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Abstract—In this paper we propose a tracking system for
wireless sensor networks, which operates on accumulated ranging
data from a number of anchor sensor nodes in order to infer the
trace and other kinematic characteristics of a mobile target. The
nonlinear nature of the “tracking with range-only measurements”
problem yields significant challenges. In the proposed system,
this problem is modeled as a discrete-time state estimation
problem. To achieve tracking of manoeuvring targets, adaptive
estimation algorithms and a multi-modal approach to describe
the development of the target’s state in time are utilized. To
solve the estimation problem we employ a Particle Filter based
algorithm. We present simulation results, which demonstrate
the ability of the proposed system not only to effectively track
manoeuvring targets but also to perform accurately under noisy
conditions.

Index Terms—Wireless Sensor Networks, Tracking, Particle
Filters

I. MOTIVATION

Wireless Sensor Networks (WSNs) have received and con-
tinue to receive significant research interest. The flexibility
they offer, resulted in an escalating research effort for em-
ploying this novel technology in a number of applications.
WSNs provide a new approach to interact with the physical
world through the amount of information they collect. As
research in minimizing the size and increasing the available
computational power in WSNs continues, so will research on
possible solutions they can offer in a number of existing and
challenging problems. One of the areas where WSNs play a
key role is in tracking mobile objects. The ability of WSNs to
obtain a vast amount of information in a distributive manner
renders them suitable for tracking applications [1]. Locating
personnel in industrial infrastructures, wildlife monitoring and
vehicle tracking are some examples where tracking of ground
targets is desirable. WSNs offer a great alternative to existing
tracking technologies such as cameras, micro-RADARS or
GPS based systems.

This paper discusses a tracking system intended for de-
ployment in WSNs. Two novel, Particle Filter (PF) inspired,
tracking algorithms were designed to achieve online tracking
of mobile targets based on a batch of range measurements
provided from the wireless sensors. In general, the target’s
dynamics are inferred by processing a specific modality as-
sociated with the target’s kinematic variables. The proposed
system utilizes range measurements between the target and
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a number of anchor nodes to infer the desired kinematic
characteristics of the target. Other such modalities that can
be exploited in tracking systems are bearing and velocity.
However, the acquisition of such modalities requires additional
hardware like RADARS to be attached to the nodes and addi-
tional energy and process power to be consumed. On the other
hand, ample ranging estimation between wireless nodes can
be achieved using a variety of techniques which are relatively
energy efficient and do not require any additional hardware.
Examples include Received Signal Strength Indication (RSSI)
[2] and Time of Flight (ToF) ranging schemes [3].

The major challenge of this work is twofold. Since WSNs
nodes are devices with limited energy supply and process-
ing power, the range estimates acquired by the system will
inherently contain significant amount of noise. Subsequently,
robustness becomes a necessity. Moreover the system is in-
tended to be as generic as possible. Generic “in terms of a
tracking system” means being able to track targets moving at
a range of speeds and also include support for manoeuvring
targets, which is the case in most real-world scenarios.

The remainder of the paper is organized as follows. The
next section discusses similar work carried out in the area.
In Section III an overview of the proposed tracking system
is provided, followed by the formulation of the tracking
problem in mathematical terms. The developed algorithms are
analyzed in Section V and simulations evaluate the system’s
performance in the sequel. Concluding remarks and future
work are discussed in the final section of this paper.

II. RELATED WORK

Locationing and tracking of ground targets using WSNs has
long been an active area of research [4], [5]. A number of
research approaches stem from military surveillance scenarios
[6], [7], [8], [9]. The focus of such systems is to effectively
monitor an area and detect intruders breaching the perimeter
coverage. Another important operation, is to successfully clas-
sify the intruding target to one of the categories considered.
A soldier tracking system is presented by Chen ez. al [10].
In this system, a two stage procedure is employed to refine
PIR sensor reports, produced by a dense, large-scale WSN,
and estimate the target’s position [11]. The aforementioned
systems, focus primarily on the intruder detection mission
they are intended to. Due to the fact that WSNs are ideal for



positioning and tracking problems significant research effort in
the WSN community was devoted to develop locationing and
tracking algorithms for WSNs [12]. A collaborative processing
scheme for tracking with WSNss is presented in [13], [14]. An
algorithm to estimate the number of multiple present targets
using a wireless network of PIR sensors is presented in [15].
PIR sensors are also considered for tracking by Shrivastava et.
al. [16]. The above approaches although provide significant
results consider a relatively simple motion model. In addition,
PIR sensors can provide support for detection schemes, how-
ever the lack of information related to the target’s kinematics
makes them unsuitable, particularly for tracking manoeuvring
targets. Another disadvantage of PIR sensors is that good
accuracy requires a dense large-scale deployment of sensors. A
different approach is followed by Zhong et. al., as they propose
the use of node sequences to perform tracking in WSNs [17].

Bayesian Estimation theory and particularly Kalman Filters
provide the background of modern tracking systems [18].
Hence, they are extensively investigated for tracking in WSNs.
Kusy et. al. propose a Kalman Filter derivative for locating
mobile nodes based on range estimates using RF-Doppler
shifts [19]. However, the inherent inability of Kalman Filters
(KF) to deal with nonlinear systems, resulted in a number of
alternative approaches like PF to be investigated in order to
provide sufficient support for nonlinear systems [20]. PF are
a class of recursive Bayesian Estimation techniques inspired
from Monte Carlo Integration methods [21]. PF have been
extensively investigated in areas like navigation and tracking
producing promising results [20], [22]. In the WSNs commu-
nity, a number of approaches for applying PF in tracking with
WSN has been presented. Coates et. al propose a distributed
PF tracking algorithm for WSNs [23], [24]. Borkar et.al
consider a network of Direction of Arrival (DOA) sensors
and Range-Doppler sensors and a PF algorithm performs
the estimation [25]. A distributed PF for tracking in sensor
networks is also analyzed in [26], where acoustic sensors are
proposed. Recently Ma et.al combine a PF and a Probabilistic
Data Association Filter to form a hybrid algorithm intended
for tracking in WSNs [27]. These approaches either consider
only a linear (constant velocity) model to describe the target’s
kinematics [26], [27], [25], or consider two or more types
of available measurements to the system (range, bearing and
velocity) in order to provide support for manoeuvring targets.
The system, proposed in this paper operates on range-only
measurements both for non-manoeuvring (linear state mod-
elling) and manoeuvring targets (nonlinear state modelling).
By utilizing ranging estimates from a number of anchor nodes,
support for manoeuvring targets is provided, without the need
to add power consuming bearing sensors to the available
hardware.

III. SYSTEM OVERVIEW

The proposed system performs tracking of ground mobile
targets based on range estimations from a number of anchor
nodes, positioned in known locations. Knowing the location of
anchor nodes can be achieved either by pre-defined positioning
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of the anchor nodes or with ad-hoc deployment and self-
locationing. Self-locationing schemes in WSNs is an active
research area [3], [28]. A deployment of our proposed system
is illustrated in Figure 1. For ground targets at least three
anchor nodes must provide range measurements. A central
node receives information from the anchor nodes and employs
the tracking algorithm. As mentioned previously two widely
known techniques able to provide accurate-enough ranging are
RSSI and ToF. These approaches require that an RF transceiver
or an additional node, to be strapped to the target, to enable
communication with the anchor nodes. By employing ranging
techniques, an estimation of the range between the mobile
node strapped to the target and the static anchor nodes is
produced.

Y - AXIS

Fig. 1. Tracking System Overview

IV. PROBLEM FORMULATION

In order to best describe the target’s movement and since
only range measurements are considered, we model our
system using a nonlinear discrete-time state-space approach.
We provide two options for modeling the state evolution in
time, a single-modal and a multi-modal approach. We opt to
use a multi-modal approach in order to successfully capture
the development of the state vector in time when manoeu-
vring targets are considered. Prior knowledge regarding the
target’s movement pattern, points on which approach will
better describe the dynamics of the target. Although additional
complexity is added to the system when the multi-modal state
equation is in use, the application demands on accuracy as
well as the available energy and computational power will
determine which of these models shall be used, to achieve the
optimum trade-off between accurate performance and energy

consumption.

Tracking is conducted for a defined amount of time denoted
as T'. The sampling period T defines the number of sampling
steps. At each time step k the state vector comprises of the
planar coordinates and two axis velocity of the mobile object.
Thus:

X=[zyvs vy]T(T here denotes transpose) ¢))



A. Measurement model

A number of N, anchor nodes provide range estimates of
the target’s two-dimensional Euclidean distance to them; hence
the measurements vector z,, ;, at time step k is formed as :

Ve —y1)? + (z — 71)?

V(e — 32)2 + (T — x2)?
ZE = \/(yk - y3)2 + (wk - 533)2 + Vi )

V(e —yn.)? + (zk — zn,)?
o where time index k: is discrete: k =1,2,..., K
e Vi is a N x 1 independent and identically distributed (i.i.d)
measurements noise vector sampled from a known distribution

B. State Evolution

Two approaches (single-modal, multi-modal) are used to
model the development of the state in time. The state vector
evolves in time according to the following equation.

xr = Fxg_1+ Twia 3
o matrix I is,
T2/2 0
_| 0o T2
r= Ts 0 @
0 Ts

o T is the sampling period,

e Wi_1 is a 2 x 1 i.i.d process noise vector sampled from a
known distribution which represents any mismodeling effects
or disturbances in the state equation

e X is the state vector, defined in Eq. 1

Matrix F is defined in two ways:

1) The Single-Modal Approach: In this case the Constant
Velocity (CV) model is used to model the state evolution.
According to the CV model, matrix F' is given as:

10T 0
o1 0 T
F=1lo00 1 0 ®)
00 0 1

2) Multi-Modal Approach: The multi-modal approach is
proposed to provide support when a manoeuvring target is the
object of interest. In this case our system is modeled using
multiple switching dynamic models. The dynamic models we
consider are, the CV model described previously and two
coordinated turn models. The model’s measurement equation
is the same as discussed in Section IV-A, while the evolution
of the state in time is modeled with the following nonlinear
equation:

xk = F(rg)xk—1+ Twi_1 ©

o where r; is the regime variable and indicates which model is

in use during the sampling period from (t;—1,tx]. The regime

variable is modeled as a time homogenous three-state first-order
Markov chain with transitional probability matrix,

mi; & P{re = j | k-1 =i} @)
The state transition matrix F, at time % is defined according

to the value of the regime variable ry (F,,) and is given as:
o The CV model - As defined in the single-model approach

10T o
o1 0 T
F=1lo00 1 o ®)
00 0 1
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o First Coordinated Turn model

10 sin(wTs)/w (cos(wTs) — 1) /w

F= 0 1 (1-cos(wTy))/w sin(wTS)/w ©)
0 0 cos(wTs) —sin(wTs)
0 0 sin(wTs) cos(wTs)

¢ Second Coordinated turn model

1 0 sin(wTls)/wls  (cos(wTs) —1)/w
F— 0 1 (1-cos(wTy))/w sin(_wTs)/w

00 cos(wTs) —sin(wTs)

0 0 —sin(wTy) cos(wTs)

10)
o where T} is the sampling period and,
o where w is the turning rate in rad/sec

Although the complexity of the system increases with the use
of a multi-modal approach, as the state update equation also
becomes nonlinear, manoeuvring targets require to be modeled
in such a way in order for the system to cope with abrupt
changes regarding the amplitude and direction of the velocity
vector.

V. TRACKING ALGORITHMS

This section provides insight regarding the algorithms de-
veloped to infer the state of the target at each time step.
Specifically, an estimate of the state x;, at time k is produced
based on the sequence of measurements Zy up to that time
instance. To calculate a state estimate, the posterior probability
density function (pdf) p(xx | Zx) should be constructed. After
obtaining the posterior pdf p(xy | Zg), an estimation of the
actual state can be produced, using a certain criterion, like
the Minimum Mean Square Error (MMSE). PF algorithms
rely upon representing the required pdf with a set of particles
and their corresponding weights. Particles are sampled from a
proposal distribution and then weighted properly to represent
the state’s pdf. Let’s denote the evolution of the state vector
up to time k as X = {x; : j = 1,2,...,k}. Similar
to this, the measurements made available up to time k, are
denoted as Zy = {z; : j = 1,2,...,k}. The pdf p(xx | Zy) is
approximated by a set of [V particles denoted as X} and their
corresponding weights, wj,. An approximation of the state’s
pdf at time k is given from the following:

N
P(Xk | Zk) = D wid(Xy, — X})

i=1

amn

where § is Dirac’s delta function.

Particles X} are sampled from a proposal distribution
¢(Xx|Zy). The importance weight wj}, for each particle is
computed as follows:

(o POXL|Z)
“ 40K, Z) 4
PF usually suffer from the degeneracy problem. In practical
terms, after a number of iterations all but one particle have
negligible weights. Thus, a substantial amount of computation
is devoted in updating particles with minimal contribution to
the approximation of the pdf. To avoid the effects caused
by degeneracy in PF, a measure, called effective sample size
Ncyy, is introduced and defined as follows:

1

—_— (13)
Zé\]:l(w;c)z

Ness =



A resampling step is carried out whenever Ny is found
to be smaller than a pre-defined threshold Nyp,.. Resampling
eliminates samples with low importance weights and multi-
plies samples with high importance weights.

A. Range only Tracking Particle Filter Algorithm ROT-PF

The algorithm described in this section is intended for a
tracking scenario which follows the state-space model ana-
lyzed in Section IV-B1. To begin with, we considered that both
the state and measurements noise follow known distributions
that can be sampled. The transitional prior p(xy|xx—1) is
chosen as the importance density function to sample particles
from. To sample a particle x} from p(xx|xx_1), a process
noise sample w},_; is generated from the noise distribution p,,,

and then passed in Eq.3 to produce x},. Initial particles (at time
t = 0) are drawn from a distribution p?xo) which represents the
system’s prior knowledge regarding the target’s initial state.
Upon receiving a new set of measurements the weight for
each particle is computed. Because of the transitional prior
being the importance density function, Eq.12 simplifies to
w}, o p(zg|x}). For this, every particle x;}, is passed through
Eq.2 to produce a predicted observation z;, which is compared
to the real observation and used at the calculation of the
likelihood function p(zi|x},). In simple terms, at every time
step k the weights are equal to the likelihood of the real-world
observation zj, given a realization of the predicted observation
z;, based on the sampled particle x}. Thus the importance
weights for each particle are calculated from the following:

W = L(zg|a}) = %ezp((—0.5 * (zx — 25) * (2 — 20)T) (14)

where B is a constant which depends on the parameters of
the measurements noise distribution which is considered to be
Gaussian. The final step involves resampling, whenever Ny ¢
is found to be smaller than N;,.. A single iteration of the
ROT-PF algorithm is given in Algorithm 1.

Algorithm 1 :ROT-PF Algorithm
Initialize
- Draw Initial Particles
for i =1to N do
x4 ~ p(xo), (~ : denotes sampling from)
end for
Sequential Importance Sampling Step
- Sample Particles and Calculate Weights
fori=1to N do
xg ~ p(Tk|Te-1)
Wy, = p(zk|z}) (according to Eg.14)
end for
- Calculate total weight
t=3Y i,
- Normalize weights
fori =1t0 N do
w =t~k
end for
Resampling Step
if Nefs < Ninr then
- Resample with replacement to obtain N new particles dis-
tributed according to p(zx|Zo:x)
end if
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B. Range only Tracking Multiple Model Particle Filter Algo-
rithm ROT-MMPF

To estimate the state vector in the switching dynamical
model presented in Section IV-B2, a multiple model PF
algorithm is employed. The state vector in the multi-modal
case is an augmented state vector which contains both the state
Xy, and the regime variable ry. The augmented state vector is
denoted as, y; = [x ry]. Initial particles are drawn from two
distributions p(r¢) and p(xp) which represent the system’s
initial knowledge regarding the system’s state. Particles for
the state xj; are sampled from the transitional prior, in the
same way as in the ROT-PF case, while particles for the
regime variable are sampled according to the transitional
probability matrix II = [mpy,]. The rule that is followed
is that, if ,_; = m, then 7} should be set to n with
probability 7,,,. Similar to the ROT-PF algorithm, when a
new measurement vector becomes available the corresponding
weights for each particle x}, are computed using the likelihood
function p(z | x%,rl).

The final step of the ROT-MMPF algorithm includes the
resampling step whenever this is necessary. An iteration of
the ROT-MMPF algorithm is given in Algorithm 2.

Algorithm 2 :ROT-MMPF Algorithm
Initialize
- Draw Initial Particles
fori =1to N do
ry ~ p(ro) (~: denotes sampling from)
x4 ~ p(zo)
end for
Sequential Importance Sampling Step
- Sample Particles and Calculate Weights
for i =1to N do
ry ~ mij
X, ~ p(k|TK-1)
Wy, = p(zk|xk,r)) (according to Eg.14)
end for
- Calculate total weight
t=yN, o
- Normalize weights
fori =1to N do
wi =t~ 1wk
end for
Resampling Step
if Nejs < Ninr then
- Resample with replacement to obtain N new particles dis-
tributed according p(yx|Zo:x)
end if

VI. SIMULATION - RESULTS

Both the ROT-PF and the ROT-MMPF algorithms were
simulated in different conditions to evaluate their performance
in terms of tracking accuracy and robustness. In the simula-
tions environment considered, four anchor nodes are deployed
in known locations to provide the system with the range
observations, while a single ground mobile target is the object
of interest. To acquire a range estimate from each of the



anchor nodes, the target should be within the communica-
tion reach of the anchor nodes. In practice, processing the
ranging measurements and inferring an estimation regarding
the target’s position requires a certain amount of time to be
devoted to that process. By reducing the time that the system
requires to infer an estimate, faster targets can be considered
for tracking. For the technology considered, the nodes are
able to communice within a range of 250m. As fas as the
the object’s maximum velocity is concerned, the upper bound
depends on the required time to gather and fuse the range
estimates from the anchor nodes and also the execution time
of the algorithm. However for the purposes of simulation, the
ranging estimates are considered to be instantly acquired.

A. Evaluating the ROT-PF algorithm

1) First Scenario: This section presents simulation results
of the ROT-PF algorithm. A wireless network consisting of
four anchor nodes is considered to be deployed. The coor-
dinates of the anchor nodes are, s; = [40m 60m],s; =
[40m 140m)], s3 = [100m 60m], s4 = [100m 140m)]. The state
vector of the target evolves in time as defined in Eq.5, while
the measurements are associated to the target’s state according
to Eq.2. The sampling period is set to T; = lsec and the
system evolves for T' = 50sec. In the implementation of the
ROT-PF tracking algorithm N = 500 particles were used. The
measurements and state noise sources are considered to follow
zero mean Gaussian distributions. Specifically:

wi, ~ N(0,0.315)
vi ~ N(0,0.41,)

where I is the identity matrix. The target’s initial state is
Xo = [0m Om 2m/s 4m/s]. Initial particles are sampled
from a Gaussian distribution with zero mean and covariance
matrix Sg = I4. The above system was simulated for a total
of L = 100 times and the root mean square error (RMSE) for
the position was calculated at each execution. The RMSE for
position is defined in Eq.15 In Figure 2 and Figure 3 results
from executing a single run of the above system are presented.

T
1
RMSE = T ; ((l?t — xt,est)2 + (yt - yt,est)2 (15)

Target Trajectory

80

y - coordinate (m)

60 * .

/ % Sensor Positions
oL real trajectory
e filter estimate

® initial position - x0

%

20 40 60 80 100 120 140 160 180
X - coordinate (m)

Fig. 2. True and Filtered target trajectory - ROT-PF Scenario 1

The RMSE for the exemplar run was calculated, RMSE =
0.9056m. The RMSE for the total of 100 runs is illustrated
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(a) x-axis velocity estimation
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(b) y-axis velocity estimation

Fig. 3. Two-axis velocity estimation - ROT-PF Scenario 1

in Figure 4(a). Only in four runs the RMSE increases into
unsatisfactory levels RMSE > 100m. In the majority of the
executions, the RMSE remains low (RMSE < 20m) which
reveals the robustness of the tracking system. The RMSE
error can be further decreased if the uncertainty of the system
regarding the target’s initial state is reduced. In Figure 4(b) the
same system is simulated for 100 runs, only this time initial
particles are drawn from a Gaussian distribution, with the same
covariance matrix Sp but with mean uo = xo + N(0,1.52).
The substantially improved RMSE is due to the fact that the
system has better knowledge over the target’s initial condition.

2) Second scenario: A scenario of high initial uncertainty
and heavy noised is considered. Figure 5 depicts the ability
of the ROT-PF algorithm to perform accurately under such
conditions. The anchor nodes are positioned in the same
coordinates as previously also the same number N = 500
of particles was used. The rest of the parameters for this case
are given in the following table:

Parameters
Wi ~ N (0, 212)
Vi | ~N(0,2L4)
uo | [0000]
P |1
xo [2m 1m 2m/s 5m/s]
T 100 sec




Root Mean Square Error
160
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(a) RMSE for 100 simulation runs - ug = 0

Root Mean Square Error

RMSE (m)

0 10 20 30 40 60 70 80 90 100

50
number of iteration

(b) RMSE for 100 simulation runs - po = zo + N(0,1.52)

Fig. 4. RMSE for 100 simulation runs of the ROT-PF - Scenario 1
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y - coordinate (m)

100
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-60 -40 -20 0 20 40 60 80 100
X - coordinate (m)

Fig. 5. True and Filtered Trajectory - ROT-PF Scenario 2 - RMSE=2.22m

B. Evaluating the ROT-MMPF algorithm

In this section results from simulating two different sce-
narios with the ROT-MMPF algorithm are provided. The aim
of this algorithm is to enable our system to keep track of
manoeuvring targets which is usually the case in real-world
applications. The three-state model we employ in this case is
sufficient to provide adequate support for manoeuvring targets.
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1) First Scenario: Four anchor nodes are considered, po-
sitioned at the following coordinates s; = [0m Om], sy =
[200m Om],s3 = [0Om — 80m],sq = [200m — 80m)]. The
simulation time is set to 7' = 80sec, the sampling period to
T, = 1sec and the turning rate to w = 7 /4 rad/s. The number
of particles used in the implementation of the algorithm is
N = 1000. The noise sources are modeled as zero mean
additive Gaussian noise with distributions:

W ~ N(O, 0.112)
Vi ~ N(O, 14)

The regime variable is defined as a first order homogenous
Markov chain with transition probability m = 0.5 thus the
transition probability matrix is,

0.5 0.25 0.25
025 05 025
0.25 025 0.5

P(’l"g |7‘g_1) = (16)

The target’s actual initial state vector is X =
[0m Om 0.03m/s 0.04m/s|. Initial particles for the regime
variable r; are sampled with equal probability Py =
[0.333 0.333 0.333] (which is = 1/3 because there are
three possible regimes), while initial particles for the state xj
are drawn from a Gaussian distribution with zero mean and
covariance matrix:

001 0 0 0
0 001 0 0

So=10 0 0001 o0 an
0O 0 0 0001

The results from a single run of the above scenario are
illustrated in Figure 6 for the target’s trajectory and in Figure
7 for the target’s two-axis velocity. The RMSE was calculated

Target Trajectory

y - coordinate (m)

x Sensor Positions
real trajectory
weenne filter estimate
® initial position

50 100
X — coordinate (m)

Fig. 6. True and Filtered trajectory - ROT-MMPF Scenario 1

RMSE = 9.2992m.

2) Second Scenario: For this scenario the anchor nodes
are positioned at s; = [10m Om],sy = [50m Om],s3 =
[10m 25m], s4 = [50m 25m]. The duration of the simulation
is T = 80sec, the sampling period is T; = lsec and the
turning rate w = /3 rad/s. The number of particles used
in this scenario is the same as previously N = 1000. The
noise sources follow identical Gaussian distributions with zero
mean and covariance g,, = 0, = 0.1. The regime variable is
defined in a similar way as in the previous scenario, thus the
same transition matrix applies here and the target’s initial state
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(a) x-axis velocity estimation
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Fig. 7. Two-axis velocity estimation - ROT-MMPF Scenario 1

is zg = [0m Om 3m/s 4m/s]. Finally, initial particles for
the state vector x; are sampled from a zero mean Gaussian
distribution with covariance matrix;

01 0 0 0
0 01 0 0

So=10 0 01 o0 (18
0 0 0 01

Trajectory results from the simulation of this scenario are
illustrated in Figure 8, while velocity estimation is depicted in
Figure 9.

This scenario is also simulated for a total of 100 executions
and the RMSE is calculated in every run. In 61 of the exe-
cutions the RMSE remains below 100m, while 78 executions
demonstrate RMSE below 1000m. However in some occasions
the RMSE increases in high levels RMSE > 103m where
tracking is considered failed. Similar to the ROT-PF algorithm,
the RMSE in the ROT-MMPF algorithm can be reduced
by minimizing the uncertainty of the system regarding the
target’s initial state. The RMSE from a similar scenario, but
with initial particles drawn from a Gaussian distribution with
mean o = Xo + N(0,1) and the same covariance matrix as
previously. The RMSE from 100 executions of this system is
presented in Figure 10(b). In 98 of the executions the RMSE
is calculated to be smaller than 1000m and in 92 execution
the RMSE is smaller than 100m.
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Fig. 8. True and filtered trajectory - ROT-MMPF Scenario 2
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(a) x-axis velocity estimation
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VII. CONCLUSIONS AND FUTURE WORK

The prominent outcomes obtained from simulating the sys-
tem for a number of different scenarios indicate that accurate
tracking of manoeuvring ground targets can be achieved with
range-only measurements using WSNs. In the majority of
the simulations the RMSE is small proving the accuracy of
the tracking algorithm. Simulation results also indicate that
a factor which affects the accuracy of our system is the
system’s knowledge regarding the object’s initial state. In
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Fig. 10. RMSE for 100 simulation runs of the ROT-MMPF

addition, accuracy can be amended by employing a bigger
number of particles, subsequently increasing the computational
demand. The number of required particles in the proposed
system is kept small compared to other approaches. Different
to other approaches the proposed system does not require any
additional type of measurements in order to track manoeuvring
targets.

As hardware becomes smaller in size and easier to obtain,
more challenges regarding commercial use of WSNs will
arise. Our future plans comprise of conducting research along
the direction of implementing a real-world, online tracking
system. Specifically, our own laboratory experiments have
proved that ranging with up to 1m accuracy between two nodes
can be achieved with ToF techniques. Since accurate ranging
is feasible, integrating the algorithms and implementing the
tracking operation on WSNs hardware will be the evolution
of the work presented in this paper.
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