A Scale-free And Self-organized P2P Overlay For Massive Multiuser Virtual
Environments

Markus Esch
University of Luxembourg

Faculté des Sciences, de la Technologie et de la Communication

Luxembourg, Luxembourg
Email: markus.esch@uni.lu

Abstract—Massive Multiuser Virtual Environments have
recently grown popular, and commercial virtual online worlds
like Second Life or World of Warcraft attract a lot of attention.
In this context, for the research on distributed systems, espe-
cially the idea of a 3D Web as a global scale virtual environment
is very interesting, since it poses severe technical challenges to
the underlying infrastructure. It is generally accepted, that the
realization of such a global scale scenario can not be realized
in a traditional centralized fashion. For this reason in the
course of the HyperVerse project we have developed a two-
tier Peer-to-Peer (P2P) architecture as basic infrastructure for
a federated and scalable 3D Web. Our approach relies on a
concept, that incorporates a loosely-structured P2P overlay of
user clients and an overlay that connects a federation of reliable
server machines constituting a reliable backbone service. This
paper proposes a self-organized and scale-free network overlay
for the reliable backbone in the HyperVerse architecture. The
overlay incorporates advantages of scale-free networks, self-
organization and epidemic aggregation in order to tackle the
severe challenges of the scenario in a fully distributed fashion
without any central control.

Keywords-MMVE, DVE, P2P Overlay, Self-organization,
Complex Networks

I. INTRODUCTION

The popularity of Massive Multiuser Virtual Environ-
ments (MMVEs) like Internet communities (e.g. Second
Life) or Massive Multiplayer Online Games (MMOGs) (e.g.
World of Warcraft) is constantly increasing. This surge of
interest influences also the research on distributed systems,
since a lot of work is done in the field of distributed
virtual environments. In this context, especially the idea of
a 3D Web as combination of MMVEs and today’s WWW
attracts a lot of attention and provides a variety of interesting
opportunities. One may envision a fusion of today’s Web
content and avatar based interaction. A user can move with
an avatar through a 3D Online world in order to meet friends,
undertake a sightseeing tour, shop and so forth. Provided on
a global-scale and in combination with foreseeable advances
in human interface technologies, such a 3D Web allows for
instance for virtual mass events and immersive interaction.
While the opportunities of such a scenario sound promis-
ing, its realization on a global-scale poses severe technical

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8279
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8279

Ingo Scholtes
University of Trier
Department of Computer Science
Trier, Germany
Email: scholtes@syssoft.uni-trier.de

challenges. The central question is how scalability and
interactivity along with consistency and persistency can be
reached in a way that potentially all 3D Web users are able to
use the same instance of the virtual world at the same time.
The commercial precursors of a 3D Web, for the most part
rely on centralized client/server architectures and the parallel
provision of hundreds of separated world instances, each
supporting at most a few thousand concurrent participants.
While this has advantages in terms of manageability and
controllability for the providers, these approaches can not
reach the envisioned global-scale user number of a 3D Web.
It is however generally accepted that realizing a global-scale
MMVE based on a traditional client/server architecture with
a centralized server farm is not practicable.

In a current research project called HyperVerse, we aim at
the provision of a federated infrastructure that supports such
a scenario on a global-scale while retaining the decentral-
ized nature and reliability of the WWW. In [4] we have
presented the concept of a two-tier Peer-to-Peer network
as an infrastructure for a global-scale MMVE. The basic
idea is to combine a loosely structured Peer-to-Peer network,
that interconnects the user clients for a Torrent-based data
distribution with a highly-structured Peer-to-Peer overlay of
reliable server machines (so-called Public Servers) in order
to provide a reliable and persistent backbone service. Tasks
of the federated backbone service involve avatar tracking as
well as object- hosting and indexing. For their interconnec-
tion, we have developed a overlay network, allowing for the
particular properties of MMVEs, like high avatar dynamics
and non uniform load distribution. This overlay utilizes the
expected scale-free distribution of Public Server capacities
to form a network, that emerges in a self-organized fashion
into a scale-free state with a power law degree distribution.
By this means, the overlay benefits form the particular
advantages of scale-free networks like short average path
length and robustness. This paper presents the concept of
this self-organized and scale-free P2P overlay network, that
was especially designed for our setting of a global scale
Distributed Virtual Environment (DVE).

In section II a brief introduction of the HyperVerse archi-



Highly Structured
Public Server Overlay




is determined by the tolerance against node failures. Here
two different scenarios need to be distinguished. Random
node failures and targeted attacks against the network. It has
been shown that scale-free networks are very robust against
random node failures, since the probability that a high degree
node fails is extremely low. But, since attacks are targeted on
the most important nodes, scale-free networks are less robust
against selective attacks compared to Erdos/Renyi random
networks.

B. Concept

This section presents our concept for a scale-free P2P
overlay incorporating advantages of scale-free networks,
epidemic information aggregation and self-organization. The
overlay has been built considering the above mentioned
assumptions of unequal load distribution and different server
capacities. The basic idea is to build an overlay, that self-
organized emerges to a scale-free state in order to benefit
from the particular advantages of this network type.

The task of the backbone is indexing of world objects, as
well as interconnecting clients in virtual proximity in order
to allow interaction and mutual rendering. For this purpose
the world surface gets subdivided into small cells, each cell
managed by one Public Server. For subdividing the plane we
are using a Voronoi diagram. To define a Voronoi diagram
distributing the plane, a virtual position on the world surface
is assigned to all Public Servers. In the resulting Voronoi
decomposition each Public Server manages the Voronoi cell
surrounding its virtual position. To allow for the assumptions
about the particular properties of an MMVE, servers handle
regions with a object and avatar density equivalent to the
own capacities. By this means hotspots get managed by
machines with high capacities, while less crowded areas can
be handled by less powerful machines. In order to be able
to adapt the overlay to dynamic load shifts in the online
world, the virtual positions are not fixed. Rather, the servers
modify their position according to the load induced by the
users of the online world. The virtual positions are managed
in a self-organized fashion, based on a set of rules applied
by each server as described in section IV-A.

In addition to the distribution of the world surface, it is an
important issue how the Public Servers are linked together.
In first place all nodes have links to the nodes managing the
bordering Voronoi cells. Additionally links to other nodes in
the network are established in order to get a scale-free degree
distribution and to allow fast routing to all positions in the
virtual world. To get a network, that emerges into a scale-
free state, links are established by a preferential attachment
scheme, based on bandwidth and computational power. This
mechanism is described in section IV-B.

For the management of both, the virtual positions and
the link structure, the servers require certain aggregated
information like e.g. load distribution and network size. But,
a global system view is not existing, since the system is

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8279
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8279

totally distributed and self-organized. For this reason we
are using epidemic aggregation to enable peers to obtain
certain information about the network state. The aggregation
mechanism is explained in section IV-C.

IV. REALIZATION OF THE SCALE-FREE P2P OVERLAY

This section describes how the concept presented in the
previous section can be realized. The self-organized plane
distribution based on the application of a set of rules is
explained in section IV-A. Section IV-B explains how links
between nodes can be established in a distributed fashion,
so that a scale-free node degree distribution emerges. The
epidemic aggregation mechanisms used to gather certain
information required for the algorithm are presented in
section I'V-C.

A. Plane Distribution

As already mentioned virtual positions of Public Servers
need to be assigned in a way that crowded regions are man-
aged by machines with high bandwidth and computational
power, while less powerful machines are responsible for
less crowded regions. Public Server apply several simple
rules to adjust their virtual position to the current load
distribution in a way that ensures this requirement. We
distinguish so-called local rules and global rules. The local
rules require information about the own state and the state
of the bordering nodes and have only local effect. Their
purpose is to adapt the local world distribution to local
load variances. The global rules are applied to equalize
global imbalances in the load distribution detected based on
aggregated information.

1) Local Rules: Using the local rules each Public Server
balances the load distribution between itself and its border-
ing neighbors. For the application of subsequent rules a mass
is assigned to each object or avatar, its mass reflecting the
load it induces on the server backbone. As the backbone’s
purpose is object and avatar tracking and indexing rather
than actual data hosting, an object’s mass is independent of
the transmission size and depends on its velocity. This is
because faster moving items induce a higher load, due to
the required position tracking. The mass m of an entity x
is given by:

m(z) = mo + v(z) (1)

With my being a constant rest mass equal for all entities,
and v(z) being an entities velocity. Using these masses, a
Public Server can calculate the absolute mass of the objects
in its cell as well as the center of mass. While the absolute
mass of a cell is just the sum of the masses, the center of
mass C of a cell is calculated by the following formula:

C = Z?:l Di m("’)

S m() @



justified by two reasons: At first this rule essentially
contributes to the stability of the overlay since heavy
hotspots are always managed by the most powerful
machines available. Second, it can be expected that
swapping will be necessary quite infrequently, due to
the threshold and the relative stability of hotspots.
That means, popular and crowded regions are expected
to remain hotspots for quite a while and due to the
rule Centering, a hotspot once managed by a powerful
server remains in this cell.

Figure 2. Applying The Local Rule Keeping The Mass-Order

Figure 3. Applying The Local Rule Keeping The Mass-Order For Several
Neighbors

It is likely that the rules I, I1 and 111 need to be applied
at the same time. For this reason the absolute motion vector

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8279
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8279

Figure 4. Applying The Local Rule Unload Neighbors

Figure 5. Applying The Local Rule Swapping

m of a Public Server can be calculated by the following
formula:

n . m <. .
- L;P PO:
;I \L;P| ; T

With P being the current position, Ly, ..., L, being the
nodes with reversed mass order, /; being the speed away
from L;, Oq,...,0, being the overburdened neighbors and
o0; being the speed towards O;.

For the adjustment of the algorithm it may be useful
to weight a certain rule more than others. For this reason
we introduce weights w;, wo and ws that can take values
between 0 and 1. Using the weights the motion vector is












