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Abstract—Data generation in wireless sensor networks could
be bursty as it is dictated by the presence or absence of events
of interest that generate these data. While conventional sensor
nodes possessed only one radio interface, next generation sensor
nodes are expected to have two (possibly more) radio interfaces,
each with different range, capacity, and power consumption.
Equipping sensor nodes with dual radios has its own benefits
and can be quite useful in handling bursty traffic while at the
same time satisfying the application’s delivery requirements. In
this paper, we propose an adaptive interface switch agent that
intelligently selects the interface to be used for data transmission
at a sensor node based on the data burst length while taking
into consideration power consumption, throughput, and end-
to-end delay. The proposed work generalizes earlier works in
this area to enable both the source nodes and intermediate data
forwarding nodes to initiate the activation of high power radios
so that they can be utilized to a higher degree for converge-
cast communication. We have performed extensive simulations
with sensor nodes containing both IEEE 802.15.4 and IEEE
802.11 compatible radios. Our simulation results indicate that: (i)
the end-to-end delay and throughput achieved by the proposed
interface switch agent are comparable to those achieved in a
network of sensor nodes equipped only with IEEE 802.11 radios,
(ii) the energy consumed in the network using our interface switch
agent is a fraction of that consumed in a network of the IEEE
802.11 sensor nodes and is comparable to that of sensors using
only IEEE 802.15.4 radios.

I. INTRODUCTION

Wireless sensor networks (WSNs) are multiple-hop ad-
hoc networks consisting of a large number of sensor nodes
communicating through wireless medium. The sensor nodes
usually have limited amount of resources like memory, channel
bandwidth, and battery capacity.

The study of wireless sensor network has become a hotspot
in networking area due to its broad range of potential ap-
plications. Specifically, wireless sensor networks have been
reported to be used in environmental monitoring, habitat
monitoring [1], military surveillance, inventory tracking, smart
buildings, homeland security, etc. Several of these applications
are characterized by bursty traffic. That is, they have little or
low data rate for most of the time and when an event occurs,
the data rate increases drastically.

There have been a number of approaches to deal with the
bursty traffic in wireless sensor networks with sensor nodes
bearing a single interface. These approaches have been studied
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on medium access control (MAC) and routing layers. Adaptive
MAC protocols such as SMAC [2], TMAC [3] and PMAC [4]
adopt adaptive duty cycles based on the traffic load. The radio
is woken up when the traffic load is heavy and is put into
sleep when the traffic load is light. The protocols assume the
physical layer has a large enough bandwidth to handle the
peak traffic.

Pering [5] proposed the CoolSpots model which focuses on
using Bluetooth and WiFi radios in a single hop mode. A few
switching policies have been proposed to make the switching
decisions. Although reference [5] claims that the CoolSpots
model can be used for adhoc peer-to-peer configuration, it does
not address the complexities of the routing layer that arise as
a result of different transmission ranges of the two radios.
Yarvis et al. [6] proposed a network architecture consisting
of a set of high-bandwidth nodes and low bandwidth nodes.
The low bandwidth nodes connect to the high-bandwidth
nodes thereby reduce the total number of transmissions to
reach the destination. This increases the lifetime of low-
bandwidth nodes. The high bandwidth nodes are assumed to
be connected to a power source and hence do not have any
energy constraints.

A recent work by Stathopoulos et. al [7] introduces ideas
similar to the ones introduced by us in this paper. They
proposed a network architecture containing devices that have
a single low-bandwidth radio and devices with both low-
bandwidth and high-bandwidth radios. The low-bandwidth
radios are always turned on and the high-bandwidth radios
are always turned off. However, the high power radio at a
specific node called the topology controller is always kept
on. When a low-bandwidth node has data to send to a
particular destination, it sends a path request to the topology
controller. The topology controller selectively wakes up the
high-bandwidth radios along the path from the source to the
destination. The data travels along low-bandwidth nodes to
high-bandwidth node, passes through a sequence of high-
bandwidth nodes, and finally goes from the high-bandwidth
node to the destination along low-bandwidth nodes.

While the work done in [7] is interesting, it has a few
drawbacks. It uses a centralized controller (with no energy
constraints) which partially negates the advantages and phi-
losophy of a truly distributed sensor network. Also, only the



source nodes are allowed to make the decision on using the
high-bandwidth nodes for transmission which could decrease
the utility of the high power radios. Our proposed approach
is completely decentralized in that each node makes a local
decision to wake up the appropriate high-bandwidth nodes for
transferring the data to the destination. We leverage on the
existing distributed routing protocols such as AODV [8] to
determine appropriate high-bandwidth paths to the destination.
The use of protocols such as AODV also helps to find new
paths when sensor nodes lose their battery power. Further,
our proposed solution permits any node along a path (both
source and intermediate) to activate the high power radios in
downstream nodes which can be quite useful in convergecast
data dissemination scenarios.

The main contributions of this paper are as follows: (i)
For the network model wherein all the nodes are equipped
with dual radios (one low power and one high power), we
have presented a distributed framework for activating high
power radios at appropriate nodes. The activation mechanism
is sensitive to the energy efficiency of the radios and can
adapt automatically to the network traffic pattern and the
application’s data delivery requirements. The proposed scheme
is tolerant to node failures as well. (ii) We have also proposed
supporting enhancements (such as schemes for maintaining the
routing cache) that can result in additional energy savings at
network nodes. (iii) We have provided extensive simulation
results to test the performance of our proposed interface
activation scheme using ns-2 which required us to design,
implement, and test new protocol agents. Our simulation
results indicate that: (i) the end-to-end delay and throughput
achieved by the proposed distributed interface switch frame-
work are comparable to those achieved in a network of sensor
nodes equipped only with IEEE 802.11 radios, (ii) the energy
consumed in the network using our interface switch framework
is a fraction of that consumed in a network of the IEEE 802.11
sensor nodes and is quite comparable to that of sensors using
only IEEE 802.15.4 radios.

This paper is organized as follows. In Section II, we describe
the concept of the switch agent and describe its components,
respectively. In section III, we give the protocol details of
the switch agent, and Section IV shows the simulation results
using IEEE 802.15.4 and IEEE 802.11 dual interfaces. We
state our future work and conclude in section V.

II. OVERVIEW OF THE SWITCH AGENT

We will call the interface with the lower bandwidth and
shorter transmission range as Interface-I and the one with the
higher bandwidth and longer transmission range as Interface-
II. A switch agent is a software component that distributes
traffic between these two interfaces. By default, Interface-II is
powered-off and is woken up by sending appropriate control
message along Interface-I. We will assume that Interface-
I is always active (with appropriate duty cycle) and that
the network is connected when all the nodes activate their
Interface-I. A distributed protocol such as AODV is executed
to populate the routing tables at each node. This routing table
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Fig. 1. Positioning of the switch agent

will provide next-hop information along different routes in
the network based on Interface-I. Since the reachability of
Interface-II is higher than Interface-I, at each sensor node we
need to find a new set of routing table based on Interface-II. If
the reachability of Interface-II is a multiple of the reachability
of Interface-1, then with appropriate modification to the AODV
protocol, it may be possible to approximate the routing table
related to Interface-II from the Interface-I routing tables, thus
saving energy at nodes. In general, this may not be possible
and hence we are required to separately execute the routing
protocols for each interface. Running the routing protocols on
Interface-II will likely find a shorter higher-bandwidth path
than constructing one from the Interface-I routing tables. This
saves more energy for heavier traffic compared to the energy
overhead incurred by broadcasting wake-up message.

The switch agent has to monitor the traffic flow and use
the appropriate interface to send control information and data
packets. In order to facilitate this, the switch agent is placed
above the routing agents. The protocol stack is illustrated in
Fig. 1, where RA-I and RA-II are the routing agents used by
Interface-I and Interface-II, respectively.

A. Components of the Switch Agent

Every switch agent has the following components: inter-
face queue monitor, sleep-wakeup unit, route cache unit, and
timers.

1) Interface Queue Monitor: The duty of the switch agent
is to switch Interface-II on and forward the traffic to Interface-
Il in order to meet the application demands and/or when
the traffic rate at a node becomes high, necessitating the
use of Interface-II. In order to make this happen, we need
a component to monitor the packet transmission queue at
every node. In this paper, we have chosen to monitor the
length of the interface queue in between RA-I and MAC-I,
since the queue length reflects the cumulative effect of both



incoming traffic rate and transmission rate. We will use a
predefined threshold called THRESHOLD_HT. Whenever the
queue length exceeds THRESHOLD_HT and if the Interface-
IT is on, then the incoming traffic is diverted to Interface-II.
We have used the queue length to demonstrate how traffic
is routed to the second interface, we could also have done
so based on other application requirements such as desirable
end-to-end delay.

2) Route Cache: On-demand routing agents like AODV,
establish routes whenever there are data packets bound for
a certain destination. We will use two route caches, one for
each interface. We will denote these route caches (the routing
tables) as RC-I and RC-II corresponding to Interface-I and
Interface-II, respectively. When the network initially starts up,
only Interface-I is on. If there is a data packet originated at
some node, RA-I at that node will broadcast a route request.
A route will be established after receiving a route reply from
either the destination node or a node knowing how to reach the
destination node. The routing agent like AODV can reestablish
a route whenever a route is expired or repair a route when the
nexthop neighbor is dead. All the Interface-IIs will be turned
on for the initial switching since no cached routes yet. RA-II
will do the same to establish a route and the route will be
cached for the subsequent switching.

A RC-I entry is made to expire if messages along Interface-
I are not delivered to the next-hop specified in that entry. In
this case, the entry is purged and the routing agent at the node
is activated to recalculate the route. An RC-II cache entry
(corresponding to Interface-II) will expire if it has not routed
any data packets on it for a period of time. Apart from caching
all the route information to destinations at relating to Interface-
I, the number of hops (with Interface-I) required to reach each
destination can also be stored and updated from time to time.
The caching of hop counts will help to make a ringcast instead
of broadcast for sending wake-up control messages. Ringcast
is a broadcast but restricting the TTL (Time-To-Live) of the
broadcasted packet to a limited number of hops. This can save
energy and improve the scalability of the protocol.

3) Sleep-Wakeup Unit: The Sleep-Wakeup unit at a node
is responsible for (i) turning on Interface-II at the node and
(ii) sending control messages along the node’s Interface-I
to turn on Interface-II at other nodes. If an entry for a
particular destination has to be populated in RC-II, we have
resort to a broadcast/ringcast to determine the path (made up
of Interface-II) to the destination. These broadcast/ringcast
control messages are sent by the sleep-wakeup unit along
Interface-I. Let us consider a scenario when a RC-I entry
is available and the RC-II entry has expired at node z for
destination d. The cache RC-I at z will give us the next hop
node (say y) on the path to d using Interface-I. Waking up
node y’s Interface-II may not be prudent since we can possibly
bypass node y owing to the increased range of Interface-II at x.
For this reason, we have to let node x send a broadcast/ringcast
message to wake up Interface-II on all the nodes that receive
the message. After this, routing protocol is run on Interface-II
to create an entry for d in RC-II after which z starts forwarding
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data along this path. The nodes that turned on their Interface-
IT will turn it off in case they do not receive any data for
forwarding along Interface-II for a period of time.

Now consider the scenario that both RC-I and RC-II entries
are available at node x for destination d. Having a RC-II
entry for d does not imply that the route is active, since the
intermediate nodes along that path could have turned off their
Interface-II due to inactivity. Let z be the next hop neighbor
of z on RC-II towards d. Further let y’ be the next hop node
in RC-I to the destination z. Now a unicast wake-up control
message is sent to node y’ using Interface-I at node = with
the destination as node z.

A wake up registry is maintained at node z to indicate that
node z is woken up to route data packets to destination d. This
will avoid unnecessary transmission of wake-up messages. The
entries in the registry are purged from time to time.

4) Timers: As part of our protocol we will maintain
three timers: IDLE_TIMER, CACHE_TIMER and REG-
ISTRY_TIMER. The IDLE_TIMER keeps track of the traffic
that is seen by Interface-II. In the absence of any traffic for
a duration of time, defined by IDLE_INTERVAL, Interface-
I will be turned off. CACHE_TIMER is fired periodically
to purge old paths and determine new ones. The REG-
ISTRY_TIMER is maintained to purge the entries in the
registry. Each registry entry will be of the form [d, t], where d
is the destination and ¢ is the timestamp indicating the latest
time the node has seen a data traffic to destination d through
its Interface-II. When the REGISTRY_TIMER is fired, all the
entries that satisfy the relation curTime —t > REG_TTL will
be removed, where curTime is the current wall clock time
and REG_TTL is a predefined threshold.

III. PROTOCOL DETAILS

As stated earlier, the switch agent sits at the routing layer
and on top of two routing agents, each of which is for two
different interfaces. In our distributed protocol nodes receive
three types of packets:

o wake-up packets - control packets generated from the
switch agent to wake up the Interface-II. Wake-up mes-
sage could be either a unicast message or a broad-
cast/ringcast message. All control packets communicate
through the Interface-I;

« routing packets - control packets generated by the routing
agents to establish or update a route;

« data packets - data packets originated from the sensors.

In each of the intermediate nodes along a route, every packet
must go through all the protocol layers until the switch agent.
When the data packet reaches its destination node, it will be
passed to the upper layers above the routing layer.

We tag all packet headers with a channel ID. The data packet
generated by the application or the control packet generated by
the switch agent at the node of origin will have a channel ID
0. The switch agent, after determining the channel to use, will
use an ID 1 and 2 for the packets going through Interface-I and
Interface-II, respectively. We will describe the protocol details
based on the types of the packet the switch agent receives.



A. Receiving a Routing Control Packet

When the switch agent receives a routing control packet,
it will first check the header of the packet. If the header is
tagged with a channel ID 1 (resp. 2), the routing packet will
be forwarded to RA-I (resp. RA-II).

B. Receiving a Wake-up Packet

A wake-up packet sent by a node could be either a
broadcast/ringcast message or a unicast depending upon the
availability of caching information.

1) Receiving a broadcast/ringcast message: If the switch
agent receives a broadcast/ringcast message, it will drop
the packet when TTL is O. If the TTL is greater than
zero, the node’s sequence number will be used to elim-
inate broadcasting of the old packet. In response to the
new wake-up packet, Interface-II will be started. If this
particular node does not observe data flowing through its
interface for a period of time IDLE_INTERVAL after it
has been switched on, then its Interface-II will be put
into sleep. An IDLE_TIMER will be used to countdown
this interval of time.

2) Receiving a unicast message: If the switch agent receives

a unicast wake-up message through Interface-I and it
is the next-hop identified, then the Interface-II will be
switched on and the IDLE_TIMER will be rescheduled.
Now it will determine if a unicast or broadcast/ringcast
message has to be sent to wake up the nodes along
the path to the destination. This decision is based on
information available at the cache RC-II. In addition,
before sending a unicast message is the wakeup registry
searched to see if the next hop node is already active
on Interface-II. If it is active on Interface-II, then the
wakeup message along Interface-I is avoided and the
data packets are sent via Interface-II to the next hop
node directly.
If the node receiving the wake-up message is not the
next-hop that is identified, then the message will prop-
agate towards the next-hop node through Interface-I. If
the current node is the destination node of the original
data flow, the message will be dropped and no further
unicast of the message will be sent.

C. Receiving a Data Packet

The data packets received by a switch agent can be either
a data packet tagged with channel ID 1 (pass-through traffic
through Interface-I) or a data packet tagged with ID 0, which
is a data packet originated from the current node. If there is
no registry entry for the destination of the data packet, the
switch agent will forward it to RA-1 and the packet will be
tagged with channel ID 1. If the interface queue length exceeds
the predefined threshold after receiving the packet, the switch
agent will turn on the Interface-II if it is not currently on. The
interface queue will be scanned and the destination with the
maximum number of packets will be found. A registry entry
will be added for that destination.
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recvWakeup(pkt){
if pkt is a broadcast message then
ttl — the Time-To-Live of pkt
if ttl < O then
drop pkt
else
rq_src «— source where pkt is originated
rq_bid «— broadcast id given by the source
fresh — bid_lookup(rq_src, rq_bid)
if fresh = FALSE then
drop pkt // obsolete wake-up message
else
bid_insert(rq_src, rq_bid) // store the latest broadcast id
if registry is empty then
resched_idletimer(IDLE_INTERVAL)
end if
wake up Interface-II
ttl—— // decrement ttl by 1
broadcast pkt
end if
end if
else if pkt is a unicast message then
rq_dst — destination which the wake-up request is bound to
ip_dst — destination address of pkt
if registry is empty then
resched_idletimer(IDLE_INTERVAL)
end if
if rq_dst = address of the receiving node then
wake up Interface-II
drop pkt // no need to propagate the wake-up message any more
else if ip_dst = address of the receiving node then
wake up Interface-1I
if there exists a cached route to rq_dst then
nexthop «— cache_lookup(rq_dst)
call sendWakeup(rq_dst, nexthop)
else
call beastWakeup()
end if
drop pkt
else
continue to propagate pkt
end if
end if

}

fire_idletimer(){
put Interface-II into sleep

}

Fig. 2. Pseudocode of the switch agent

A broadcast/ringcast or a unicast wake-up message need to
be sent to wake up downstream nodes to that destination. First
look up the route cache to see if any route has been cached for
the destination. If the answer is yes, construct a unicast wake-
up packet and set its destination to be the next hop of the
cached route and send the wake-up packet through Interface-
I. If the answer is no, construct a broadcast wake-up packet
and broadcast it through Interface-I.

The data packets received by a switch agent could also
be tagged with ID 2. That indicates the Interface-II must be
awake already. Otherwise, no packet tagged with ID 2 can
be received. The packet will be sent back down through the
Interface-II to the next hop. A registry entry will be added
for the destination of the packet, if it does not exist yet. The
expiration time of the entry will be REG_TTL. If such an



RECEIVE(pkt) {
// PT_RT: routing message from the routing agents
/I PT_W K: wake-up message from the switch agent
/I PT_DAT A: data packets from the application
/I RA-I: routing agent 1; RA-II: routing agent 2
// q: the interface queue between RA-I and MAC-I
ptype — packet type of pkt
cid < channel ID tagged in the header of pkt
dst «— destination address of pkt
if ptype = PT_RT then
if cid = 1 then
hand pkt over to RA-I
end if
if cid = 2 then
hand pkt over to RA-II
end if
else if ptype = PT_W K then
call recvWakeup(pkt)
else
found — registry_lookup(dst)
if found = TRUE then
setRegistryExpireTime(dst, REG_TTL)
call sendThroughChannel2(pkt)
return
else if cid = 2 then
cancel_idletimer() // cancel the idle_timer if it is active
registry_insert(dst) // insert a registry entry for dst
setRegistryExpireTime(dst, REG_TTL)
call sendThroughChannel2(pkt)
return
else
tag the header of pkt with cid =1
send pkt down through Interface-I
if g.length >= THRESHOLD_HT then
if Interface-II is sleep then
wake up Interface-1I
end if
if registry table is empty then
cancel_idletimer() // cancel the idle_timer if it is active
dst_max — findMax(q)
found — registry_lookup(dst_mazx)
if found = TRUE then
call wakeupChannel2()
registry_insert(dst_max) // add a registry entry for dst_max
setRegistryExpireTime(dst, REG_TTL)
end if
end if
end if
end if

end if}

Fig. 3. Pseudocode of the switch agent

entry already exists it will be re-timestamped.

Some MAC protocols (like IEEE 802.11 and IEEE
802.15.4) and the routing agents (like AODV) support call-
back functions in case of transmission errors. Those callback
functions can be leveraged to make sure the wake-up message
can reach the downstream nodes. If any callback occurs on the
unicast wake-up message due to collisions or poor link quality,
an alternative path might be used or a broadcast/ringcast wake-
up message will be sent out instead.

The pseudocode is listed in Fig. 2 and Fig. 3.

IV. PERFORMANCE EVALUATION
A. Simulation Setup

We have carried out the simulations based on the ns-
2 [9] implementation of IEEE 802.15.4 PHY/MAC [10] (the
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interface with a lower data rate, shorter-range and lower power
consumption) and IEEE 802.11 PHY/MAC [11] (the interface
with a higher data rate and power consumption). The IEEE
802.11 MAC in ns-2 only implements DCF function, without
the complexity of association.

IEEE 802.15.4 standard has been developed to address the
unique needs of low cost and low power of wireless sensor
networks. IEEE 802.15.4 and IEEE 802.11 both operate within
the 2.4G ISM band. Interferences can occur when both types
of devices coexist within a close region [12], [13]. However,
two clear channels (25 and 26) exist outside the 802.11
spectrum and can be used as the primary 802.15.4 channels
for interference-free deployment [14]. Given the above, in our
simulations, we have assumed that the two interfaces operate
in different channels with no interference between them.

We have used on-demand routing protocol — AODV as
the routing agents for both interfaces. We have simulated
on a random topology as in Fig. 4(f). The random topology
contains 100 nodes randomly generated with three source and
destination pairs which share paths. All the nodes have at
least one neighboring node within the transmission range of
IEEE 802.15.4. We have also simulated on two other different
topologies, one with a single joint node, the other with a
single joint path. The simulation results turned out to have the
same trends as the random topology. Due to space limitations,
we only present the results for the random topology in this
paper. Bursty traffic was generated at each source node. The
bursty traffic alternates between idle time period and burst time
period. During the idle time period, no data was sent. During
the burst time period, data were sent at a constant bit rate. The
time span of the idle time period and the burst time period both
follow a poisson distribution with a certain average. The data
packet size is 70 bytes and the simulation time is set for 30
minutes. Some of the other parameters used in the simulations
are listed in Table L.

TABLE I
PARAMETERS USED IN THE SIMULATIONS [15]

Parameter IEEE 802.154 IEEE 802.11
transmission power 28.1 mW 660 mW
receiving power 62.1 mW 395 mW
idle power 1.4 mW 35 mW
data rate 250 kbps 2 Mbps
range 15m 250 m

In the following discussions, the term “switch agent” refers
to the scenario where sensor nodes having both IEEE 802.15.4
and IEEE 802.11 interfaces are used in conjunction with the
switch agent proposed in this paper. The term “802.15.4 alone”
refers to the scenario where sensor nodes with just IEEE
802.15.4 interface alone are used. The term “802.11 alone”
refers to the scenario where sensor nodes with just IEEE
802.11 interface alone are used.
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Fig. 4. Comparison among 802.11 alone, 802.15.4 alone and the switch agent with different traffic load

B. Performance Metrics lay between transmitting a data packet and receiving it
at its destination;

4) Average Energy Consumption: the energy consumption
of a single node on average;

5) Energy Efficiency: the number of bits received at the
sink nodes versus the total energy consumed.

The following metrics have been used to evaluate the
performance of the switch agent.

1) Average Goodput: the average number of bits (data
packets only) received at a sink node within a unit of
time;

2) Packet Delivery Ratio: the ratio of the number of data
packets received over the number of data packets sent
out; Fig. 4 shows the simulation results for bursty traffic with

3) Average End-to-End Delay: the average end-to-end de- varying rates. In this simulation, we have kept the average

C. Bursty Traffic with Varying Rates
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Fig. 5. Comparison among 802.11 alone, 802.15.4 alone and the switch agent with different burst time

idle time and the average burst time to be fixed (both are
10 seconds), and investigated the performance under various
traffic rates during the burst time period.

Fig. 4(a) shows that all the three scenarios yield the same
average goodputs when the data rate is lower than 10Kbits/sec.
For the data rate greater than 10Kbits/sec, the traffic load
exceeds the data rate limit of IEEE 802.15.4. Packets start
dropping for the 802.15.4 alone. For the switch agent, the
goodput remains close to that of the 802.11 alone, since the
IEEE 802.11 interface is turned on by the switch agent.

Fig. 4(b) shows the packet delivery ratio drops abruptly for
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the 802.15.4 alone when the data rate limit of IEEE 802.15.4
is reached, while the switch agent has as good delivery ratio
as the 802.11 alone.

Fig. 4(c) shows a transition occurs on the end-to-end delay
of the switch agent when the traffic load becomes heavier. It
is the same as that of the 802.15.4 alone when the traffic load
is light, while it gets close to that of the 802.11 alone when
the traffic load increases. The end-to-end delay of the 802.15.4
alone increases dramatically when traffic load becomes heavy
due to the increased collisions.

Fig. 4(d) shows the average energy consumption at each



node. The 802.11 alone consumes much more energy even
when the traffic load is light, since its idle listening energy is
much higher. When the traffic load exceeds the data rate limit
of IEEE 802.15.4, its energy consumption does not increase
much since the IEEE 802.15.4 network is already saturated.
However, the energy consumption of the switch agent remains
close to that of the 802.15.4 alone, since their IEEE 802.11
interfaces were selectively waken up.

Fig. 4(e) shows the number of bits received on every unit of
energy consumption. When traffic load is light, the 802.15.4
alone and the switch agent have better energy efficiency than
the 802.11 alone. The switch agent surpasses the 802.15.4
alone when the data rate reaches 25Kbits/sec and remains the
highest efficiency among the three afterwards. That is because
the IEEE 802.11 interfaces on the switch agent are selectively
waken up.

D. Bursty Traffic with Varying Burst Time

Fig. 5 shows the simulation results for bursty traffic with
varying burst time periods. In this simulation, we have kept
the average idle time to be fixed (10 seconds), and investigated
the performance under various average bursty time. The rate
during burst time period is 10Kbits/sec.

Fig. 5(a) shows an increase of goodput with longer period
of burst time for all the three scenarios. The switch agent has
a goodput very close to that of the 802.11 alone, which is also
much better than that of the 802.15.4 alone.

Fig. 5(b) shows that the switch agent has a delivery ratio
close to that of the 802.11 alone, which is also close to 1. The
delivery ratio of the 802.15.4 alone decreases with the increase
of the burst time period, because the longer burst time could
cause more collisions.

Fig. 5(c) shows the average end-to-end delay. The 802.15.4
alone has the largest delay and the 802.11 alone has the
smallest delay. The switch agent falls in between. When the
burst time period increases, the delay of the switch agent is
getting closer and closer to that of the 802.11 alone, since
more traffic is being sent through the higher-bandwidth radio.

Fig. 5(d) shows the average energy consumption at each
node. The switch agent consumes much less energy than
the 802.11 alone, since only the nodes involved in data
communication will stay awake. It is a little more than what
the 802.15.4 alone consumes.

Fig. 5(e) shows the energy efficiency defined by the number
of bits received on every unit of energy consumption. Since
the switch agent has a goodput very close to the 802.11
alone but with a lot less energy consumption, it yields a
much better energy efficiency compared to the 802.11 alone
without compromising the throughput and end-to-end delay.
The energy efficiency of the switch agent will surpass that of
the 802.15.4 alone when the traffic load gets heavier.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a switch agent at the routing layer,
sitting on top of dual routing agents. The switch agent
monitors the traffic flow and switches on the interface with
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higher-bandwith and longer transmission range whenever the
traffic rate becomes high. To save energy for using the high-
bandwidth interface, the switch agent caches the routes estab-
lished previously so that a unicast wake-up message can be
sent out to selectively wake up the high-bandwidth interface at
the downstream nodes. The switch agent also keeps a registry
for flows which already have the high-bandwidth interfaces
awake so that no further wake-up message transmissions are
incurred for subsequent requests.

The simulations shows that the switch agent yields through-
put, delay and packet delivery ratio comparable to the higher-
bandwidth interface alone, without incurring much energy
wastage.

In the future, we plan to extend the current work by allowing
each sensor node to make its own switching decision based
on its traffic condition. More flexible wakeup-sleep patterns
along a path can be achieved by doing this. We also plan to
allow the sensor nodes to switch based on the end-to-end delay
for delay-bound applications. Different routing protocols, like
OLSR [16], will be tried out in comparison with AODV.
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