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Abstract—Web service paradigm and related technologies
have provided favorable means for the realization of collab-
orative business processes. From both conceptual and imple-
mentation points of view, the business processes are based
on a centralized management approach. Nevertheless, it is
very well known that the enterprise-wide process management
where processes may span multiple organizational units re-
quires particular considerations on scalability, heterogeneity,
availability and privacy issues, that in turn, require particular
consideration on decentralization. In a previous work [10], we
have described a flexible methodology for splitting a centralized
process specification into a form that is amenable to a distributed
execution. The approach is based on the computation of very
basic dependencies between process elements. In this paper,
we extend this approach to support advanced patterns such
as Loops, Multiple instances and Discriminator, and incorporate
the necessary synchronization between the different processing
entities. We also detail our interconnection mechanism and
explain how to handle control and data dependencies between
activities of the different partitions through asynchronous mes-
sage exchanges. The proposed methodology preserves semantics
of the centralized process with a peer-to peer interactions among
the derived decentralized processes.

I. INTRODUCTION

With the emergence of the open standards, Web-
based applications have become an intuitive support for
Business-to-Business (B2B) and Business-to-Costumer (B2C)
processes[27]. Particularly, Service Oriented Architectures
(SOA) have the potential to enhance these by allowing
autonomous and distributed business processes to interact
with each other. Despite the decentralized nature of the
context of B2B and B2C interactions, the conception and
implementation of a typical business process rely on a
centralized execution setting[1] which fail to address issues
such as high availability, failure resilience and scalability.
The relevant research literature on business management
confirms that the decentralization is a critical need for several
reasons[20][15][8]1[29][6]:

« scalability which is one of the pressing needs since many
concurrent processes or instances of the same process are
executed simultaneously, and a centralized architecture
can cause a performance bottleneck,

« mutually equitable business relationships where no or-
ganization holds the control of the overall process,
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o fault tolerance where different parts of a process can be
executed even if some components fail,

« decentralization, since the systems are inherently dis-
tributed, not lend themselves to centralized control,

o distributing the data to reduce network traffic and im-
prove transfer time as well as concurrence. In addition,
especially in processes where large data volumes are
transported during the orchestration, overall performance
also may benefit from having the execution engines in
proximity to the target services, by jointly selecting the
providers of the process activities and the providers to
store instance data in a way that allows to minimize data
transfer during process execution.

In order to deal with the shortcomings of centralized
process executions, we have been investigating decentralized
orchestrations [10]. In our prior work, we proposed a process
decentralization technique to split a composite web service
specification into a semantically-equivalent set of partitions.
The approach implements both control and data dependencies
of the centralized specification with P2P interactions. Data
are transferred directly between partitions using asynchronous
messaging. This reduces data over the network by sending
them directly from their point of generation to their point of
consumption. The main advantage of the developed approach
is the flexibility that it provides in terms of concepts and
structures that it manipulates. This, in turn, allows the ex-
tension of the algorithms to the different needs of decentral-
ization. In sharp contrast to previous works, our operation of
decentralization computes the abstract process constructs, i.e.,
workflow patterns[25]. This methodology separates the imple-
mentation details from the high-level reasoning that provides
a more complete and generic solution to the decentralization
problem. The technique uses a dependency table that resumes
direct dependencies between process activities. Next, it gen-
erates automatically transitive dependency tables resuming
the transitive dependencies between activities having some
common properties, i.e., activities invoking the same service
or provider. It generates the corresponding sub-processes by
specifying their mutual interconnections.

The approach we proposed for decentralization implements
only business processes composed of basic patterns
(AND — split, OR — split, AN D — join,...). However, most



of today’s processes are complex and may need advanced
patterns to implement some repetitive blocs of activities
or to instantiate them with multiple instances. For this
purpose, we are trying in this paper to extend the previously
developed approach to support advanced patterns. The
techniques we propose, are complementary to our previous
work thereby decentralizing processes with Loops, Multiple
instances and Discriminator constructs, and then, provide
a more complete solution to the problem. Nevertheless,
the flexibility introduced by the derived decentralized
processes on the other hand raises new requirements like
synchronization between them. For this purpose, we will
revise our previously proposed mechanism to synchronize
the derived partitions and explain how we translate the
connectivity and communication between activities of the
initial process to those between activities belonging to
different sub-processes. This revision includes messages
contents, the interaction patterns used for synchronization and
the advantage of patterns replication for message exchanges
minimization. It also separates control synchronization
from data synchronization and shows how the decentralized
derived processes work together through a running example.

The remainder of this paper is structured as follows.
Section 2 presents a motivation example. In section 3, we
give an approach overview as well as the required definitions.
Section 4 explains the different steps to partition Loops, Mul-
tiple instances and Discriminator patterns. Synchronization
process is detailed in section 5. In section 6, we describe the
related work, the issues involved in process decentralization
as well as a comparison with our approach. Finally, section
7 summarizes the ideas explained in the paper and outlines
some future directions.

II. MOTIVATING EXAMPLE

We present a brief overview of the problem along with
our solution mechanism using the following running example.
Lets consider a credit approval business process CreditAppr
depicted in figure 1. The composite service CreditAppr in-
volves four services: CollectInfo, AssessRisk, Decide, and
a Notify service. A customer makes a new credit request
to the CreditAppr composite service. The latter invokes the
CollectInfo service to know more about the customer. Once
the data are available, CreditAppr sends them to AssessRisk
who considers whether the risk of the credit is low or high.
The risk evaluation is then sent to the Decide service who
decides even to approve the credit or not. If the assessment
is low then the lowest rate is calculated and a reply is sent
to the costumer following approval. If the assessment is high
risk then the customer is asked to apply through an alternative
process. Customer notification is achieved through the Notify
service. It should be noted that control dependencies and
data transfer between services are managed centrally by
CreditAppr. The latter acts as an intermidiary between all the
services and the client. This bottleneck may cause degradation
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of performance due to large delay between the request and
response from and to the client. It may also cause additional
traffic in terms of exchanged messages.
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Fig. 1.

Figure 2 depicts a possible decentralized execution setting
for the same process. The CreditAppr is partitioned into four
components that are executed by four distributed engines.
Together, the four engines perform the role of the centralized
CreditAppr. The data produced by a service is routed directly
to the service that must consume them. For example, the
riskfactor generated by AssessRisk is routed directly to Decide
as depicted in Figure 2. In contrast to centralized architecture,
decentralized orchestrations are more cooperative. This may
lead to increased parallelism and reduced message overhead
since fewer messages are sent. The time needed to exchange
messages between a partition and its corresponding web
service is quite small, since partitions are collocated with their
relative web services.
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Fig. 2. Decentralized Credit Approval process

ITI. APPROACH OVERVIEW

In this Paper, we extend our methodology [10] for decen-
tralizing a process specification characterizing a web service
composition to support advanced patterns and detail our



interconnection mechanism toward synchronization between
derived processes. The developed technique consists in par-
titioning a composite web service into small partitions each
of which has common criteria. The approach is known to
be flexible that it doesn’t rely on specific decentralization
criterion. A criterion characterizes a common property for a
set of activities. For instance, if we partition a process upon
Providers, each partition will contain only activities invoking
the same provider. The criterion choice is an important
task for decentralizing efficiently a process. As an example,
consider the case of partitioning a process according to the
geographically collocated providers, which may result in
considerable decrease in the number of messages exchanged
between the geographically dispersed providers as we already
mentioned in the example introduced in Figure 1. To better
understand our decentralization and synchronization mecha-
nisms, we adopt the web services perspective as a criterion.
As a result, each partition includes only activities invoking
operations of the same service. These partitions are executed
independently at distributed locations (preferably collocated
with the web services) and can be invoked remotely. They di-
rectly interact with each other using asynchronous messaging
without any centralized control.

The developed approach doesn’t presume any particular
process modeling language, but simply assumes that the
basic elements of a process can be specified in an abstract
way to be translated to an executable process language.
Throughout this paper, we use the graph based formalism
[17] just for clarification reasons to guide the reader through
the decentralization and synchronization steps. By definition,
a process which specifies a web service composition defines
the relationship between service invocations. This relationship
may characterize either the control or data flow structure.
Our approach takes into consideration both control and data
dependencies between the process activities.

The proposed technique assumes that Processes to be
decentralized are structured [16]. This means that different
activities are structured through control elements such as
AND-split, OR-split, AND-join, OR-join..., and for each split
element, there is a corresponding join element of the same
type. Additionally, the split-join pairs are properly nested.
This assumption seems to be reasonable, since many works
have already proposed solutions to map an arbitrary process
into a structured one [18], and because most of workflow
tools support structured processes.

A. Definitions

In the following, a process P is represented by a directed
acyclic graph where nodes are activities and edges are data or
control dependencies. Activities are depicted with boxes with
the activity name inside and the web service it refers to (see
Figure 9). The arcs between boxes describe the dependencies.

1) An activity a€ A consists of a one-way or a bidirectional
interaction with a service via the invocation of one of
its operations. In conversational compositions, different

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8275
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8275

operations of a service can be invoked with the execu-
tion of different activities. The set of activities that refer
to the same service s; is denoted As,. A control edge
characterizes the mapping relationship while a data
edge characterizes the mapping relation of the output
and the input values of two activities. Next, we assume
that activities have identities such as a;:s; where a;
denotes the activity name and s; the invoked service

2) The preset of an activity a;, denoted eqa;, is the set
of activities which can be executed just before a; and
related to it by a control or data dependency.

3) The postset of an activity a;, denoted a;e, is the set of
activities which can be executed just after a; and related
to it by a control or data dependency.

B. Interaction patterns

To preserve the initial centralized process semantics, the
derived decentralized processes should interact with each
other to exchange either control or data information. Service
interaction patterns [28] aim at filling this gap by proposing
small granular types of interactions that can be combined to
the derived decentralized processes. In this paper, we use four
patterns to express advanced conversations by passing control
and data messages in asynchronous way.

1) Send: The send pattern represents a one-way interaction
between two participants seen from the perspective of
the sender. It is realized by a send task.

2) Receive: The receive pattern also describes a one-way
interaction between two participants, but this time seen
from the perspective of the receiver. In terms of message
buffering behavior of the receiver, two cases can be
distinguished. Messages that are not expected are either
discarded or stored until a later point of time, when they
can be consumed.

3) One-To-Many Send: A participant sends out several
messages to other participants in parallel.

4) One-From-Many Receive: Messages can be received
from many participants. In particular, one participant
waits for messages to arrive from other participants,
and each of them can send exactly one message.

IV. PATTERNS DECENTRALIZATION
A. Loop pattern decentralization

A Loop is a point in a process where one or more
activities can be executed repeatedly [25]. It allows for
the repeated sequential execution of a specified activity or
a sub-process zero or more times providing a nominated
condition evaluates to true. We distinguish two types of
cycles: arbitrary and structured. The former have more than
one entry or exit point, however in the latter the looping
structure has a single entry and exit point. In this paper,
we consider only structured cycles since we assumed that
processes to decentralize are structured. Figure 3 depicts an
example of a process including a Loop for three sequential
activities invoking different services as:sq, ag:ss and a4:s4.



The sequence of activities is repeated while the condition
Cond is evaluated to true. A given instance of this sequence
is enabled only if the previous one is terminated. Once Cond
is evaluated to false, as:s3 can be enabled.

Cond = false [l
as’s;

Fig. 3. process including a While pattern

Next, we refer to the process example in Figure 3 to
explain our decentralization solution for Loops. The resulting
decentralized partitions are depicted in figure 4. The process
is partitioned according to services, which means that each
partition includes only activities invoking the same service.
We notice that only partitions including a set of activities
inside the Loop of the main process, have a derived While
construct with the same condition. Consequently, only Pg; is
a Loop free since a; is not in the main Loop. We assume
that the Loop condition Cond is known directly after a;
execution. This condition should be sent to partitions which
need Cond to execute their local derived Loops Pss, Pss
and Pg4. For this purpose, we use the previously introduced
interaction patterns One-To-Many Send and Receive. Once
Cond is received by Pss, Pgs, Pgy4, a simple exclusive choice
is enabled to choose either to execute or skip the Loop. If
Cond is evaluated to false, then a dummy activity with a
zero execution time is enabled. In this case, Pgy and Pgy
terminate, while Pgs3 continues and handles as. Otherwise, if
Cond is evaluated to true, then each of Pgo, Pg3 and Psy
loops would be enabled as follows:

1) Ps3 and Pg4 will be blocked on the receive(sync)

activity waiting for a synchronization messages, while
Pgso executes as.

2) Once ay terminates, a synchronization message is sent
to Pgs using the Send pattern to enable ag execution.
Then, Pgy blocks in receive(cond) activity.

3) Once a3 terminates, a synchronization message is sent
to Ps4 to enable a4 execution. Then, Pg3 blocks in
receive(cond) activity.

4) a4 executes, then calculates the new value of cond and
sends it to Pso and Pss.

5) If cond is evaluated to false, then Ps4 and Pgo termi-
nates, and Pg3 enables as. Otherwise, repeat the four
first steps.

The send(sync) and receive(sync) activities are used to
synchronize activities of different partitions by exchanging
control messages. The resulting partitions are structured
and preserve the semantics of the centralized process. Our
technique for decentralizing Loops is not specific to the
introduced example. For instance, if we consider a Loop on a
given sub-process. In this case, we begin by partitioning the
sub-process itself using our Loop free process partitioning
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Fig. 4. Decentralized While pattern

technique [10]. Then we encapsulate the derived partitions
into Loops and add the corresponding synchronization
activities using the interaction patterns.

B. Multiple instances decentralization

The Multiple instances pattern provides a means of
creating multiple instances of a given task [25]. As a result,
within a given process instance, multiple instances of a set of
activities can be created. These instances are independent of
each other and run concurrently. Each of the instances of the
multiple instances task that are created must execute within
the context of the process instance from which they were
started. For example, assume an order process in which an
incoming order contains a number of order lines. For each of
these order lines, a check activity needs to be executed. We
distinguish two types of multiple instances pattern: with and
without synchronization. In the latter, there is no requirement
to synchronize the instances upon completion. However, in
the former, it is necessary to synchronize the task instances
at completion before any subsequent tasks can be triggered.
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Fig. 5. Multiple instances pattern

An example of the multiple instances without synchroniza-
tion pattern implementation is shown in Figure 5. The process
is composed of five activities invoking four services. After
the completion of a;:s; the number of required instances
N is determined, and N instances of the sequence ag:sg,
a3:s3 and a4:s4 are enabled. These instances run concurrently.
In this example, no synchronization between instances is
needed and then, as:s3 can be enabled immediately after the
multiple instances have been enabled. As a result, a5 instance
can terminate while ag, az and a4 instances of the multiple
instances activity are still running. If we consider the case
where multiple instances with synchronization pattern is used,
as would be enabled only after the completion of all instances
of the multiple instances activity. To achieve synchronization
in the same example, it is possible to implement a4 such
that once it is completed, it sends an event to some external
event queue. Activity as can be proceeded by another activity
that consumes the events from the queue and triggers as
only if the number of events in the queue is equal to the
number of instances of activity a4. However, this solution is
not supported by all workflow engines. We show later how
to deal with multiple instances with synchronization patterns.

Figure 6 illustrates our decentralization technique for the
multiple instances without synchronization pattern using the
process example introduced in Figure 5. The technique is
quite similar to that used for Loops, except that the multiple
instances of the sequence as, ag and a4 run concurrently.
Assume that A; is the ith instance of the sequence a3, a3
and ay4. In contrast to Loops, A;+1 doesn’t need to wait until
the completion of A; to be enabled, but runs concurrently.

We assume that the instances number N is known directly
after a; execution during run time. Then N should be sent to
partitions having a derived Multiple instance activity, namely
Pgo, Pgs and Pgy4. According to N value, Psy, Pgs, Pgy
choose either to execute or skip their multiple instances
activities. If N is evaluated to zero, then a dummy activity
with a zero execution time is enabled. In this case, Pgso
and Pg4 terminate, while Pg3 continues and handles as.
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Otherwise, if N is greater than zero, then each of Pgs, Pgs
and Ps4 multiple instances activities would be enabled as
follows:

1) Ps3 and Pg4 will be blocked on the receive(sync)
activity, while Pgo enables as execution. In the same
time, Pso current instances number i is incremented. If
1 is less than N, another instance of as is enabled. As
a result, N instances of az would run concurrently.

2) For each a9 instance termination, a synchronization
message is sent to Pg3 and a new ag instance is enabled.
This leads to the increment of Pgs local instances
number ¢. If ¢ is equal to N, then a5 would be enabled
even while other instances of the multiple instances
activities are still running.

3) For each ag instance termination, a synchronization
message is sent to Pgy and a new a4 instance is
enabled. Then, Pg4 local instances number i is
incremented.

ST

Send (Sync) i

/ A dummy

gy,

Fig. 6. Decentralized Multiple instances pattern

Our technique for decentralizing multiple instances pattern
is also not specific to the introduced example. For instance,
if we replace az, az and a4 by a given sub-process to run



multiple instances of it. Then we partition the sub-process
itself using our basic partitioning technique [10]. Next, we
encapsulate the derived partitions into multiple instances
patterns and add the corresponding synchronization activities.

In [25], the authors presented some centralized
implementations  to synchronized multiple instances
with a prior design or run time knowledge patterns. With
prior design knowledge, they just replicate the multiple
instance activity with a parallel split pattern (AND, ;).
Once all activities instances are completed, they synchronize
them with a synchronizing pattern (AN Dj,;n). This could
be automatically decentralized using our basic algorithms.
With a prior run time knowledge, they proposed many
implementations such as using Loops to activate instances
sequentially or using a combination of AND,p;; and
XOR;pii¢. The latter assumes a maximum number of
possible instances. According to these implementations, we
can use either our technique to partition Loops or our basic
partitioning algorithms [10].

C. Discriminator decentralization

The discriminator (known also as 1-out-of-M join) is a
point in a process model that waits for one of the incoming
branches to complete before activating the subsequent
activity [28]. From that moment, it waits for all remaining
branches to complete and ignores them. Once all incoming
branches have been triggered, it resets itself so that it can
be triggered again. For instance, When handling a cardiac
arrest, the check_breathing and check_pulse tasks run in
parallel. Once the first of these has completed, the triage
task is commenced. Completion of the other task is ignored
and does not result in a second instance of the triage task.
It should be noted, that all branches must either flow from
the Parallel Split to the Structured Discriminator without
any splits or joins or they must be structured in form (i.e.
balanced splits and joins).

Sub-process A

Sub-process B

Fig. 7. Discriminator pattern

An process example implementing a discriminator pattern
is depicted in Figure 7. The process is composed of four
sub processes namely A, B, C and the sub-process in a box
representing the discriminator pattern. Once a; terminates, it
enables both as and a3 concurrently. Assuming a, terminates
first, the discriminator fires and enables a4, and possibly sub-
process C. When a3 terminates it would be ignored.
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Sub-process C

Assuming that the process example involves four services
S1, S2, s3 and s4, then partitioning it would result in
four partitions (see Figure 8). A,; (respectively Bg;, Cg;),
represents the derived partition of the sub-process A
(respectively B, C), related to the service s;. After Ag;
completion, it takes a decision about the branches to enable
through the O R-split. The decision is forwarded to the other
partitions having the same O R-split using a pattern identifier
[10] (this forwarding is not depicted in the example). Assume
that the branch including a; is enabled and the one including
By, is skipped. In this case, Bss, Bss and B,y would also
be skipped. Once a; terminates, a one-fo-many send activity
is launched and two synchronization messages are sent
respectively to P, and P;g enabling ay and ag concurrently.
The first which terminates, send a synchronization message
to P4 and hence, a4 would be enabled. The second would
be ignored when it completes.

(o003 Csy

Fig. 8. Decentralized discriminator pattern

The proposed algorithm is generic and not specific to
this example. It even can handle N-out-of-M join pattern (a
generalization of the discriminator) [28], by communicating
the number of branches to be enabled N to the discriminator.
Due to lack of space, our formal algorithms for partitioning
loops, multiple instances and discriminator patterns are not
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presented in this paper.

V. SYNCHRONIZATION PROCESS

In this section, we detail how our interconnection mecha-
nism works to synchronize between the derived partitions of
a given centralized process, in run-time. First, let us consider
the following process example depicted in Figure 9. The
graphical description includes control and data dependencies
of process activities. The process represents a collaboration
between four web services namely si, s2, s3 and s4. a;:s;
represents an invocation activity of one of s; operations.
Each construct has an identifier such as a two corresponding
constructs with the same type have the same identifier. For
instance, the first OR-split and the last OR-join in the
process example have the same identifier id =1. In this
example, we use only basic patterns since we have already
presented how to handle synchronization within advanced
patterns in a decentralized architecture. Synchronization is
achieved using send, One-To-Many Send, Receive and One-
from-many Receive interaction patterns. Figure 10 depicts the
derived partitions of the centralized process example as well
as a part of the required inter-connections. Interconnection
process is explained in [10]. In order to simplify the example,
we have omitted interaction activities assuming that for each
arrow connecting two partitions, there are send and receive
activities respectively at the sender and receiver sides. Further,
several arrows coming out from the same activity means a
One-To-Many Send, while several arrows converging to the
same activity means a One-from-many Receive.
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A. Message exchange

Derived decentralized processes, communicate through
message exchange using interaction patterns. Messages repre-
sent either control or data information. We define a message
format as follow: Message (type, a;:Psm, a;:Psy, instance-
id, in formation). Where type specify either if it is control or
data message (set to zero or one), a;: Pgy,, defines interaction
activity and partition source, a;:Pg, the interaction activ-
ity and partition target, instance-id the instance identifier
to make correlation, and information is either a control
decision or a data to transfer. A control decision has the
form enable(branch-ids), where branch-ids are the set of
branches to enable. For instance, in Figure 10, the message
M(0, send;:Pgy, receive;:Pgs,12, enable(bl)) represents
a control decision taken by Pg; concerning OR-split;.
When received by Pss, it enables branch; and therefore as.
branchs and its subsequent activities will be automatically
skipped.

B. Control dependency synchronization

In a centralized architecture, a decision for the O R-split,
should be taken after a; termination, to either enable as,
az or both of them. In our decentralized architecture, the
decision should be transmitted to all partitions having an
OR-split, (represented by the three dashed arrows C; in
Figure 10). Next, we explain through a running instance,
how our synchronization technique minimizes the messages
exchanges number compared to typical approaches. The main
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Fig. 10. Decentralized process

advantage lies in replicating patterns through the correspond-
ing partitions. We remind that two corresponding join and
split patterns are replicated only through partitions includ-
ing activities between them in the centralized process. For
instance, a; is connected to the decentralized patterns OR-
splity instead of its postser a;e={az,a3}. To get a better
understanding, assume a scenario where ag won’t be enabled
after a; execution.

1) Without patterns replication: First, a; send two mes-
sages to its postset a;e to enable ay and skip az. Then
a3 send two messages to age= {ag,a7} to be skipped,
which in turn send messages to their postsets and so
on until reaching a2;. This leads to 11 synchronization
messages inter-partitions.

2) With patterns replication (Figure 10): After a; termi-
nation, three synchronization messages (C;) are sent to
Pgy, Pg3 and Pgy. Messages contain a control decision
taken by Pg; concerning O R-split; and enabling only
branchi (a2). When received, each partition would skip
locally all subsequent activities of branchs. Therefore,
only three inter-partition messages are needed to syn-
chronize this first part of the process execution. Now,
assume that all subsequent activities of branch; are
executed (until agp). Thanks to our technique, Ps;
knows in advance that it has to wait for only one control
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message (from agp) to enable asg, since it is preceded
by OR-join;. Hence, a3; doesn’t need to inform ass
that it was skipped.

C. Data dependency synchronization

Data dependency characterizes the mapping relation of the
output and the input values of two activities. We state two
problems: sending data to an activity which won’t be activated
later and waiting for a data from an activity which won’t be
activated. In the first scenario, the data should be transmitted
from the partition source to its destination. The message won’t
be consumed, but stored in the destination buffer until it
expires. In the second scenario, we identified two solutions.
A trivial one is that for each skipped activity which has a
data dependency, a notification message should be sent by
the partition it belongs to, to the activity waiting for the data.
This may lead to an extra number of messages. So, we suggest
to use data routing tables DRT for each activity followed by
an OR-split or XOR-split. A data routing table, is a table
resuming data dependencies between a set of activities. For
instance, consider the process example and the case where
a3 won’t be executed. Assuming that a; is the activity which
takes the decision (OR-split,), then Ps; should maintain a
DRT;. The latter includes the activities {as:s1, a18:54, a7:83,
a23:s2} and the data variable names {d3, d4, dg}. This means



that only dependencies between activities inside the < OR-
split;, OR-joiny > and activities outside are considered.
In this case, Pgs; will send a single message to Pgy to
notify it for the skip of d4 and dg. This mechanism, reduces
considerably message exchanges between partitions. Also, no
messages between skipped dependent activities inside < OR-
split;, OR-join; > would be exchanged.

D. Process execution

During runtime, activities must respect all their
preconditions and postconditions before and after execution.
Preconditions are control and data connections with each
of its preset activities whereas postconditions are control
and data connections with each of its postset activities
(i.e. in Figure 10, preconditions of a4 are Cy, Cs and dy).
For a given instance, a partition completes its role in the
collaboration when it reaches EF activity. An instance
execution terminates when all partitions reach EF' for the
same instance. The proposed technique for decentralization
using patterns replication, make synchronization easier and
minimizes message exchanges between partitions.

VI. RELATED WORK

In recent years, several approaches and architectures for
decentralized process execution have been proposed. In the
context of process partitioning, [21][8] are the first works that
take on the challenge of partitioning BPEL processes. These
contributions use program partitioning techniques in order
to reduce the communication costs between derived process
fragments. It’s not clear how they deal with propagating
DPE across process fragments and what subset of BPEL they
support.

[15][14] present a similar approach to the decentralization
focusing on the P2P interactions. Their contribution take on
the formalization of the decentralized interactions from a
conceptual point of view. Nevertheless, they present some
specific BPEL examples rather than an overall approach that
can decentralize any sophisticated process. [22] presents a
similar approach to the decentralization of the control flow
without considering data dependencies of process activities.
Similar process partitioning approaches have been applied
to different needs such as the implementation of secure
interactions[3] or the decentralized exception handling[7].

[19] developped a formal approach based on automata
that takes as an input the existing services, the goal service,
the costs and produces as an output a set of decentral-
ized choreographers that realize the goal service using the
existing services. The approach is based on I/O-automata
representation of services and goal, and identifies appropriate
choreography scheme using the notion of universal service,
simulation relation and a path-cost computation for a graph.
This work does not focus on the decomposition of global
processes and it is not clear how they deal with loops,
discriminator and multiple instance patterns.

Digital Object Identifier: 10.4108/ICST.COLLABORATECOM2009.8275
http:/ldx.doi.org/10.4108/ICST.COLLABORATECOM2009.8275

In [32][30][31], the decentralization of processes has been
studied in an abstract manner by extending the dead path
elimination operation of workflow management systems. The
decentralization focuses on the preservation of the centralized
specification by preventing possible blocking situations.

Another approach to the decentralization concerns the
implementation of additional applications to support the re-
quired interactions without embedding them into decentral-
ized processes. ObjectFlow [11] uses a graph-based work-
flow definition model. Steps are executed by agents coordi-
nated by a (potentially) distributed workflow engine which
however accesses a centralized DBMS to store workflow
states. In METEOR?2 [23], process scheduling is distributed
among various task managers. In Mentor [29], workflows
are modeled using state-charts which are partitioned to each
involved processing entitiy (PE). Each PE-specific state-chart
is executed locally on the PE workstation. Another example
that support the decentralized execution without partitioning
centralized specifications is Self-Serv[6]. In Self-Serv, the
interactions of composed services are implicitly encoded
within the processes.

In the context of Web services, [13] introduce the Web
Services Choreography Description Language which has not
received much attention, similarly to [2]. The organization
for the Advancement of Structured Information Standards
puts forward the ebXML standard for business collaboration
[12]. More recently, service interaction patterns have been
introduced in [4], and the language Let’s Dance was
introduced in [33]. The relationship between a global public
process choreography and the private orchestrations is
investigated in [26] based on work on process inheritance as
introduced in [5]. The equivalence of process models, using
their observable behavior, is studied in [24]. The relationship
between compatibility notions in process choreography and
consistency of process implementations with regards to
behavioral interfaces is studied in [9].

The developed techniques are often good for dealing with
a particular aspect of decentralization rather than provid-
ing a generic and flexible manipulation setting required for
process decentralization. The common limitation of the cur-
rent decentralization approaches is their dependencies on the
underlying process specification. They can deal with how
the decentralized processes must be synchronized with the
relevant messages of the low-level specification but they
cannot address the fundamental questions about the decen-
tralization of the combined control and data dependencies.
Consequently, this becomes a major limitation for the use
of these systems in different cases which are not explicitly
specified in their decentralization mechanism. Also, most of
the proposed approaches stop short in answering to how they
handle loops, multiple instances and discriminator patterns in
decentralized processes. The main advantage of the developed
approach is the flexibility that it provides in terms of concepts
and structures that it manipulates. This, in turn, allows the
extension of the algorithms to the different needs of decentral-



ization. In sharp contrast to previous works, our operation of
decentralization computes the abstract process constructs, i.e.,
workflow patterns[25]. This methodology separates the imple-
mentation details from the high-level reasoning that provides
a more complete and generic solution to the decentralization
problem.

VII. CONCLUSION

This paper has presented an extension to our approach
to the flexible decentralization of process specifications. The
developed approach is applicable to a wide variety of service
composition standards that follow the process management
approach such as WS-BPEL. In contrast to previous works
that take on the process decentralization approaches, our
methodology separates the implementation details from the
high-level reasoning that provides a more complete and
generic solution. In addition to the basic constructs like
XOR, AND, OR (split and join), sequence... It also takes
into consideration advanced patterns such as Loops, Multiple
instances and discriminator. The flexibility introduced by
decentralized processes on the other hand raises new re-
quirements like synchronization between them. In this sense,
we proposed a mechanism toward synchronization through
message exchange using interaction patterns. Further, we
would like to implement the introduced methodology on a
web service composition language to enable a quantitative
evaluation of the approach in terms of message exchanges,
and add security aspects between the decentralized process
specifications.
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