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Abstract: The merging, management and utilization of pervasive, idle
computing devices using a dynamic communication infrastructure
leads to the concept of computational grids. A computational grid
enables enterprises to efficiently use distributed computing entities in a
cost-effective setup for emerging compute-intensive applications. From
a network perspective, the key requirement for a computational grid is
the associated ability to provide dynamic bandwidth (on-demand). An
optical networking solution based on the light-trail concept readily
adapts to the requirement of dynamic provisioning of bandwidth, in
addition to being a low-cost solution and providing for optical
multicasting — the key to distribution of jobs amongst multiple nodes
without the overhead of processing. We investigate a protocol based on
a double auction mechanism for converting a light-trail based network
into a computational grid using superschedulers at each node. It allows
job migration to idle processors. We show how the auction scheme
works for bandwidth assignment and in the technique of computing
bids, as well as alterations in the virtual topology of the light-trail
network. Results of simulation study show the methods’ effectiveness.

I. INTRODUCTION

Computational grids are a direct result of the merger of two
premier research and development areas [1] — computation
and communication. The latent processing power on
desktops, often connected in network LANs and clusters and
spread across high-speed networks, presents an opportunity
to harvest perishable, valuable, spare processing power for
exceedingly complicated tasks. A computational grid is a
hardware and software infrastructure that provides
dependable, consistent, pervasive, and inexpensive access to
high-end computational capabilities. The types of
applications a grid supports include: distributed
supercomputing, high-throughput computing, on-demand
computing, data-intensive computing and collaborative
computing. These applications may have one or more of the
following requirements: high CPU time, great memory
needs, resulting in significant communications, and
requiring bounded response time. These applications view
the grid as a large meta-computer consisting of multiple
processors exchanging data across communication links.
From the communication perspective, the central issue is
how to efficiently share network bandwidth and reduce the
potentially large communication latency between
computation centers (nodes) in a grid. From a business
perspective, computational grids enable IT-virtualization
and its subsidiary benefits that facilitate an enterprise to
achieve efficient high-density computing using low-cost and
distributed resources. The combination of available desktops
and other disperse computing resources over networks and
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managing such heterogeneous environments is a
technological challenge, but the associated low investment
is a motivation that enterprises would seldom forgo.

In this article, we propose a scheduling protocol, for
grid computing in the wide area, typically for metro area
networks — a prime application space for enterprises. Metro
area networks for computational grids are based on optical
networking paradigms. Optical networks facilitate high
bandwidth, resiliency and low-operating costs. Despite the
huge bandwidth available at the optical layer, for cost
effective deployment, it is necessary that the bandwidth be
maximally utilized. Efficient utilization using traffic
grooming results in predictable network equipment and
lower-cost. For a pragmatic computational grid
implementation, we must also ensure dynamism in
bandwidth provisioning. While efficient utilization is the
primary cost differentiator, dynamism becomes the
principle performance metric for converting a transport
oriented network infrastructure into a computational grid.
Contemporary electronic grooming in optical networks
through SONET/SDH, RPR have been proposed and
extensively studied but have known to have fundamental
cost due to electronics and provisioning bottlenecks.

An optical networking solution that enables efficient
utilization as well as provides for dynamic bandwidth
provisioning is based on the light-trail [2, 3] concept.
Light-trails as a transport infrastructure has been
considered [4, 5], tested [6, 7] and to our knowledge this
research thrust in networks has not been applied to
computational grids. Using the light-trails paradigm to reap
benefits in a computational grid involves tailoring light-
trail infrastructure and associated control protocols for
facilitation of grid tasks. In this paper we discuss about the
modifications required for light-trails to support a
computational grid. We discuss a protocol that facilitates
efficient utilization as well as guarantees bandwidth
provisioning in light-trails suited for grid applications. The
protocol converts grid requests into networking requests
and performs the task of scheduling bandwidth on an on-
demand yet efficient basis.

In Section II we present light-trails from a conceptual
and implementation perspective. The section also
showcases the hardware modifications in terms of a
superscheduler architecture that is added on to a light-trail
node to enable the overlaying of a computational grid on a



light-trail WDM ring network. Section III outlines the
protocol and abstracts the protocol for superimposition of
the computational grid over an optical network. The
proposed protocol that combines the superscheduler is also
presented here. Section IV discusses numerical results
obtained by testing this protocol on a light-trail simulator.
Conclusions are presented in Section V.
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Fig. 1. Conceptual difference between lightpaths and light-trails.
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II. LIGHT-TRAILS: DYNAMIC AND EFFICIENT OPTICAL
NETWORKING AND ADAPTATIONS FOR
COMPUTATIONAL GRIDS

In this section we describe the light-trail solution and
discuss its adaptation to a computational grid. The first
generation of optical networking was based on the lightpath
[8] or optical circuit paradigm — providing fixed, static
wavelength connectivity (bandwidth) to a source-destination
pair. Light-trails [1-2] have evolved from lightpaths. A
light-trail is defined as a generalized lightpath [8] such
multiple nodes are able to take part in communication along
the path. A comparison of lightpaths and light-trails is
shown in Fig. 1. A light-trail is a multi-point to multi-point
unidirectional wavelength bus. Nodes time-share the
bandwidth of the wavelength bus by arbitration through an
out-of-band control channel. In light-trail networks there is a
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distinction between the data plane (wavelength buses) and
control plane (out-of-band control channel).

A wavelength bus requires constituent nodes to support
certain signal flow characteristics. A node in a light-trail
allows optical signal to be dropped-and-continued and also
allows passive-addition (without any switching) leading to
the formation of the wavelength bus as shown in Fig. 1.
The light-trail itself is a unidirectional bus of fixed size,
with the head-end being called the convener node and the
last node being called the end-node. Setting up and tearing
down of the light-trails involves configuration of optical
switches and is termed as hard-provisioning. Periodically
light-trails can be grown or shrunk. Once a light-trail (bus)
is set up nodes communicate to each other by establishing
connections over the light-trail. Connections are
dynamically set up as short duration circuits enabling data
flow over the light-trail. Connection setting up and tearing
down does not require any optical switch configuration and
are controlled using an out-of-band control channel.

In a network, multiple data light-trails have a common
control channel. The control channel is slotted in time and
is optically dropped and electronically processed at every
node (in the light-trail). The processing of control
information in the electronic domain at every node makes
the control channel synchronous. Typically, the control
channel is a SONET/SDH signal (as defined in the ITU-T
standard on optical supervisory channels) while the light-
trail data-plane is based on technologies such as Gigabit
Ethernet and 10 Gigabit Ethernet [9, 10].

Node architecture of light-trails: Fig. 2 bottom shows
architecture of nodes in a light-trail while modifications to
the architecture to facilitate computational grids are shown
in the upper (smaller) bubble. The node in Fig. 2 consists
of a client side architecture that supports computational
clusters, and a network side architecture that supports light-
trails. We first describe the network-side light-trail
architecture and then describe the adaptations (proposed)
as part of the computational grid.

Network side architecture (light-trail node specifics): A
fiber line with multiple wavelengths (WDM) enters the
node. The control channel is extracted from the fiber by a
thin film (control channel) filter. The remaining (data)
channels are demultiplexed by an Arrayed Waveguide
Grating (AWG) into constituent wavelengths. Each
wavelength goes through a Light-trail Optical Retrieval
Section (LORS) that gives access of the wavelength to that
node. Each LORS consists of two optical couplers
separated by a slow optical ON/OFF switch. Couplers are
passive devices that enable optical signal to be split or
combined in a predetermined ratio. The two couplers in the
LORS are in 1x2 and 2x1 configuration enabling the node
to access and transmit (passively) data on the light-trail.

Trailponders: Since the nodes in a light-trail time-share
the wavelength bus, conventional transponders are unable
to transmit and receive data. To facilitate fast turn-
ON/turn-OFF and to queue data when a node is not



transmitting, transponders in our system have specific burst-
mode operation [11]. An implementation of such devices is
found in [9, 10]. The burst-mode transponders (trailponders)
are critical for the functioning of light-trails.

Client side architecture: The client side of the node is
connected to processing entities enabling them to submit
jobs for processing. Jobs are assumed to be adaptively
divisible. The client side architecture consists of two
elements: a cluster controller and a superscheduler. The
cluster controller is connected to each of the processors at
the node and it functions like a /xm switch (where m is the
number of processors in the cluster). It is also responsible
for scheduling of jobs within the cluster (locally) as well as
sending and receiving jobs over the optical network
(globally). To determine whether a submitted processing job
is processed locally or globally the cluster controller uses a
superscheduler subsystem. The superscheduler enables the
cluster controller to decide where to schedule a particular
job. The superscheduler functions between the client side
and the network side. It consists of three buffers.

The first buffer is called the local scheduling buffer: it
contains jobs that are to be processed locally.

The second buffer is called the global scheduling buffer:
it stores jobs that are to be processed globally (to be sent to
other nodes through the optical network).

The third buffer is called the global collector buffer: it
stores jobs that the node receives from other nodes through
the optical network. Stored jobs are then locally processed.

Working of the superscheduler within the light-trail
system: A processor upon generating a job sends it to the
cluster controller. The cluster controller stores this job either
in the local scheduling buffer or global scheduling buffer
depending on two factors: size of the job and available
processing power in the cluster. If the job cannot be
processed in the cluster, it is then stored in the global
scheduling buffer. The global scheduling buffer will then
send the job to clusters in other nodes via the optical
network. The scheduling aspect is managed by the protocol.

The third buffer in the superscheduler is called the
global collector buffer. When processors in the cluster are
idle, they request for jobs from other nodes in the network.
The proposed scheduling algorithm fetches jobs from other
clusters via the optical network. These jobs are first stored
in the global collector buffer and then transferred to the
local scheduling buffer.

The central aspect of the computational grids over light-
trail model is the protocol that enables jobs to migrate from
a node to other node(s) enabling efficient utilization of
distributed processing entities across the entire network.
While utilization of processors is an important performance
metric, it is also critical that the underlying bandwidth be
well utilized, failing which we would require exorbitantly
large node and buffer sizes especially at high-loads. Finally
the protocol also ensures dynamism — low turn-around time
that enables job migration to happen within the stipulated
latency requirement of the computation tasks. The protocol
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is based on a double auction mechanism enabling process
surplus and process deficient nodes to connect to each
other. At another level the protocol also is responsible for
configuration of the virtual topology of light-trails — which
we term as the recourse model. The virtual topology
configuration entails setting up, tearing down and
dimensioning of light-trails. We now describe these two
aspects of the protocol and then in the next section describe
in detail the working of the protocol.

Process-deficient to process-surplus node connectivity:
The protocol uses a double auctioning mechanism for
arbitration of bandwidth to connect nodes that are process
deficient to those that are process surplus. Double
auctioning is done at a light-trail level. Each light-trail is
assumed to have a controller node that arbitrates bandwidth
and enables set up and tear-down of connections in the
light-trail. Process surplus and process deficient nodes send
bids reflecting their surplus/deficiency processing power to
the controller of the light-trail. Bid calculation involves
assigning a numerical value to reflect the level of surplus
or deficiency of processing power at that given time.

Virtual topology configuration: A node in a light-trail
may not be successful in being allocated the desired
bandwidth or latency, or there may exist other light-trails
connecting the same set of process deficient nodes to
process surplus nodes. In such cases, it is important to
reconfigure the virtual topology of light-trails.
Reconfiguration of the topology allows nodes to maintain
high utilization high while meeting the job access time
requirements (latency) in the network. As the load imposed
on the system grows, so does the number of light-trails in
order to maintain a low queueing penalty (in the global
buffer). We propose methods to configure the virtual
topology by introducing a concept of phishing. Phishing
involves nodes to advertise their surplus or deficient
processing levels to other nodes in the network. Nodes with
surpluses processing levels connect to nodes with deficient
processing levels through the control channel, and form
new light-trails. Likewise light-trails whose utilization falls
below a certain threshold are torn down, enabling the
affected nodes (of the torn-down light-trail) to phish for an
existing light-trial. If however, the phishing does not result
in success, then the nodes can form a new light-trail.

III. DOUBLE AUCTION AND RECOURSE ORIENTED
PROTOCOL WITH PHISHING

Consider an N-node WDM ring network with 2-
counterpropagating fiber ringlets each supporting w
wavelengths. Let each of the N nodes support the
architecture as shown in Fig. 1 i.e. at the client side support
a cluster of computing devices (processors) and at the
network side support light-trail technology.

We now define conventions and working of the job
migration/assignment mechanism over light-trails. For
convenience, we assume a time-slotted system. Time is



divided into slots of duration 2-5 ms. The slot size is upper
bound by the tolerable latency specification and lower
bound by the amount of processing and communication
required to be done prior to scheduling data in the network
for the next time-slot.

Cluster specifications and convention: We discuss the
specification of the clusters at each node in the optical
network in terms of their processing power as well as their
relationship with the superscheduler.

r! denotes the processing power of processor ‘a’ at node i.

p, denotes the number of processors at node i.

i v, denotes the processing capacity of the cluster
z=1

supported by node i.

Let 4 (¢) denote if a job is generated at processor a

connected to the cluster at node i.
1 ifajob is generated at processor a at 7.

i 1) =
Ha (D) {O if otherwise.
Let @!(z) denote the size of the job generated at

processor a connected to the cluster at node i.
Let g (¢) denote the residual (available) processing

power at processor at time ?.

Assumption: a job is adaptively and completely divisible.
A job is defined in terms of its size rather than the number
of processing cycles. This assumption is valid under the
following conditions: Load is flexibly divisible and
Processors are identical [12].

Then used power at processor a time ¢ is ! —g! (). In

each time cycle, under normal operation (no new load
addition), the processor frees up power and the residual
power corresponds to:

4. =q.t—-1D+38[t—(—-1)] ¢}
where, S[r — (¢ —1)]is the product of the time-slot duration

[t-1] and § is the processing power of a processor per unit
time.
Let C, (z) denote the total processing power available

in time-slot ¢ at cluster supported by node i and is given by

D; .
AGED W AGE
a=1
Eqn. (2) denotes the total load that enters the network in
time-slot .

N _ D
S s, @

i=l a
Each node has a superscheduler buffer S whose
instantiated value S, (¢) represents its size in bits.

Let S, denotes the maximum size of superscheduler.

The load generated enters the superscheduler and then is
either sent into the network or sent back to the cluster for
processing. The total load going into the superscheduler in
time-slot ¢ for dissemination locally or globally is given by:
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S o, ) 3)
a=1
Case 1: Local (Cluster) Scheduling
Dy
AGED I )
a=1

Above relation implies that the total load generated at node
i in the ™ time-slot is less than the available processing
power at node i, and hence the load can be locally
disbursed by the superscheduler. The residual power of the
local network is then capable enough to process the job.
The task is then to find a set of {al‘ ,oh. .. ,a; } s.t.

S ai =1 [13]and
=1

a, iw OELAGE Q)
a=1

The above problem has been solved in [13]. This also
means that there is no requirement for job migration.

However, even after assigning the load i @, () there is
a=1
residual processing capacity in the cluster and hence the
node i requests for jobs from other nodes in the optical
network. The requesting part is shown in Case 2.
Case 2: Global (Network) Scheduling

C,t)< ia)ﬂ @) (6)
a=1

implies that the load generated in time-slot ¢ by the cluster
at node i is greater than the processing power available at
node i and hence some portion of the load must migrate to
other nodes in the optical network. The migration is done
in two steps. A portion of the load that can be processed
locally is scheduled within the cluster, while the remainder
load is assigned to a global buffer.

1. Assign FZ o,(—C (1) the global superscheduler buffer
=1

at node i for scheduling within the cluster at i. The global
buffer (superscheduler) then obtains the value:

S,0)= 5,0+ S 0, ()~ C,(0)- ™
a=1

2. Assign load corresponding to the valueC (¢)into the

local cluster supported by node i using the equations for
a as obtained in case 1.

When the load generated by the cluster is greater than
what the cluster can process, it is sent to the superscheduler
for submission to some other node in the optical network.
Transversely, if the load generated by the cluster is less
than what the cluster can process, then the node requests
other nodes to send their loads to this node for processing.
The process of sending or receiving load through the
optical network is initiated by an auctioning algorithm.
Nodes that have excess load float bids requesting nodes
with excess processing capacities to accept their load.
Likewise, nodes with excess capacity float a different kind



of a bid to seek other nodes to submit loads to them for
processing. The bidding and connection assignment is done
through the light-trail optical network and if needed the
algorithm has provision to create new light-trails. The
process of light-trail creation (and eventual destruction)
reorganizes the virtual topology of the network.

Auction _process: To allocate load from one node
(cluster) to other node(s) (clusters) we use the dynamic
provisioning and optical multicasting property of the light-
trail. The unidirectional multipoint implementation of light-
trail in [5] implies a node can be a source of a job or a sink
or a job. Nodes in each time slot decide based on their
superscheduler status whether they would be a source of a
job or a sink of a job for the next time-slot. The decision is
dependent on whether a node has surplus processing power
or needs processing power from other processors in the
network as shown in equations (4) and (6). The auction
algorithm is tailored for bandwidth assignment in a way
such that nodes are bidders for light-trail bandwidth (to
send/receive jobs). However, a node may be seller for
processing power, or a buyer of processing power
depending on (4) and (6). In a given time-slot there can be
several nodes vying for the same light-trail bandwidth.
These nodes compete with each other. The competition
spurs an auctioning mechanism.

We have a single unified method to arbitrate light-trail
bandwidth such that nodes that require bandwidth
(processing power) receive it in a “competitively fair”
manner. We define the competitive fairness as the equality
in the ratio of the bandwidth given to each node within a
light-trail to the total bandwidth desired by the node. This
notion of fairness is valid if the bids are a true reflection of
the node’s requests. The idea of the auction scheme is to
connect process surplus and process deficient nodes in an
efficient way. Below, we explain two sub-methods of the
auctioning scheme: bid computation and bandwidth
assignment. The result of the bandwidth assignment (within
a light-trail) also leads to growth (reorganization) of the
virtual topology of light-trails in the optical network.

Types of bids: A node in every light-trail is chosen as the
light-trail controller, such that it helps in the arbitration
process. Typically the controller can be the convener or the
end-node of the light-trail. Nodes in the light-trail send their
bids to the controller. Bids can either be requests for
transmission or requests for reception of data in the next
time-slot. Hence if we have a light-trail £ with n(k) nodes,
then if n’(k) nodes send bids for submitting jobs in the light-
trail, then up to n”(k)=n(k)-n’(k) may send bids for
receiving these jobs through the light-trail.

Nodes that desire to send a job in a light-trail &£ send bids
called obids, while nodes that desire to receive jobs from the
light-trail send bids called ibids. Bids are sent through the
control channel and upon computation of assignment nodes
are intimated about their sending and receiving rights in the
light-trail for the next time-slot. Bid computation is one of
the key issues. Bid computation is a critical process that
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determines the behavior of the auction algorithm in being
able to be fair and convergent in bandwidth assignment to
nodes. Bid computation, as shown later on, is a normalized
process, and bids take numerical values between O and 1
reflecting their requirement of the light-trail in terms of
their processing power. We define obid, (t) and ibid , (t)as

the bids sent by node i in light-trail & at time ¢ desiring to
send and receive, respectively, its job in the next time-slot.
Choosing light-trail for ibid and obid: For nodes that
have a job to transmit into the network (i.e. job sizes > the
cluster residual power) the value of superscheduler buffer
S, () is non-zero. Such nodes will send an obid. As shown

in Fig. 2 there is one superscheduler buffer at every node,
while there are a maximum of w accessible wavelengths in
each of the two fibers enabling each node to choose from a
maximum of 2w wavelengths. We now discuss methods for
a node to:
1. Determine whether to send an ibid or to send an obid
2. Determine light-trail to use to send the ibid or obid.
Each i create an array ALT;(t): that denotes all possible
light-trails existing in the network and of access to node i.
Letk e ALT,(2) - For every k:k e ALT,(z) , create

a set DALT;'k (¢)that gives the set of nodes downstream of
node i in light-trail £ at time ¢ and create a set UALT/‘ )

that gives nodes upstream of node i in light-trail & at time ¢.
From the definitions of D4LT/(t)and UALT}(¢)and the

unidirectional characteristic of light-trail, a node i sends an
obid to elements of DALT*(¢)or sends an ibid to elements

of UALT*(¢). The decision to send an obid or ibid is
dependent on the value of Sjt). If, C,(2) > Qand
S, (z) = O then node i will send an ibid because, it means

node i has available processing power that can be dedicated
to jobs from other nodes in the #+/* time-slot.

An important point to note is that jobs generated by the
cluster at node i in the #+/* time-slot may actually be sent
to another node for processing, since the available
processing power at the cluster is utilized to get a job from
some other node. The ibid is sent with an objective to
receive jobs from any of the upstream nodes in the set
UALT/ (¢) - The choice of light-trail & for sending ibid is

discussed later. The node sends an ibid for only one light-
trail out of the possible 2w. This is because if node i were
to send the ibid on multiple light-trails, it would possible
receive jobs from nodes in the multiple light-trails thereby
overflowing the superscheduler buffer.

If S,(t)>0 then that there are jobs (generated at the

beginning of the /" time-slot) in the superscheduler buffer
at node i that could not be scheduled into the local clusters
(also implying that C,(¢) = 0); hence node i will send an

obid to all the nodes downstream of itself in a preferred
light-trail k. The choice of light-trail for sending obid is
discussed later in this section. Upon selection of the



preferred light-trail £ node i sends 0bid with an objective to
secure processing power from nodes that are downstream of
itself in the light-trail i.e. in the set D47, Tik @) -

Computation of obid and ibid: The next issue we
consider is the computation of obid and ibid. The bid is a
numerical representation of the requirement (or surplus) of
processing power by the cluster. We define instantiation of
obid and ibid as: obid (1) and ibid , (1) depicting the
value of the bid at node i in light-trail £ in time-slot ¢. To
compute obid,, (t) We define the following parameters:

o, (¢): as the time elapsed since the last successful
transmission by node i in light-trail .

Wy (1) = min[Ag — D ¢ ®

as the allowable time a packet or batch can wait in the

superscheduler S, (®) before it must be processed in order

to meet the parallelism of the load. Inhere by: In (8), A s,

denotes the maximum allowable waiting time for process
(or service) type & and Sj, S), ...S}, ...S, are the s different
process (or service) types. Note that '/ is the time elapsed

since a packet of process type A arrived in the
superscheduler S;(#) and waiting to be allocated for
processing. Based on the above definitions we define:

1 S, () ©)
1+y, (D /oy S,

obid, (t) = max[
max

Explanation: obid is a ratio between the values of [0,1].
Either of the two terms on the right hand side of (9)
equation passes on its value to obid. The first term is a
measure of translating process criticality while the second
term is a measure of translating the process size (occupancy)
in the superscheduler at node i.

The value of ibid , (t) is computed as a ratio of available

processing power of a cluster at a node to the total
processing power of the cluster. Thus:

ibid, (1) = <O (19)
s
a=1

Choosing the right light-trail at node i: A node that
desires to send an obid, it computes the value of obid,, ()

for each ke ALT,(¢)-Then, selects the light-trail that gives
the highest value of obid , (t) forall fe 4 LT,(?) and

name this as the preferred light-trail for node i at time ¢:
opref,(t) = arg max[obid,, (¢)] 11)
The node will send bids for seeking transmission
bandwidth on this light-trail. The justification for choice in
(11) is that, opref,(t) is the light-trail in which node i can
send the highest bid, and hence the best probability of
successfully attaining job migration. The assumption is
valid iff the bid value is a true numerical reflection of the
requirement of the node. Upon receiving all the obids for a
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particular light-trail, the controller chooses the node with
the highest obid as the transmitting node for the next time-
slot. The bid that the winning node sends is termed as
mbid(t-1) (for the ¢-1* time-slot).

For a node that desires to send an ibid: To compute
which light-trail should a node send its ibid on, we have to
first consider the assignment of bandwidth. Then, to
compute which light-trail to send an ibid into, we note as:

prefgen, (t) = arg max[mbid, (t —1)]

forall x € ALT,(r)and UALT/ (t) =0 (12)
where, prefgen, (¢) indicates the preferred light-trail for

node i to send its ibid in. This light-trail represents healthy
bidding in the previous (t-1*) time-slot; i.e. the node that
won bandwidth in the previous slot, did so by placing
comparatively a large bid with reference to other light-
trails. This indicates that the winning node in the light-trail
prefgen,(t) had to overcome other nodes whose own

bids were of significantly high value. Hence by sending
ibid into this light-trail the node has highest probability of
finding a corresponding obid node that would send a job to
this node. Once again, we assume that the bid values are a
true reflection of the resources desired by each node for
both ibid and obid. Hence node i naturally will be able to
tap a job in the light-trail prefgen,(t) -

Assignment of Light-trail Bandwidth: After computation
of bids the next step is the protocol itself. After every
time-slot the light-trail controller receives a set of obids
and a set of ibids. If it does not receive either bids, then the
controller cannot have a assignment. In such a case, the
controller does nothing. In normal operation, the light-trail
controller for a particular light-trail k receives a set of obids
and ibids. Assuming identical superschedulers of size S,
it selects the highest bidder amongst the obids and calls this
bidder as the dump,(t). The node dump,(t) corresponds to
the superscheduler that will schedule (dump) its job into
the light-trail & in time-slot ¢+ 1. dump(t) is computed as:

dump, (t) = argmax[obid,, ()] (13)
ick

In addition to deciding which node in the light-trail will
send its job, the controller also determines which node(s) in
the light-trail are prospective receivers for jobs. It should
be noted that more than one node can be prospective
destinations for a job (parallel processing). This is achieved
through the optical multicast property of the light-trail,
whereby when the node that wins transmission right sends
its job to all nodes downstream of itself in the light-trail. A
select group of these downstream nodes can be destinations
for the transmitted data (job). Upon deciding the winning
node amongst all obids, the controller sends back two
messages to every node in the light-trail £.

Message 1: Saying that dumpy(t) is the winner for
transmission in time-slot #+1.

Message 2: Informing dump,(t) specifically about
who its prospective destination nodes are from within light-



trail & to carry about job migration from dump,(t). The node
dump,(t) then sends data to these nodes (through optical
multicasting) by placing MAC address of these nodes at
layer 2 level. The message that the controller sends to
dumpy(t) has two parts: first containing the prospective
destination nodes, and second containing the ratio in which
the job is to be sent to the prospective destination nodes.
The first part of the message is called a set collector,(t),
while the second part of the message is a set called
collector-ratioy(t). The collector-ratioi(t) contains fractions
that correspond to elements in the set collector,(t)
(prospective destinations), such that the sum of these
fractions is unity. It is also possible to divide the job based
on some priority distribution considering value of ibid into
account. The advantage of such a procedure would be the
time saved in communication. We however, consider the
process of dividing a job in a generic manner proportional to
the ratio of the ibids.
collector, (t) ={arg[ibid,, (t)].i € k}
(14)
ibid,, (1)
n(k) >
> ibid, (1)
i=1
Macro-management functions: Periodically the light-
trails are grown, shrunk or deleted depending upon their
utilization levels. We now discuss the method for growing/
shrinking/ deleting or setting up new light-trails.
1. Light-trail deletion:
Define a threshold value TH o such that:
if mbidy(t)< THiow
and k’ exists such that s.d e k'
perform
light-trail (k) deletion
endif
2. Light-trail Advertising:
for every light-trail k
advertise all s,d possibilities within k
such that s,d e k andd € DALT/ (¢)

endfor

collector — ratio, (t) = ek

IV. SIMULATION MODEL AND NUMERICALS

In the simulation model we consider a 2-fiber 16 nodes
WDM ring network (with 40 channels in each direction of
communication). Channel rate is assumed to be 1Gbit/s. The
control channel is assumed to be time-slotted and runs
155Mbps or OC-3. The control channel is optically dropped
(using a filter) and electronically processed at every node.
Each fiber is unidirectional in communication. The control
channel in both rings is dedicated for supervisory purposes
only. Control slot duration is considered to be .001ms and
data slot duration is 400 microseconds.

Each of the nodes of the ring has a system buffer which
stores the jobs submitted for local as well as global
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scheduling. Size of the buffer is assumed to be 250 Mbits
for simulation purposes. Processing units have a processing
storage just enough to store jobs which the processing unit
can execute in one data slot duration.

In real world some jobs have a higher precedence over
others. Thus in simulation model we divide jobs into 18
classes, which create a precedence relationship amongst the
jobs. Thus if there are two jobs in the system buffer one of
class type X and one of class type Y such that X < Y, job
of class type Y will be scheduled before class type X. Each
of the processing unit is also assigned a class type since in
real world not all processors can execute all kind of jobs.
Processing unit with class type X can execute jobs of type
X or higher.

All the processing units act as a job generators. The
inter-arrival rate of jobs at each of the processing units
follows a Poisson distribution. Table 1 shows the
normalized load at each of the computing clusters. Each
processing unit’s job generation rate depends on the
normalized load of the computing cluster of which the
processing unit is part of. Size of the generated jobs at each
of the processing units also follows Poisson distribution.

Cluster Unit Normalized Load
Cl1 0.8
C2 0.8
C3 0.9
C4 0.3
C5 0.8
C6 0.8
C7 0.8
C8 0.4

We define a metric in the simulation to measure the
efficiency of the proposed scheduling algorithm. We use
this to compare the efficiency of scheduling algorithm as
compared to when the scheduling efficiency was not used.

Depending on who is measuring the efficiency of the
system, there are different metrics. For example the center
system which manages the computing center will be
interested in finding out how efficiently computing
resources are being used while the end user who submits
the jobs is more interested in metrics like Average
Response Time and Average Wait time.

N . s s
AverageRe sponseTime = wt( EndTime,- SubmitTime)
Jje

1 . e
AverageWaitTime = — t (StartTime,~ SubmitTime)
m

Average Response Time of a job is the turnaround time.
Average Wait Time is the time a job entered the system and
when its processing was started.

A good measure of the grid efficiency is how the
system buffers are in use at each of the nodes. In Fig. 3 we
plot the buffer usage for two cases, with and without global
scheduling. With no global scheduling, the buffer usage
reached a peak and after a while then there was a buffer at
one of the system buffers. In case of global (along with the
local) scheduling) the jobs were migrated across nodes and
this overall buffer usage was almost constant.



Fig. 4 and 5 show the normalized average response time
and normalized wait time, respectively, with and without
global scheduling when the system is lightly loaded and
when it is highly loaded. At low loads there is little
difference in the response times and wait times, but
communication latencies are an overhead. For the case of
high loads there is almost 25% benefit in the average
response times and almost 50% improvement in wait times.
In Fig. 6 we show the light-trail utilization as a function of
network load. It is clear that utilization increases with
increase in load for different load sizes.

Scheduling vs W/o Scheduling System Buffer usage

—8—With scheduling
Without Scheduling

System Buffer in Use

System Time

Fig. 3. System buffer usage.
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Fig. 4. Average response time vs. load.
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Fig. 5. Average wait time vs. load.

V. CONCLUSION

We have proposed in this paper a superscheduler
architecture for computational grids using light-trail WDM
networks. The proposed architecture is based on a “double-
auction” model where by jobs are sent from process
deficient nodes to process surplus nodes. Computation of an
auction leads to efficient scheduling of jobs in the metro
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network — facilitating a computational grid. Performance
results are shown for buffer utilization, response and wait
times as well as for utilization of the network.

Network Utilization vs. Load for different Job Sizes
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Fig. 6. Network utilization vs. load for different average job size.
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