 7. Applying The Global Rule Jumping

These global rules enable that the condition, that Public
Servers remain at positions with a load corresponding to
their payload, can be achieved globally. Because applying
the local rules only, could lead to a situations where the
condition is fulfilled locally in the surrounding of each node,
but not globally, since information about the density in other
regions is missing. Applying the global rules in the example
shown in figure 6, the nodes A and B can get aware of the
global hotspots and change their position if necessary.

B. Scale-free link structure

As mentioned above the aim is to construct a overlay net­
work with a scale-free link structure, in order to benefit from
the advantages of scale-free networks in terms of reliability,
resilience and short path length . In order to reach this, our
concept proposes two basic steps. At first, establishing links

Digital Object Identifier: 10.4108I/CST. COLLA BORA TECOM2009.8279

http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8279

to newly added nodes by a preferential attachment scheme
similar to the one proposed in [2]. Second, monitoring the
power-law exponent in the network and adjusting it by using
local rules, as described in [20).

The algorithm presented in [2], specifies two ingredients
leading to the emergence of a scale-free networks : growth
and preferentialattachment.The preferential attachment is
realized by connecting a new node with probability II to an
existing node i , depending on the degree ki of i :

ki
II(k i) = I:

j
k
j

(5)

With k, being the degree of node i . This means , new nodes
are connected to existing nodes with a high node degree
with a higher probability.

Due to the Web like scenario in which new information
provider appear one after another the prerequisite growth
is presumably fulfilled automatically. In order to adopt also
the preferential attachment scheme to our scenario we have
to resemble the way preferential attachment evolves in real
networks like the WWW. In the WWW one can assert, that
the number of links to popular Web-sites increases faster due
to their high profile. At the same time, the providers take
care for allocating sufficient server capacities. That means,
the scale-free link structure and the existence of hubs with
sufficient capacities emerges in a self-organizing manner
from the different popularity of Web sites. Transferring this
observation to our scenario of a virtual online environment,
it means, that Public Servers hosting very popular world
objects automatically exhibit higher capacities, since this
is automatically ensured by the object providers. Since the
scale-free capacity distribution thus emerges automatically,
we just have to construct the link structure accordingly. For
this reason , we establish links to Public Servers with high
capacities, with a higher probability. Hence a new node is
connected to an existing node i with probability II depending
on the payload Pi of i :

p '
II(Pi) =~ (6)

L.jPj
Now the question is, how such a link distribution can

be realized in our fully distributed scenario without global
knowledge about the capacity of all nodes. For this, we need
to aggregate the average node payload as well as the number
of nodes in the network. Based on this information, a joining
node can establish its links to other nodes in the network.

If a new node joins the network , the following steps, have
to be taken:

• A new node v first has to connect to a node i already
part of the overlay. This initial node redirects the new
node to a random node r in the network, by choosing
a random position in the world and forwarding the
new node to the Public Server hosting the surrounding
Voronoi cell.

