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Abstract- This paper proposes a capacity-approaching, yet
simple scheme over a multiple-input single-output (MISO) wire­
less fading channel, which is very common in the downlink of a
cellular system. The proposed scheme is based on a concatenation
of a mixture of short memory-length convolutional codes or
repetition codes and a short, and simple rate-l linear block
code, followed by either I-dimensional (I-D) anti-Gray or Gray
mapping of quadrature phase-shift keying (QPSK) modulation.
By interpreting rate-l code together with I-D mapping as a multi­
D mapping performed over multiple transmit antennas, the error
performance is analyzed in the turbo pinch-off region using EXIT
chart. At first, a simple design criterion on the bit-wise mutual
information with perfect a priori information is derived. Based
on the obtained design criterion, an optimal rate-l code for each
I-D mapping is then constructed to maximize the bit-wise mutual
information with perfect a priori information. The combination
of optimal rate-l code and I-D mapping results in a steep inner
detector's EXIT curve over an MISO channel, which matches
very well to that of a simple outer code. It is demonstrated
that the simple concatenation scheme can achieve a near-capacity
performance over the MISO channels. In some cases, the selected
mixed code is just a simple repetition code.

Index Terms- Multiple-input single-output (MISO) channels,
capacity-approaching performance, EXIT chart, convolutional
code, repetition code, block code.

I. INTRODUCTION

It is widely known that the use of multiple antennas signif­
icantly enhances the error performance of a wireless system
[1], [2]. With the recent developments in iterative decoding,
a number of pragmatic approaches using powerful turbo-like
codes have been proposed [3], [4] to achieve a close-capacity
performance under a bit-interleaved coded modulation (BICM)
framework [5], [6]. For instance, by using a turbo code
as an outer code, it was shown in [3] that a near-capacity
performance can be attained in a symmetric antenna setup
where the number of receive antennas equals the number of
transmit antennas. This result also holds in an antenna setup
where the number of receive antennas is greater than the
number of transmit antennas.
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In a practical wireless system, it might not be feasible
to implement multiple antennas at both the transmitter and
receiver. It is due to the reason that a multiple-antenna system
requires multiple radio frequency chains and low-noise ampli­
fiers, which is very costly. Furthermore, in some applications
such as the downlink of a cellular system, it is physically
not possible to place multiple antennas on a small handset.
Under this antenna configuration, the design for a capacity­
approaching system is much more challenging. For example,
it was observed in [7], [8] that the error performance of a coded
system using turbo codes or low-density parity check (LOPC)
codes optimized for the binary-input channels experiences a
severe degradation when the antenna setup is asymmetric, e.g.,
there is only a single antenna at the receiver. The problem
can be overcome by using orthogonal space-time block codes
in order to transfer a multiple antenna channel into single­
input single-output channels [8]. Unfortunately, a complex
orthogonal design with full transmission rate does not exist
for more than two transmit antennas. Recently, by using a
very well-design irregular LOPC code followed by Gray map­
ping with QPSK, reference [4] proposes a coded modulation
scheme that performs very close to the capacity limit in the
asymmetric antenna setup with four transmit antennas. Using
a similar approach as in [4], equally good performances are
also obtained in [9] by using outer irregular repeat accumulate
(RA) codes. To our knowledge, the designs in [4], [9] are
still the most effective coded modulation techniques for near­
capacity performance over wireless fading channels under the
asymmetric antenna configuration.

As an alternative, this paper proposes a simple yet effec­
tive concatenation scheme with QPSK over an asymmetric
multiple-antenna channels in which multiple antennas are only
equipped at the transmitter. This antenna configuration is very
common in the downlink of a cellular system. The proposed
system is based on a simple serial concatenation of a mixture
of short memory-length convolutional codes or repetition
codes and a short rate-l linear block code and applicable for
both 1-0 anti-Gray or Gray mapping. By interpreting rate-l
code together with 1-0 mapping as a multi-D mapping em­
ployed over multiple transmit antennas, the error performance
is analyzed in the turbo pinch-off region for a close-capacity
performance using extrinsic information transfer (EXIT) chart
[4], [10], [11]. In particular, a simple design criterion on the
bitwise mutual information with perfect a priori information is
first developed. This derivation allows us to determine optimal
rate-l linear block codes for anti-Gray and Gray mappings
to maximize the bitwise mutual information with perfect a
priori information. The most suitable outer mixed codes are
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II . SYSTEM MODEL
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B. Receiver

Consider an ergodic frequency-flat Rayleigh fading channel.
The received signal r is given as:

r = h T . S + n. (2)

In (2), the vector h is an N; x I complex vector known
perfectly at the receiver and its components are CN(o, I?
Furthermore, n is CN(O, No) representing additive white
Gaussian noise (AWGN).

At the receiver, a typical concatenation of a conventional
detector, a posteriori probability (APP) bit decoder of rate-I
block code, and a soft-input soft-output (SISO) outer decoder
can be applied. Similar to the design in [9], the detector and
rate-I block decoder can be combined in one block as shown
in Fig. 1 (b) to reduce decoding complexity and improve
robustness. More specifically, by representing rate-I block
code and I-D mapping as a multi-D mapping ~, the optimal
combined detector performs APP detection to provide the
extrinsic probability of the k coded bit Vk , I ::; k ::; Q, being
set at b, bE {a, I}, as:

In (1), all operations are defined over GF(2). The linearity
of G is to guarantee that there is one-to-one correspondence
between v and b. Then two consecutive bits (b2i-i, b2i),
I ::; i ::; Nt, are grouped together and mapped to a complex
QPSK symbol s, using either I-D anti-Gray or Gray mapping.
A sequence of N, 1-D complex symbols {Si} is considered
to be a super symbol S = [SI, S2 , . . . , sN,lT in an NrD
constellation 'Ii with cardinality l'lil = 2Q. Each component
Si is finally transmitted by the ith transmit antenna.

The combination of rate-I linear block code and I-D
mapping above can be interpreted as a special case of multi­
D mapping technique in which a vector of Q binary bits
v = [Vi , V2 , .. " vQ]T are mapped directly to a super symbol S
according to some multi-D mapping rule [20], [21]. Hereafter,
vector v is referred to as the label of s. The optimal choices of
rate-I code as well as an outer mixed code for a near-capacity
performance shall be discussed shortly in the next section.

of a single outer convolutional or repetition code is a special
case of the proposed mixed code.

After being interleaved, each group of Q = 2Nt coded bits
of interleaved sequence c, denoted as v = (Vi,V2, . . . , VQ ) T,
is fed to a simple rate-I linear block code with generator
matrix G of size Q x Q over Galois filed 2 (GF(2)). The
design of this rate-I code is discussed in the next section. A
vector of Q output coded bits b = (bi , b2 , .• . , bQ )T is given
as:

Rate-1 code
of size 0= 2N,
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Fig. 1. The proposed concatenation scheme equipped with N, transmit
antennas and one receive antenna.

A. Transmitter

A block diagram of the transmitter of the proposed con­
catenation system equipped with N, > I transmit antennas
and N; = I receive antenna is depicted in Fig. 1 (a)' : First,
a binary information block U of length L u is divided into
two binary sequences U1 and utt of lengths L 1 and L n ,
respectively. Each sequence Ul , l E {I , II}, is encoded by a
suitable rate-kl/nl binary encoder into a coded sequence Cl
consisting of 7} = L1nl/kl coded bits. These binary encoders
could be simple convolutional or repetition codes and shall be
determined later. A coded sequence C of length T; = T1 +T1I

is then constructed by serially combining coded sequences
C1 and en- This encoding structure, inherited from the code
doping technique proposed in [18], [19], is referred to as a
mixed code of K = 2 binary codes, with code doping ratio
a = L1/L u . As shall be shown later, this mixed code provides
a flexible structure to control the convergence behavior of
the system. Note that the number of binary encoders can be
straightforwardly generalized to K > 2. Furthermore, the use

then selected to match to the inner detector with a steep-slope
EXIT curve. Analytical and simulation results indicate that
the simple concatenation scheme approaches near-capacity. In
some cases, the selected mixed code is just a simple repetition
code.

It should be noted that this paper assumes the ergodic
fading channel and only the receiver but not the transmitter
knows the channel. Furthermore, as similar to [3], [4], a direct
transmission over multiple transmit antennas is considered
without the use of special multiple-antenna code-design such
as space-time codes [12]-[15]. It is certainly interesting to
further extend the technique proposed in this paper to cover
both spatial and temporal domains.

lIn [16], [17], we have generalized the scheme to an asymmetric antenna
setup in which Nt > NT '

2Here CN(o,(j2) denotes a circularly symmetric complex Gaussian ran­
dom variable with variance (j2/2 per dimension.
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In (3), wi denotes a subset of '11 that contains all symbols
whose labels have the value b at the kth position. Clearly, wi
is determined by the mapping rule e. Furthermore, vj ( s) is
the value of the jth bit in the label of sand P (Vj = Vj(s); I)
is the a priori probability of the other bits, j i= k, on the same
channel symbol. Observe that the computation of the extrinsic
information of the coded bit in (3) involves the set of 2Q - 1

super symbols in wi, which has the same complexity as that
of the conventional detector [3], [4].

After being deinterleaved, the extrinsic information of the
corresponding T1 and TIl coded bits computed by the com­
bined detector is forwarded to the two SISO channel decoders,
respectively. For convolutional codes, the SISO channel de­
coder uses the forward-backward algorithm [22], [23]. If the
binary encoder is a rate-1 / n repetition code, the extrinsic
information for each coded bit is simply calculated as:

n

P(ci=b;O)= II P(cj=b;I). (4)
j=l,ji=i

There is an iterative processing between the combined detector
and the outer channel decoder to exchange the extrinsic
information of the coded bits P(v; 0) and P(c; 0). After
being interleaved, P(v; 0) and P(c; 0) become the a priori
information P( c; I) and P( v; I) at the input of the SISO de­
coder and the combined detector, respectively. The a posteriori
probabilities of the information bits can also be computed to
make the hard decisions at the output of the decoder after each
iteration.

III. DESIGN USING EXIT CHARTS

In order to examine whether an iterative demodulation and
decoding system can achieve near-capacity, one needs to take
into account the convergence behavior in the turbo pinch­
off, or water-fall, region, where a significant BER decrease
is observed over iterations (please see [24] and references
therein for detailed discussions). This section analyzes the
convergence property of the proposed scheme at the turbo
pinch-off region by means of extrinsic information transfer
(EXIT) chart [10]. Following the same notations as in [10],
let IAI and lEI denote the mutual information between the
a priori LLR and the transmitted coded bit, and between
extrinsic LLR and the transmitted coded bit at the input and
output of the detector, respectively. Similarly, let IE2 and IA2
be the mutual information representing the a priori knowledge
and the extrinsic information of the coded bits at the input
and output of the SISO decoder. After being deinterleaved,
the extrinsic output of the detector is used as the a priori
input to the decoder, i.e., IA2 = lEI. Furthermore, after being
interleavered, the extrinsic information of the decoder becomes
the a priori information to be provided to the detector, i.e.,
IAI = IE2.

In the following, with the representation of rate-l linear
block code together with I-D mapping as a multi-D mapping
e, a simple design criterion on the bit-wise mutual information
with perfect a priori information lEI (IA I = 1) is first derived.
An optimal rate-l linear block code is further developed for
each I-D mapping to maximize lEI (IAI = 1). The difference
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between the conventional detector with Gray mapping em­
ployed in coded modulation systems using powerful turbo-like
codes [3], [4], [8], [9] and the combined detector considered in
this paper is then demonstrated with the aid of EXIT curves.
Finally, a combination of the combined detector and a mixture
of simple convolutional or repetition decoders, with which
close-capacity performance can be achieved, is proposed by
having the combined detector EXIT curve matched to the
decoder EXIT curve. We only consider the same rate-l/2
component codes, which results in an overall rate rc = 1/2
outer mixed code. The analysis and design can be straightfor­
wardly extended to other code rates. The ratio of energy per
information bit at the receiver over noise power, Eb/No, is
defined as [3], [4]:

where E; is total energy used over N; transmit antennas.

A. Bitwise Mutual Information with Perfect A Priori Informa­
tion of the Combined Detector

For a given constellation '11 and mapping rule e, the
bitwise mutual information with perfect a priori information
lEI (IAI = 1) can be calculated as follows:

where Ik(s,p) is the average mutual information of a BPSK­
like constellation consisting of two signal points sand p
whose labels differ in only 1 bit at position k. Due to
the symmetry of a BPSK-like constellation, the conditional
Ik(s,p)lh for a given channelization h can be expressed as:

[
1 r (1Ir-hT.SI12)

Ik(s,p)lh = 1 - ('rrNo) JrEc exp - No

( (
1Ir - hT.sI12- llr - hT.PI12) ) ]

x log 1 + exp No dr ·

(7)

By using the symmetric cut-off rate and Jensen inequality as
similar to the analysis in [25], Ik(s,p) can be approximated
as:

By substituting Ik( s, p) from (8) into (6), it can be seen that
an optimal mapping rule ethat maximizes lEI (IA I = 1) is
the mapping in which two signal points sand p whose labels
differ in only 1 bit should be placed as far apart as possible
in terms of the Euclidean distance. In the next subsection, in
combining with either anti Gray or Gray mapping, an optimal
rate-l code is introduced to maximize lEI (IA I = 1).



for at least iN, - 1) values of i, 1 :::; i :::; Nt.
Proof: Consider two symbols s = [Sl, ... , SNt]T and p =

[PI, ... ,PNt] T whose labels v and y differ in only 1 bit at
position k. Also, let b = W . v and a = W . y. It then
follows that:

bEBa = W· (v EBy) = Wk. (12)

Since W is optimal, lis - pl12 2:: 4(Q - 1). Equivalently,
II s, - Pi 11 2 = 8 for at least iN; - 1) values of i, 1 :::; i :::; Nt.
Furthermore, from (10), one has:

Iisi - Pi 11 2 4 ((b2i- 1 - a2i_l)2

+ ((b2i- 1 EB b2i ) - (a2i-l EB a2i) )2) . (13)

B. Optimal Rate-1 Linear Block Codes

Without loss of generality, assume that the coordinates of
the four QPSK symbols are [+1,+1], [+1, -1], [-1, +1],
and [-1,-1]. By representing the super constellation \II as a
hypercube in Nt-D signal space, it was shown in [20] that
for any symbol s, there is only one symbol p at the largest
squared Euclidean distance 4Q to s. Furthermore, there are Q
symbols {p} at the second largest squared Euclidean distance
4(Q - 1) to s. This implies the following upper bound on
lEI (IA ! = 1):

IE! (IA! = 1) < 1 - ~ [log ( 1 + N::- Q )

+ (Q-1)log(1+ No:~-l)] .(9)

It is simple to see that a mapping rule e that satisfies the
following condition achieves the equality in (9):

Condition 1: For any symbol s E \II, let \IIs be a set of Q
symbols {p} whose labels differ in only 1 bit to that of s. In
\IIs» there are one symbol at squared Euclidean distance 4Q
and (Q - 1) symbols at squared Euclidean distances 4(Q - 1)
to s.

When combining with an 1-D mapping, a rate-1 code G
is called optimal if it is linear and the combination leads
to a multi-D mapping e that satisfies Condition 1. In the
following, this optimal code is determined for both anti-Gray
and Gray mappings. For convenience, the notations Wand
F are used to indicate rate-1 code for anti-Gray and Gray
mappings, respectively.

1) Optimal codes for anti-Gray mapping: When anti-Gray
mapping is used, it is straightforward to verify that a group of
2 binary bits (b2i- 1 , b2i ) , 1 :::; i :::; Nt, shall be mapped to a
QPSK symbol s, = [2(b2i- 1 EB b2i ) - 1,2b2i- 1 - 1,], where
EB denotes GF(2) addition. As a result, a symbol s E \II with
label v carrying Q bits b, b = G . v, can be represented as:

s = [2(b1 EBb2) -1, 2b1 -1, ... ,2(bQ - 1 EBbQ ) -1, 2bQ - 1 _l]T.
(10)

One then has the following theorem concerning the optimal
W.

Theorem 1: Let Wk = [Wl,k, ... , WQ,k]T be the kth column
of W. If W is optimal then

[W2i-l,k, W2i,k] = [1,0] (11)

4

It can be observed from (13) that II s, - Pi 11 2 = 8 if and only if
[b2i- 1 EB a2i-l, b2i EB a2i] = [1, 0]. Combining this result with
(12) proves Theorem 1.

Based on Theorem 1, the next theorem provides an optimal
W for anti-Gray mapping.

Theorem 2: For anti-Gray mapping, the entries of the
optimal rate-1 block code Ware given as:

[W2i-l,k, W2i,k] =
[1,0], k = 1, 1 < i < Nt
[1, 0], 1 < k <Q, i =1= (k + 1) div 2, 1 < i < Nt
[0,1], 1 < k <Q,k mod 2 = 0, i = (k + 1) div 2
[1,1]' 1 < k :::; Q,k mod 2 = 1, i = (k + 1) div 2

(14)

Proof: The linear property of W can be proved as follows.
Let m = [ml, ... , mQ]T be a vector of Q binary bits and
m = ml EB m2 EB ... EB mQ. Consider the following linear
combination:

x = mlWl EB m2W2 EB ... EB mQwQ. (15)

It then follows from (14) that:

x = [m EB m2, m2, ... , m EB m2i, m2i-l EB m2i,

... ,mQ,mQ_IEBmQ]T. (16)

Therefore, x = 0 if and only if m = O. As a result, W is
linear.

The optimality of W then follows readily from Theorem 1.
In particular, let sand p be two symbols whose label differ
in only 1 bit at position k. Consider two separate cases of k
as follows:

• If k = 1, it can be verified that Iisi - Pi 11 2 = 8 for all
1 :::; i :::; Nt. This makes lis - pl12 = 4Q

• If k > 1, Iisi - Pil1 2 = 8 for all 1 :::; i :::; N; but i =
(k + 1) div 2. When i = (k + 1) div 2, it follows from
(14) and (13) that Iisi -Pi11 2 = 4. Therefore, Ils-pl12 =
4(Q - 1).

Theorem 2 is thus proved.
Besides the optimal W in (14), it is worth noting that by

permuting any two columns of W, another optimal code can
be also obtained. The proof is straightforward and omitted here
for brevity of the presentation.

2) Optimal codes for Gray mapping: For a given optimal
W in (14), define F as a Q x Q matrix over GF(2) whose
elements are:

{
!2i-l,k = W2i-l,k EB uiu» (17)
!2i,k = W2i-l,k

The following theorem states the optimality of F.
Theorem 3: The use of rate-1 code F in (17) together with

Gray mapping results in the same mapping rule eattainted
by combining rate-1 code W in (14) and anti-Gray mapping.
Consequently, F in (17) is optimal for Gray mapping.

Proof: Let v be a vector of binary inputs. When W in (14)
is used together with anti-Gray mapping, a symbol s E \II with
label v carrying Q bits b, b = G . v, is given in (10). On the
other hand, with rate-1 code F followed by Gray mapping, a
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Fig. 2. The MIMO detector and combined detector EXIT curves at
Eb / NO=5dB.

-0- Conventional Detector using Gray mapping
-+- Combined Detector

symbol p E '1' carrying Q bits a, a = F ·v, can be expressed
as:

p = [2al - 1, 2a2 - 1, ... , 2aQ-l - 1, 2aQ - I]T. (18)

From (17), one has:

{

a2i-l = f(2i-l) . v = (W(2i-l) EB W(2i») . v = b2i - 1 EB b2i
a2i = f(2t-l) . V = W(2t-l) . V = b2i - 1

(19)
where f(k) and w(k) are the kth rows of F and W , respec­
tively. It then follows from (10), (18), and (19) that s = p . It
means that a combination of either F and Gray mapping or
Wand anti-Gray mapping leads to the same mapping rule e.
Theorem 3 is proved.

Combining the above results, it can be concluded that the
combination of rate-l code W in (14) followed by anti-Gray
mapping is equivalent to the combination of rate-l code F
in (17) and Gray mapping . Furthermore, these combinations
maximize let (fAt = 1).

0.8

0.6

0.4

0.2 0.4 0.6 0.8

Fig. 3. EXIT curves of the combined detector with Nt = 4 transmit antennas
at Eb /NO=7.55dB, the rate-ll2, 2-state convolutional code (cc), and the rate­
l/2 repetition code.

C. EXIT Curves of the Conventional and Combined Detectors

Figure 2 shows EXIT curves of the conventional detector
using Gray mapping and combined detector at Eb/No = 5dB
with N; = 4 and N; = 6 transmit antennas . For a conventional
detector with Gray mapping, the EXIT curve exhibits a steep
slope. This phenomenon causes a performance degradation
when Gray mapping is used together with turbo codes [4], [7].
In the case of the combined detector, it can be seen that the
bitwise mutual information with perfect a priori information
IE. (IA • = 1) can be significantly improved over that of
the conventional detector. However, since the proposed block
codes are of rate 1, the areas under the EXIT curves of the
combined detector and conventional detector must be equal
[26]. Consequently, it can be observed from Fig. 2 that the
combined detector 's EXIT curve exhibits even much higher
slope over that of the conventional detector, with a very large
mutual information at the right end of the curve. As shown in
the next subsection, this makes the combination of either rate­
1 code W in (14) with anti-Gray mapping or rate-l code F
in (17) with Gray mapping a perfect match to a simple outer
mixed codes, which also have decayed EXIT curves. More
interestingly, near-capacity performance can be achieved.

0.8

0.6
_ Lll

N
_ "":

0.4

0.2

-+- Nt4, E/No=7.55dB

-- rate 1/2, 2-state cc
,_._ ,rate 1/2, repetition code

0.8

D. EXIT Curve Matching

This subsection applies EXIT chart technique [10] to select
a suitable mixed code for the combined detector. By using
EXIT charts, both EXIT curves of the combined detector and
decoder are placed in the same graph, but the axes of the EXIT
curve of the decoder are swapped [10] so that the convergence
behavior of the concatenation scheme can be well visualized.
It should be mentioned that for the system under consideration,
the EXIT curve of a rate-r emixed code does not depend on
SNR and always crosses the middle point (0.5 , r c ) [10].

We first examine the case with N, = 4 as similar to [4].
Figure 3 plots the EXIT curve of the combined detector at
Eb /No=7.55dB and the EXIT curves of two simple rate-l/2
codes, a 2-state convolutional code with generator polynomials
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gl = [1,1] and g2 = [1,0] , and a repeution code. Note
that the rate-l/2 repetition code is the simplest possible code,
whereas the rate-l/2 2-state convolutional code is the simplest
convolutional code. The above SNR is chosen to make sure
that the middle point of the detector EXIT curve IE. (0.5) is
larger than 0.5. It is clear from Fig. 3 that the EXIT curve of
the standard rate-l/2, 2-state convolutional code does not fit
well to the detector EXIT curve, since the two EXIT curves
quickly intersect and the intersection point falls in the lower
left quadrant of the EXIT plane . Because the EXIT curve of a
more powerful rate-l/2 convolutional code exhibits a sharper
slope at the beginning, it is straightforward to see that there
does not exist any suitable rate-l/2 convolutional code for the
system . The EXIT curve of rate-l/2 repetition code intersects
the combined detector EXIT curve in the upper right quadrant
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of the EXIT plane, but at a low mutual information, which
does not guarantee low BER.

Fig. 4. EXIT charts of the combined detector with N , = 4 at Eb /NO=7.55dB
and a rate-II2 mixed code of 2-state cc and repetition code with code doping
ratio a = 0.8.

IV. ILLUSTRATIVE RESULTS

This section provides simulation results to verify the anal­
ysis made in the previous sections and to demonstrate the
excellent performance achieved by the proposed systems. A
random interleaver of length 3 x 105 is used for all systems
under consideration. Each point in the BER curves is simulated
with 6 x 106 to 109 coded bits.

In the case of using a larger number of transmit antenna,
it can be seen from Fig. 2 that the combined detector EXIT
curves experience much higher slope. This suggests that even
a simpler code could be used for a good convergence. In par­
ticular, Fig. 5 shows the EXIT curve of the combined detector
when Nt=6 at Eb/No= I 1.28dB. Note that the corresponding
capacity limit is at Eb/NO=lO.77dB. Also plotted in Fig. 5 is
the EXIT curve of a rate-I/2 repetition code. It is observed
from Fig. 5 that the combined detector EXIT curve of the
Nt=6 setup fits well to that of the rate-1I2 repetition code,
which is the simplest possible code. More impressively, this
curve match is achieved at only O.5dB away from the capacity
limit.

Similar results are also obtained when the number of
transmit antenna increases. Those results are, however, omitted
here for brevity of the presentation.

0.8

-+- N
t=4

, E/No=7.55dB

--rate 1/2, mixed code, a=0.8

0.2

0.8

0.6
_ L.l.l

N

-" 0.4

0.2

0
0

Fig. 5. EXIT charts of the combined detector with Nt 6 at
Eb / No=11.28dB and a rate-l/2 repetition code.

10- 1

0::
10-2

[.lJ
co

10-3

~

x
"l"

10-4
6 8 10 12 14

Eh/No (dB)

10° .-----,---------,---------,-------------,

Figure 6 plots the BER performance with 50 iterations of
the 6 x 1 and 4 x 1 systems. The corresponding outer codes
for the two systems are the rate-1I2, repetition code and the
rate-I/2 mixed code comprised of the rate-1I2 standard 2­
state convolutional code and the rate-1I2 repetition code with
a = 0.8. The spectral efficiency for each system is therefore
6 bits/channel use and 4 bits/channel use, respectively. It
can be seen from Fig. 6 that the analytical results obtained
by EXIT charts agree with the BER curves. In particular,
the turbo pinch-off region happens around Eb/NO=7.8dB and

Fig. 6. BER performances with 50 iterations of the proposed systems
equipped with Nt = 6 and N, = 4 transmit antennas, and N; = 1 receive
antenna. The outer codes are rate-1I2, repetition code and rate-l/2 mixed
code of rate-1I2 standard 2-state convolutional code and rate-l/2 repetition
code with a = 0.8, respectively.
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To overcome the above disadvantages, a mixed code of the
two above codes can be used to achieve better curve matching.
In particular, Fig. 4 shows the EXIT curve of the combined
detector at Eb/No = 7.55dB and the EXIT curve of a mixture
of 2-state convolutional code (cc) and repetition code with
code doping ratio a = 0.8. It is interesting to see that the
EXIT curve of this mixed code matches very well to the
detector EXIT curve. The two EXIT curves do not intersect
until reaching the ending point f A l (1) with very high mutual
information, leading to a low BER. This match is very similar
to that obtained in [4], [9] using an irregular LDPC or RA code
and Gray mapping alone. Furthermore, this curve fit happens
close to the capacity limit, which is at Eb/NO = 6.65dB.
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Eb/No=II.6dB over 4 x 1 and 6 x 1 channels, respectively,
which is only about IdB from the capacity limit in both
channels. Apparently, the results appear impressive for such
simple systems.

V. CONCLUSIONS

This paper proposed a novel coded modulation scheme over
multiple-input single-output channels with QPSK. The scheme
is based on a concatenation of a simple outer mixed code and a
short rate-l linear block code followed by either 1-D anti-Gray
or Gray mapping. The optimal rate-l code was first developed
to maximize the bit-wise mutual information with perfect a
priori information. It has then been shown through EXIT chart
analysis that the proposed system achieves near-capacity in the
turbo pinch-off region using simple outer binary codes. The
proposed system is therefore an attractive alternative for other
coded modulation schemes over wireless fading channels,
especially in the downlink of a cellular system.
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