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Abstract—Quantitatively assessing the importance or criticality
of each link in a network is of practical value to operators, as
that can help them to increase the network’s resilience, provide
more efficient services, or improve some other aspect of the
service. Betweenness is a graph-theoretical measure of centrality
that can be applied to communication networks to evaluate
link importance. However, as we illustrate in this paper, the
basic definition of betweenness centrality produces inaccurate
estimations as it does not take into account some aspects relevant
to networking, such as the heterogeneity in link capacity or
the difference between node-pairs in their contribution to the
total traffic. A new algorithm for discovering link centrality
in transport networks is proposed in this paper. It requires
only static or semi-static network and topology attributes, and
yet produces estimations of good accuracy, as verified through
extensive simulations. Its potential value is demonstrated by an
example application. In the example, the simple shortest-path
routing algorithm is improved in such a way that it outperforms
other more advanced algorithms in terms of blocking ratio.

Index Terms—Routing in GMPLS networks, link criticality,
betweenness centrality.

I. INTRODUCTION

In data communication networks, the number, properties and
usage of links have direct impact on the capabilities of the
network and the quality of the services they can provide. This
is even more so in transport networks, where the service takes
the form of virtual path(s) between two of its nodes. This
service is called “connection”, and the resources assigned to it,
e.g., capacity, remain allocated for the duration of the service.
Depending on the properties of the network and the policies
applied by its operator, links play a different role. Some of
them can be central in the sense that a large proportion of
traffic passes through them, while others might be on the
periphery in this usage category. This differentiation of roles
happens independently of the physical location, or the nodal
degree of their end-nodes.

Understanding and assessing the importance or centrality,
we might even say “criticality”, of each link is of great
value. For example, a network operator whose service level
agreement includes performance guarantees under failure,
might use that knowledge to decide upon which protection
scheme (such as 1+1, 1:1 and 1:N; see [1]) best guards
against specific failure events. Likewise, it can be used for
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scheduling maintenance activities, as well as for appraising
the merits of capacity or equipment upgrades proposed to
ease or avoid congestion, increase resilience, or improve some
other aspect relevant to a service. If information about node
centrality is added, it can also help, for example, in planning or
evaluating the adequacy of communication or computational
resources in the control plane of a GMPLS-based network.
Certainly, it can also be used to study how catastrophic events
such as earthquakes and flooding can affect the network, as
exemplified by the work in [2].

Betweenness centrality is a graph-theoretical concept that
measures the degree to which a vertex acts as an intermediary
in the communication between every pair of vertices in its
graph [3]. It has been used to study aspects and properties of
complex networks, be it those representing personal commu-
nication and relationship between people, power transmission
grids or data communication networks such as the Internet.

Just as with vertices, edge betweenness centrality can be
defined for the same purpose: understanding its centrality.
However, in this paper we reason about why the basic def-
inition of edge centrality does not correctly identify the true
link centrality in a transport network, and propose a new
algorithm, which we call the Capacity- and Traffic-aware edge
betweenness centrality algorithm, or CTA. A salient attribute
of this algorithm that its input are static or slowly-changing
attributes of the topology, but predicts with good accuracy
the effective usage of links in a dynamic traffic scenario.
Moreover, it has essentially the computationally complexity
as the basic betweenness centrality.

The remainder of the paper is organised as follows: In sec-
tion II, the formal definition of betweenness centrality is given,
together with an illustrative numerical example. In section III,
the shortcomings of the basic edge betweenness definition
for data communication networks are highlighted, and our
new algorithm is presented. Section IV explains the result of
the verification carried out through simulation, and section V
shows an application of the new algorithm to improve shortest-
path routing. Finally, the section VI concludes the paper.

II. THE CONCEPT OF BETWEENNESS CENTRALITY

Betweenness centrality can be defined and computed in
several ways, depending on the application. The one of interest
for our study is the so-called geodesic betweenness [3], which
determines how often a node of a given network topology lies
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Fig. 1. Example of node (vertex) and link (edge) betweenness centrality

along the shortest path between all the possible pair of nodes.
More formally, it is usually defined as follows:

Denote by o(s,t) the number of shortest paths that exist
between nodes s and ¢, and by o (s, t|v) the number of shortest
paths between nodes s and ¢ passing through a given node v
other than s and ¢. E is the set of edges in the graph G,
and V the set of nodes. Then, the shortest path betweenness
centrality Cg(v) for some node v is

Cp(v)=

8,teV

o(s,t|v)
o(s,t)

(D

However, as our interest is in measuring the centrality of
links and not nodes, we need the edge betweenness centrality
Cp(e) instead. This is achieved by replacing v € V with
e € E in (1), where e is any given link in the topology.
For practical reasons, the obtained betweenness centrality is
usually normalised.

In the original conception of betweenness centrality, “short-
est path” is defined in terms of the number of edges traversed,
that is, the number of hops. This assumption permits the
use of a simple breadth-first search algorithm to identify the
shortest paths. However, when the cost can be an arbitrary
value, such as the link’s physical length in kilometres, this
approach is no longer possible, requiring more complex path
exploration algorithms. Brandes [4] gives several algorithms
for the efficient computation of betweenness centrality. The
one for weighted graphs employs Dijkstra, backed by a priority
queue. Its running time is bound by O(|V||E| + |V |?log |V ).

Fig. 1 gives an example of node and link betweenness
centrality in a small network topology. The graph is depicted
as undirected, although the computation is performed on the
equivalent directed graph. As expected, Cp(1) is the highest,
given the central position of node 1 in the topology, followed
by Cp(2). Likewise, the higher relative importance of link
1-2 is also correctly reflected (0.6 versus 0.4); of the twenty
shortest paths that exist, twelve pass through it (six in each
direction), instead of eight, as with the rest.

III. AN IMPROVED EDGE BETWEENNESS CENTRALITY
ALGORITHM

In this section we highlight two important shortcomings
of the existing edge betweenness centrality algorithm when
applied to path-oriented networks (e.g. G/MPLS), and propose
two modifications to improve it.
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Fig. 2. A topology with non-homogeneous link capacities

A. Shortcomings of the basic edge betweenness centrality
algorithm

Our previous example is useful to illustrate the concept of
betweenness centrality, but we need a more realistic one. In
the topology of Fig. 1, connectivity is too low (there is only
one possible path for each node pair), and we discarded the
links® capacity by implicitly assuming that they are uniform
across the board. Fig. 2 shows a more interesting topology.
Let’s assume that the links depicted with thick lines have
double the capacity of the thin ones. Note that the nodes
1, 2, 3 and 4 form such a structure that several paths of
equal length exist. For this topology, it would not be wise
to treat links 1-3 and 1-2 as equally central because more
paths are expected to traverse link 1-3 than link 1-2 during
the network operation, simply because there will be more
free capacity in the former. Therefore, Cg(1-3) should be
higher than Cg(1-2) to reflect this fact. However, the original
betweenness centrality algorithm computes the Cg(e) in such
a way that multiple alternate paths evenly share their centrality
(the centrality value is divided). This approach can also be
found in the algorithm that serves as the basis for all the
variants given in [4]. Certainly, it is possible to devise a
scheme in which the alternate paths have a different contri-
bution weight, for example based on their maximum capacity.
However, such paths are not necessarily disjoint. In addition, in
path-oriented data networks, the traffic of a given connection
is, in general, not split into separate subflows towards its
destination. These considerations highlight the complexity of
finding the most appropriate weighing scheme. We describe
now a straightforward approximating approach that we have
found to work well in practice.

B. The CTA edge betweenness centrality algorithm

Firstly, we propose replacing the breadth-first shortest path
search, together with the assumption about shared contribution,
by one that simultaneously takes into account the distance (in
hops) from the origin towards the destination and the largest
minimum capacity along the feasible path, as follows:

First modification: Should two paths of equal hop count
exist, the one with more capacity is preferable. In other words,
apply a widest-shortest path algorithm (WSP) [5] to identify
the (preferred) path between the end nodes. Table I illustrates
the positive effect that this change has on the computed
betweenness centrality. For comparison, the results of both
algorithms (the original and the new one we are outlining)
are shown. As can be seen, links 1-3 and 3—4 are correctly
identified as the two more central elements in the respective
topology.



TABLE I
EDGE BETWEENNESS CENTRALITY: BREADTH-FIRST SEARCH VERSUS
WSP-BASED. SEE TOPOLOGY IN FIG. 2

Edge betweenness centrality
Link | BFS (original) New approach
0-1 0.333 0.333
1-2 0.467 0.200
1-3 0.200 0.467
24 0.400 0.133
34 0.133 0.400
4-5 0.333 0.333

Another aspect that affects betweenness centrality in a data
network is the contribution of each node pair to the total traffic.
Therefore, we should consider how to take into account the
traffic matrix, if such information is available. The original
definition of betweenness centrality implicitly assumes that
the contribution is even among all the node pairs, thus the
expression “the number of paths passing through a given
node v” in the description of (1). To account for the potential
disparity in the traffic matrix, we propose introducing another
modification to the edge betweenness centrality algorithm as
follows:

Second modification: Whenever the given edge e appears
in a path between the nodes s and t, instead of counting this
occurrence as one, consider an increment proportional to the
contribution of the node pair (s,t) to the total traffic. To illus-
trate this, let 7" be the traffic matrix for the topology of Fig. 2
such that T'(0,5) = 10, T(3,5) = 2, and 3 ;.\ Ts+ = 100.
The contribution of the node pair (0,5) in the centrality of the
edge 4-5 is 0.1, whereas that of the node pair (3,5) is 0.02.
In fact, the unavailability of a traffic matrix can be handled
as a special case in which T, = 1 Vs,t € V,s # t, and
Ts+ =0 when s =t.

Our new capacity- and traffic-aware edge betweenness
centrality algorithm (or CTA, for short) is given in full in
CTAEDGEBETWEENNESS, which we briefly describe below.
The output is a measure of the centrality or criticality of each
and every link in the topology, given the links’ capacity and,
optionally, the traffic matrix.

The main body of the algorithm starts in line 6. For
each possible source node, the procedure FINDPATHSCTA is
invoked to compute the shortest widest path to every other
node (lines 6-7). 7[v] contains node v’s parent node towards
the source s. Therefore we can now identify the edges forming
the full path from s to every destination ¢, and appropriately
register in ¢ their participation in these shortest paths (lines 9-
15). As o is used as an accumulator, its elements are initially
set to O (lines 3-5).

With respect to FINDPATHSCTA, it is worth mentioning
that M [u] contains, during path exploration, the largest mini-
mum capacity found along the shortest path leading to a node
u. Thus, a node v adjacent to u can be updated to point to
u either because passing through v is shorter (in hop count)
or there is no difference but the edge u—v has more capacity,
information available in C' (lines 18-22). In line 23, we use
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Algorithm 1 CTAEDGEBETWEENNESS

1: Input: Directed graph G(V, E), and traffic matrix T
2: Output: Normalised edge betweenness centrality Ve € E.
3: forallec E do

4: ole] —0

5: end for

6: for all s€V do

7. 7w <« FindPathsCTA(s)

8. forallweV do

9: t—w

10: while 7[t] # nil do

11 e «— edge (n[t],t)

12: ole] — ole] + Ty

13: t — 7[t]

14: end while

15:  end for

16: Cp < o normalised

17: end for

18: return Cp

Algorithm 2 FINDPATHSCTA
1: Input: Source node s, and links’ capacity C
2: Objective: Find the shortest paths from s to all the other
nodes. Take into account both hop count and largest
minimum link capacity.
3: Output: Vv € V, the parent node towards s.
4: @@ < new priority queue
5: m «— new map (vertex — parent vertex)
6: D «— new map (vertex — hop count)
7
8
9

: M < new map (vertex — largest min capacity)
: for all v €V do
i My — o0
10:  D[v] « o0
11:  w[v] « nil
12: end for
13: D[s] <0
14: insert s into ) with priority O
15: while Q not empty do
16:  u « removeMin(Q)
17 for all v adjacent to u, v not yet visited do
18: v — min(Cyy, M[u])
19: if (D[u] + 1 < D[v]) or
(D[u] +1 = D[v] and ¥ > M[v]) then

20: M) «—~

21: D[] + D[u] +1

22: 7[v] — u

23: insert v in @ with priority (D[v] + 1/Cly)
24: end if

25:  end for

26: end while
27: return 7




D[v]+1/C, as the priority expression for the priority queue.
This expression implements the policy of using link capacity
to break any tie on path length alone: if two nodes are at the
same distance from the source, choose to process next the one
to which a link with higher capacity arrives.

After finishing the main loop in CTAEDGEBETWEENNESS
(lines 6-17), the values in ¢ can be normalised to finally
become the edge’s betweenness centrality. The running time of
the algorithm is dominated by that of FINDPATHSCTA, which
is in O(|E| + |V| log |V|) and is repeated |V| times. After
that, lines 8-15 traverse the path from the current root node
to every other node. The number of iterations of the inner
loop (lines 10-14) depends on the length of paths, which in
realistic topologies is significantly smaller than |V| and |E|.
Therefore, the total running time of CTAEDGEBETWEENNESS
is in O(|V||E| + |V |? log |V]).

IV. VERIFICATION OF THE CTA ALGORITHM

In this section, we describe the steps performed to verify the
effectiveness of the CTA algorithm to estimate the importance
of links. Our aim is to observe, through simulation, the
behaviour of each link in terms of usage, and compare it with
the estimation. Therefore, we use the simulation to rank each
link of a given topology according to its effective participation
in paths, i.e., the number of times it is included in a path by
a capacity-constrained shortest-path first routing algorithm in
a scenario of dynamic traffic. Once the simulation completes,
the edges are arranged by their observed frequency of use in
descending order. By “use” we mean the number of times
it is selected by the routing algorithm, not the link capacity
used. Clearly, this process finds out empirically the edges’
centrality, although through a slightly different procedure than
before. Consequently, we can compare the centrality statically
predicted by the CTA algorithm with the one effectively
observed during the simulated routing.

To perform the ranking of edges, we developed an event-
based simulator that reproduces the process of route selection
in a path-oriented transport network. Thus, it handles the
reception of connection requests between node pairs, triggers
and coordinates the proper routing and capacity allocation
based on the demand, keeps track of the usage of resources
(the free capacity on each link), releases connections when
their holding time has expired, and collects statistical data.

In the following subsections, more details about the simu-
lation environment are given, as well as the results obtained.

A. Simulation parameters

To subject the CTA algorithm to diverse scenarios, we chose
three well-known topologies (see Fig. 3): NSFnet14, KL, and
Cost266. Additional variation is introduced by using different
traffic patterns and link capacities. The relevant properties of
the selected topologies are summarised in Table II.

For path selection, a Dijkstra-based shortest path is em-
ployed, where the cost is hop count, i.e., a minimum-hop
routing algorithm (MHA). Links that do not have enough
free capacity to satisfy the arriving demand are filtered out
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before the exploration. The decision to use MHA instead of
another more intelligent routing algorithms available owes
to the prevalence of shortest-path routing in the networks
deployed in the real-world, e.g., the Internet.

For each of the topologies under study, we run the simula-
tion under the following traffic and capacity scenarios:

o Scenario 1: Homogeneous link capacity (all links set
to the same capacity) with uniform traffic matrix (the
contribution of traffic of every possible node pair is
approximately the same). This is the scenario assumed
by the betweenness definition of section II.

o Scenario 2: Homogeneous link capacity with non-
uniform traffic matrix (node pairs contribute differently
to the total traffic)

« Scenario 3: A subset of the links have more capacity, but
traffic matrix is uniform

o Scenario 4: A subset of the links have more capacity,
and the traffic matrix is non-uniform.

Each run of the simulator uses a randomly generated input
set consisting of a series of connection requests between a
pair of nodes in the topology. A connection demands a certain
capacity which, if accepted, is allocated for the duration of
the service. The source and destination nodes are randomly
selected. Capacity is demanded in an abstract unit of traffic in
the range 1-10 (randomly selected; uniform distribution). Ar-
rivals follow a Poisson process, with exponentially distributed
connection holding times. Link capacities are adjusted so as
to reject approximately 1% of the connection requests.

B. Simulation results and discussion

The results reported are the average of 100 runs, each one
consisting of 30000 connection requests. After the series of
runs for a given scenario had completed, links are ranked
according to their frequency of use.

Table III shows the results for the NSFnet14 topology. There
we can compare the outcome of the basic algorithm with
that of CTA. These subtables shows only the first eight most
central links, as selected by each algorithm. The full list is
given in graphical form later on. The values in the column
Cp(e) are sorted from highest edge betweenness centrality to
lowest, thus giving an estimated ranking that can be contrasted
with the product of the simulation. According to Table III(a),
for example, the most frequently used link during routing
should be 8-7, followed by 10-3, and so on. Recall that this
estimation is independent of the simulation as it is purely based
on static properties.

TABLE II
MAIN PROPERTIES OF THE TOPOLOGIES USED IN THE SIMULATIONS
Property NSFnet14 KL Cost266
Number of nodes 14 15 37
Number of edges 21 28 57
Avg. nodal degree 3.00 3.73 3.13
Network diameter 6 hops 5 hops 11 hops




(a) NSFNet14 (b) KL

Fig. 3. Topologies used in the simulation

TABLE III
ESTIMATED VERSUS OBSERVED EDGE CENTRALITY OF EIGHT LINKS IN
NSFNET14. LINK CAPACITY: HOMOGENEOUS, TRAFFIC MATRIX:
NON-UNIFORM (SCENARIO 2)

Link Estimation Observed link usage ranking
Cple) Rank [1 2 3 4 5 6 7 8

8-7 0.1648 1 100

10-3 0.1539 2 100

5-2 0.1429 3 41 59

12-5 0.1319 4 100

11-8 0.1319 5

3-0 01319 6 62 38

9-5 0.1209 7

5-4 0.1209 8
(a) With the basic edge betweenness algorithm

Link Estimation Observed link usage ranking
Cp(e) Rank |1 2 3 4 5 6 7 8

12-5 00794 1 100

5-2 0.0707 2 41 59

3-0 0.0698 3 62 38

8-17 0.0650 4 100

1-0 0.0630 5 97 3

13-12 | 00572 6 6 94

2-0 0.0550 7 3 91 6

10-3 0.0537 8 100

(b) With the CTA algorithm

The results of the simulation are grouped under the column
“Observed link usage ranking”. Table III(a) shows that, in the
100 runs, the link 12-5 turned out to always occupy the first
position, i.e., it was always the most used link (although the
basic betweenness centrality algorithm estimated that it would
be in the fourth position). The link 5-2 was expected to be
the third most used one, but in 41 runs out of 100, it was the
second, and the third in 59 of the runs.

Now we are in a position to compare and contrast the
results of both algorithms (basic versus CTA): Firstly, the
links selected as well as their ordering are different, though
some overlapping exists. Secondly, the expected and observed
rankings do not match in Table III(a), to the point that the
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(c) Cost266

results for several links (1-8, 9-5, 5—4) are not in the displayed
region of the table, i.e., they are beyond the eighth column.
On the other hand, in Table III(b) the values are arranged so
that a trend is clearly visible in the form of a “diagonal line”,
indicating a good match between the expected and observed
rankings. Note that the frequency of use of some of the links
are spread over different columns (see links 5-2 and 3-0, for
example), and one of the links (2-0) is slightly off its expected
position (expected in the 7th; appeared mainly in the 6th).
Certainly, such spreading is expected, given the randomness in
the data set and the workings of the routing algorithm, which
has to take into account both residual capacity and path length.

The values in Table III(b) give a sense of the suitability
of the CTA algorithm to estimate the importance of links in
the NSFNet14 topology in the scenario 2. In a more compact
format, Fig. 4-6 present the results of the simulation and the
comparison for the other scenarios and network topologies,
with the added advantage of the inclusion of all links, not just
the first eight. In these figures, links appear on the z-axis from
left to right according to their ranking of centrality as estimated
by the CTA algorithm. A score that captures the divergence
(or closeness) between the observed and the estimated ranking
is assigned to each link and plotted on the y-axis. This score
is the algebraic difference between the link’s most frequent
observed position during the simulation (i.e., the modal value
of the frequencies of use) and its estimated ranking. Therefore,
a perfect link-by-link match would yield a straight line (i.e.,
y(e)ece = 0). As the data points refer only to the modal
value, we use error bars to give a hint of how much spreading
is involved.

Fig. 4 is for the NSFnetl4 topology in the four scenarios.
This figure confirms, firstly, that the CTA algorithm produces
different rankings for each scenario. Secondly, that the cor-
relation between the expected and observed ranking is good;
the lowest coefficient of determination 72 is 0.85. Visually,
the best fit corresponds to scenario 4, disregarding its two
outliers (links 13-10 and 9-8). In fact, the observed ranking
of these two links are exactly in reverse order with respect to
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Fig. 4. Estimated versus observed centrality. Topology: NSFnet14

the estimation; otherwise, the 2 would be 0.96.

The results for the KL topology in the scenarios 2 and 4
are presented in Fig. 5. As can be seen, they are similar to the
ones obtained for the NSFNet14 topology. The absolute value
of the largest mismatch is higher (i.e., the distance from 0)
but the number of links in KL is also higher, such that the
maximum relative distance are in fact similar in both cases.
As for the most complex topology considered in this study,
Cost266, Fig. 5 shows the result for scenario 2. We can see that
the mismatch between observed and estimated ranking grows
larger than in the other topologies as we move towards the
middle of the z-axis, and the spreading is also larger. However,
this not different than the other cases in relative terms because
this topology is almost three times larger in number of links
than the others (57 versus 21 and 28). The coefficient of
determination 2 is 0.91, equally good as the previous ones.
Note that the data points for links 23-12 and 33-23 are not
plotted (their scores are —17 and —14, respectively), but they
are properly accounted for in r2. The results for the other
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scenarios are similar, thus we omit further details.

Summarising, these results show that the CTA algorithm is
effective in identifying the centrality or importance of each
link in a given topology in relation to the rest, even when
they differ in their capacity or when the traffic contribution of
node pairs is uneven, situations under which the basic edge
betweenness centrality algorithm fails. The input to the CTA
algorithm is minimal and static, and readily available for a
given network without performing any actual routing, and yet
it manages to estimate with a high degree of accuracy the link
usage dynamics in the scenarios considered in this paper, as
the simulations show.

V. EXAMPLE OF APPLICATION: CTA AND SHORTEST-PATH
ROUTING

One well-known drawback of the shortest-path routing
algorithm (SPA) is that it tends to quickly overuse certain
resources by repeatedly selecting the same subset of links
until saturation, and only then switching to other paths. This
provokes the rejection of demands that could have been
accepted should such a greedy approach had not been used.
The greediness nature of the SPA comes from the fact that
the path with the least amount of aggregated cost is selected
among all the admissible ones. Despite this drawback, the SPA
is appreciated for its simplicity, ease of implementation, and
relatively low computational requirements.

A. Approaches to overcome the drawbacks of Shortest-Path
routing

Two improvements over the basic SPA are Widest-Shortest-
Path (WSP) [5] and Shortest-Widest-Path (SWP) [6]. WSP
chooses a shortest path of minimum cost, favouring that with
the largest residual capacity if more than one exists. Therefore,
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Fig. 6. Topology: Cost266. Homogeneous link cap., non-uniform traffic (scenario 2). 72 = 0.91

it promotes better load distribution than SPA by avoiding
links that are already loaded. On the contrary, SWP first
finds one or more paths with the largest residual capacity,
and then selects the shortest one. Both WSP and SWP are
certainly improvements over the basic SPA, but the essential
drawback continues there since paths are repeatedly selected
until saturation [7].

A totally different approach to path selection is offered
by the Minimum-Interference Routing Algorithm or MIRA,
introduced in [8]. MIRA aims to route an incoming connection
over a path that does not “interfere too much” with some other
path that may be critical to satisfy a future demand (demands
are required to belong to a predefined set of ingress—egress
node pairs). To achieve its objective, MIRA introduces the
notion of critical links, which are those with the property
that, whenever a connection is routed over them, the maxflow
values of one or more ingress—egress pairs decreases. MIRA
requires the computation of several expensive minimum max-
flows for each connection request, which makes it impractical.
Several derivatives have been introduced that try to lower the
computational complexity, such as Light MIRA (LMIR) [9]
and Simple MIRA (SMIRA) [10].

The objective of improving the blocking ratio is certainly
achieved by MIRA and its derivatives, but their runtime
performance is several times worse than that of SPA, even
in simplified versions such as LMIR. Moreover, contrary to
SPA, MIRA has the requirement that each routing node have
an up-to-date view of the residual capacity in the network (a
requirement also shared with WSP/SWP).

In light of these considerations, improvements to the
shortest-path routing algorithm are desirable and of practical
importance. We show in the following subsection preliminary
results of the use of the CTA algorithm to influence and im-
prove the performance of the shortest-path routing algorithm.

B. Improving the simple Shortest-Path routing with CTA

As discussed above, the problem with SPA is that it builds
bottlenecks in the network by saturating certain links. Given
that our CTA edge betweenness algorithm gives an estimation
of link usage, we can use this information to rebalance
the link’s importance. Such rebalancing can be obtained by
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defining a cost function that makes less attractive (more costly)
those that are initially identified as very central (i.e., very prone
to saturation), and increasingly more attractive those that the
CTA algorithm identifies as less important.

Let Cpgr be the edge betweenness centrality as produced
by the CTAEDGEBETWEENNESS algorithm, sorted from most
central to less central, so that Cpg(i) is the i-th element in
the ranking. Then, we can assign a new cost to each link w(%)
with (2):

w(i) = ol — Cpr(%)) e

where « is an adjustment factor that decreases as we proceed
down the list in Cgg. For the results reported in this subsec-
tion, we used o = 1.001%, where k = 0, —5, —10, - - -.

With this heuristic in place, a simple capacity-constrained
minimum-cost shortest path routing can be used (i.e., a
weighted Dijkstra). For convenience, let’s call this algorithm
the SP_CTA algorithm for “shortest-path CTA-based algo-
rithm”. SP_CTA comprises both the initial rebalancing weight
assignment and the subsequents Dijkstra-based path computa-
tions.

Through simulation, we compare the blocking ratio obtained
by SP_CTA, WSP and MHA (minimum-hop shortest-path)
with the topologies KL and NSFnetl4. The simulation pa-
rameters are essentially the same as described in IV-A, the
difference being the routing algorithm employed. Three target
blocking ratios (1%, 5% and 10%) are defined, the baseline
being the number of rejections produced by MHA. To reach
each target, link capacities are adjusted by a factor found
experimentally. For this evaluation, we used a non-uniform
traffic matrix with homogeneous link capacity. The demand
set is randomly generated for each run, as described in IV-A,
and the three routing algorithms receive that very same input
so as to make the comparison fair.

In table IV, the column “Reject.” is the number of con-
nections rejected (averaged over 10 runs), and the column
“%” is for comparison with the baseline. At the 1% target,
SP_CTA attains an improvement of more than 25% over MHA
(26% for KL and 29% for NSFnetl14), and also outperforms
WSP. Fig. 7 illustrates that this happens at the three targets,



TABLE IV
COMPARISON OF THE BLOCKING RATIO OF SP_CTA, MHA AND WSP.
THE BASELINE IS MHA AT THE GIVEN TARGET BLOCKING RATIO

(MHAB).
KL NSFnet14
MHAg Algorithm | Reject. % | Reject. %
1% MHA 263 100 236 100
WSP 214 81 193 82
SP_CTA 195 74 168 71
5% MHA 1510 100 1487 100
WSP 1449 96 1326 89
SP_CTA 1372 91 1325 89
10% MHA 3023 100 2810 100
WSP 2951 98 2727 97
SP_CTA 2844 94 2632 94
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Fig. 7. Connections blocked: WSP and SP_CTA vs MHA. Topology: KL

although the improvement diminishes with the unrealistically
high blocking ratios of 5% and 10%. Initially, we also included
LMIR in the comparison, but we observed that its blocking
ratio was much worse than WSP and SP_CTA. Although
further analysis is needed, a possible explanation for this is
that LMIR (and MIRA) tries to favour the distinguished set
of ingress—egress node pairs, but in our scenarios we do not
impose such restriction, and each and every node can act as
source and destination.

It is certainly possible to devise an algorithm that directly
incorporates the computation of betweenness centrality, acting
upon, say, the residual capacity, as in [11]. However, such
approach have the drawback of requiring a constantly up-to-
day view of the network. It would also increase the compu-
tational cost of the algorithm, for computing the betweenness
centrality only once is negligible, but doing it repeatedly is
not. Therefore, we think that the approach outlined here is
interesting because the obtained improvement is the result of
the pre-computation step (weight assignment), and not of a
change in the routing algorithm itself, which remains one of
the simplest available.
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VI. CONCLUSION

We have presented in this paper a new algorithm for estimat-
ing the importance or criticality of links in a network, which
we called the Capacity- and Traffic-aware edge betweenness
centrality algorithm, or CTA. This algorithm uses as input only
static or slowly-changing attributes of the topology. Contrary
to the basic graph-theoretical edge betweenness centrality defi-
nition, which is not suitable for real-world data communication
networks, as discussed and exemplified in the paper, CTA is
able to estimate with good accuracy the importance of each
link in relation to the others. Its effectiveness was verified
through simulations, which covered several network scenarios.
There are many potential applications for this algorithm. For
example, it can be used to improve network resiliency by
identifying which links are more valuable and hence need
more protection, or to assess which sections of the network
would require capacity upgrade, among others. As a concrete
example of application, the paper presented a variation of the
minimum-cost shortest-path routing algorithm that uses CTA’s
output to better load distribution and thus reduce blocking.
The simulations showed that this approach produces lower
blocking ratio than widest-shortest-path (WSP) while retaining
all the benefits of the simple shortest-path algorithm.
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