
Random Node Sampling in Kademlia
Zolblo Novak

Department of Telecommunications and Media Informatics
Budapest University of Technology and Economics

H-1117, Magyar tud6sok konitja 2, Budapest, HUNGARY
Phone: (36)1-463-2225, Fax: (36) 1-463-3107

Email: novak@tmit.bme.hu

Zoltao Pap
Ericsson Telecomm. Hungary,

H-1117, Irinyi J. u. 4-20, Budapest, HUNGARY
Email: zoltan.pap@ericsson.com

Abstract-We present a novel distributed method for selecting
random nodes uniformly in Kademlia DUT networks. The
algorithm does not require any extension to the Kademlia
protocol and can be applied to any Kademlia-type network. It is
easily tunable with one parameter to set an appropriate tradeoff
between the evenness of the distribution and time - message
complexity. The method may be used as a building block for
network algorithms in areas such as load balancing, Byzantine
agreement, fault recovery and statistical measurements.

I. INTRODUCTION

Peers of large distributed overlay networks have only a
limited knowledge of the status of system-wide parameters such
as size, average load, etc. The most viable approach to acquire
and maintain such information in a distributed environment is
the use of statistical methods. By providing statistical tools for
participating peers to estimate global properties of the system,
new possibilities will open for designing efficient, adaptive
P2P clients.

Simple random sampling is one of the fundamental tech
niques used in statistics. By choosing entities from the
population with equal probability, it is ensured that this sample
will lack of any bias or correlation. Facilitating uniform random
node selection is the first step to provide a general base for
clients to make system-wide statistical estimations.

Random selection also plays an important role in algorithm
design. [1] Random node selection can be used as an algorith
mic building block in randomized network algorithms. Load
balancing is one of the areas which could benefit most from
the availability of uniform distributed random node selection.
[2] Another field of application was presented by Scott Lewis
et al. [3]. Their scalable Byzantine agreement algorithm is
based on random node selection.

A. Motivation

Random selection is usually not a problem when a com
putable bijection exists between a set of numbers and the
population. Without such a bijection the problem can be very
hard. Several general solutions have emerged, mainly based
on random walks. Although the aforementioned problem is
solvable with random walks - thus it can be used to select
random nodes even in unstructured P2P systems [4] - we will
show that a more sophisticated solution may be elaborated for
Kademlia.

Digital Object Identifier: 10.4108I1CST.BROADNETS2009.7239

http://dx.doi.org/10.4108I1CST.BROADNETS2009. 7239

The motivation for using Kademlia is twofold:

• Kademlia is one of the most widely used DHT system in
practice today. Some examples: KAD network (eMule1

,

alvlule", MLDonkey clients"), BitTorrent Mainline DHT4,

Vuze (Azureus) DHT5 , Revf'onnect''
• Kademlia has a unique addressing and searching mecha

nism (see section III). This allows the creation of a simple
and intuitive random selection algorithm, which is largely
based on the special properties of the Kademlia address
space.

B. Related Work

Vivek Vishnumurthy and Paul Francis examined the prob
lem of random selection in unstructured networks for P2P
applications. [4] Their solution is based on random walks. The
properties of random walks in P2P systems were also analyzed
by Christos Gkantsidis et al. [5], [6].

In DHT networks there is an opportunity to develop special
ized algorithms, considering the distinctive properties of the
network graphs. We have to mention the work of Valerie King,
Scott Lewis, Jared Saia and Maxwell Young. [7] They present
two similar random node selection algorithms for the Chord
[8] DHT network. Their solutions are based on alternating
a search to a random address, and walks on the successor
nodes of the Chord ring. Although both algorithms have good
accuracy and complexity values, their failure probability and
latency critically depends on four distinct constant parameters.
Unfortunately the optimal selection of these constants was
proved to be computationally intractable. The only possible
way to achieve a near optimal solution was to set the constants
with the help of numerous simulations.

The results of [7] could not be applied directly to Kademlia
networks. A main difference is that a search to a random
address in Kademlia results in a completely different node
distribution. Furthermore in Kademlia there is no equivalent to
Chord successor nodes. Both differences are the consequence
of the different distance metric used in Kademlia.

1http://www.emule.org
2http://www.amule.org
3http://mldonkey.sourceforge.net
4http://www.bittorrent.org
5http://www.vuze.com
6http://www.revconnect.com

c. Our Results

Our algorithm:

• only uses the built in Kademlia [9] primitives (see section
II).

• exploits the special properties of the Kademlia address
space (see section III).

• is simple and intuitive (see section IV).
• is accurate, selects every node with equal probability (see

section IV and V-E)
• is easily tunable. (By setting two confidence parameters,

our algorithm has adjustable failure probability, see
section V-AI and V-E)

• has a low complexity - comparable to [7] - thus usable
in practice (see section VI and VII)

II. KADEMLIA

This section is a short introduction to the Kademlia [9] DHT.
Kademlia uses a 160 bit address space, to which both nodes

and keys are mapped. Every node stores data with keys closest
to its address, in terms of the bitwise binary xor operator (see
section III). Every node maintains 160 tables to store routing
information, in Kademlia terminology these tables are called
k-buckets. The i-th k-bucket contains at most K nodes whose
distance from the current node is between 2 160-i and 2160-i+1,

where K is a pre-chosen system parameter.
The Kademlia protocol contains four RPC-s that all the

functions are built on:

• PING, to check if a node is still connected;
• STORE, to store a key and corresponding data;
• FIND_NODE, with an address as its parameter, to look

for the K closest values to the given address from the
node's routing tables;

• FIND_VALUE, with a key as its parameter; if a node
stores data corresponding to the key, the return value
is the stored data; otherwise it behaves identically to
FIND_NODE.

When node A looks for node B with address y, the search
goes thus through the following steps:

1) Node A creates a list L containing the K closest
addresses to y. It first fills this list from its own k
buckets. It also marks every node in the list on which it
has already run the FIND_NODE RPC.

2) Node A selects a unmarked nodes from the list, and
runs the FIND_NODE RPC on them (a is a system-wide
parameter).

3) Node A updates the list using the return values of the
FIND_NODE RPCs, always maintaining only the K
closest addresses to y.

4) If A hasn't found the node it was looking for, or the list
still contains unmarked nodes, it returns to step 2.

K-buckets are ordered lists of nodes, with the most recently
seen node at the beginning of the list. If a node A receives a
message from another node B, than A tries to insert B into
the appropriate k-bucket, if there's still room. If the given
k-bucket is full, A sends PING to the node from the end of the

Digital Object Identifier: 10.4108/1CST.BROADNETS2009.7239

http://dx.doi.org/10.4108/1CST.BROADNETS2009. 7239

list; if it replies, A moves it to the head of the list; if it does
not, A deletes it from the list, and replaces it with B. With
adequate network traffic, k-buckets remain consistent thanks
to the procedures above.

When a node leaves the network, it simply copies its data
to the nearest node, and disconnects.

III. DEFINITIONS

Definition 1: Let A be the set of all addresses in the system.
We assume that these addresses are binary integers. Let N be
the set of occupied addresses in the system - actually this is
the set of online nodes. We denote the number of online nodes
INI with n.
We assume that n > 0, i.e., every system has at least one node
online.

Definition 2: Let X E N be the address of a node in the
system, then define Near(X) ~ A as the set of addresses
where:

Near(X) = {Z Ivv E N, Y i- X, X E9 Z < Y E9 Z}

and E9 is the bitwise xor operation.
In this definition the result of the E9 operation is interpreted

as an integer number. Near(X) is actually the Voronoi cell of
X: the set of all addresses that are closer to X - according to
the xor metric - than to any other online node.

Definition 3: Let the territory T (X) of a node X E N be:

T(X) = INe~~X)I, (0 < T(X) < 1)

The territory of X represents the portion of addresses (A) that
are closer to X than to any other online node. For example
if T (X) = 0.5, than if a random address R from the address
set A is chosen, the nearest online node to R will be X with
probability 0.5.

Definition 4: For all C E A, Route (C) = X if X E N
and C E Near(X). This Route function assigns one online
node to every possible address.

Our definition above is actually similar to Kademlia's routing
- see the routing algorithm described in Section II. While
Kademlia finds the k nearest nodes to an arbitrary address, we
are only interested in finding the nearest online node to an
address. This route function is available to every node in the
Kademlia system, and gives results in 0 (log n) steps.

In Kademlia the address space is: A = {O, 1, ... ,2160 - I}.
Joining nodes choose a uniformly distributed random address
independently from each other.

A node can count its own territory size by counting its empty
k-buckets. If a node X has e empty bucket, then the territory
size of this node is:

2e

T (X) = 2 160

IV. A NOVEL RANDOM SAMPLING ALGORITHM

Before presenting our random sampling algorithm we will
discuss two naive reference approaches first. A simple solution
for the problem would be to route to a random address and to

accept the resulting node as a random sample. Unfortunately
although addresses are distributed uniformly in the address
space, the resulting territory sizes are highly uneven. (Figure
1). This approach would therefore violate the uniform property
of the sampling.

2) We determine the exact distribution of the random
variable Tm in as a function of n (see subsection V-C).

3) We show that Tm in can be estimated with E(Tm in) (see
subsection V-D), or - as discussed in subsection V-E
interval approximation of Tm in is also possible.

A. Estimating the Number of Online Nodes

Estimating the size of a DHT network is not a particularly
hard problem. One of the first approaches to tackle it was given
by the Viceroy [10] DHT, where the complete architecture
is based on the possibility of estimating the actual size of
the overlay. Another solution to the problem was given by
Binzenhd'zfer et al. in [11] assuming Chord networks.

Definition 5: Let p be the density of occupied addresses:

n
p= 1Af

Distri bution of ter ritory sizes of 100000 Kadc mlia nodes -
Uniform distri butio n .--------

,-----------'1
...+ .

O.()(JOIO ,-----------------,

O.()(X)02

.~ 0.00006

C
c
E
~ O.[J(JO[)4

O.()(X)08

O.()(X)(X)
o 1[J[J()() 2(JOOO 30000 40000 50[J[J() 60000 7[J[J()() 80000 9[J[J()() 1OIJOOO

Nodes (ordered increasingly by territory size)

Figure 1. Territory sizes of ooסס10 Kademlia nodes ordered by magnitude

Another solution would be to repeatedly route to random
addresses until by chance an occupied one is found. Using
this method, every node would be selected with the same
probability: n /2 16o. Unfortunately this method is unusable in
practice, as the probability of finding an occupied address is
extremely low.

Our algorithm is the mixture of the previous two naive
solutions, and is based on an intuitive idea:

1) Choose a random address R from the
address space A

2) X := Route (R)
3) Accept X with probability iF;) - where

Tm in is the minimal territory size in the sys
tem - otherwise repeat the whole procedure
from step I.

In one cycle the algorithm selects a node with exactly
the same Tmin probability. So the resulting distribution is
completely even, if the exact value of Tm in is known. Unfor
tunately this information is typically not available by default
in distributed systems such as Kademlia; therefore we need to
provide a method for estimating Tmin .

V. ESTIMATING Tm in

In Kademlia Tmin is a random variable. The most straight
forward method to estimate Tm in is to estimate it with its
expected value: E(Tmin) . Distribution of the territories (and
the minimal territory size) is a function of the number of nodes
in the system: n .

Our approach for estimating Tm in :

1) We provide the means to estimate n - the number of
online nodes in the system - based on the density of the
occupied addresses in the address space. (see subsection
V-A)

the number of online nodes divided by the address space size.
Because the address space size is constant in Kademlia, the

density p is the function of the number of nodes n.
Addresses in Kademlia are selected by nodes with uniform

distribution. Therefore the expected value (first moment) of
node density in any subset of A is exactly p. Assume we have
an S sample from the address space, in which the occupied
addresses are denoted with 1 and free addresses are denoted
with 0, then let p be the mean of our sample. As we can
see, whether an address is occupied or not, has a Bernoulli
distribution where p is the Bernoulli parameter.

Now the point estimation statistics of the number of nodes
St(n) can be done easily, using the method of moments
(replacing the first moment p with the mean of our sample p) :

n=IAlp

St(n) = IAlp

We can use Kademlia search to get our sample S fast. First
route to a random address R. In Kademlia we get back the K
nearest nodes to R according to the xor metric. Let F be the
farthest address in the result. Then the result of the search is
actually a sample of the following addresses: R, REB 1, R EB 2,
REB 3,. .. ,F . We can use this sample to count p:

, K
p = (REB F) + 1

By aggregating the results of multiple Kademlia searches the
estimation can be further improved.

I) Interval Estimation of the Number of Nodes: We can
ensure the correctness of our algorithm by overestimating the
number of nodes (see subsecion V-E). For interval approxima
tion of the Bernoulli parameter several approximate methods
exists. [12]-[14]

According to [14] , the following simple estimation using
Chi-square distribution gives good results, because the sample
size «R EB F) + 1) is extremely large and p is extremely low:

IAI 2
nHigh = 2(REB F) + 2X 2(K + l),o:

Digital Object Identifier: 10.4108/1CST.BROADNETS2009.7239

http://dx.doi.orgI10.4108/1CST.BROADNETS2009.7239

Figure 2. Division of territories in xor metrics

P(n addresses begin with 0) = (~)Tn

/
1001 1100
0.25 0.125

()()()(J OOOI
0.25 0.25

Now we can write a recursive definition of F~m in (X) using
the law of total probability:

1) Let us visualize the n node addresses at the root of the
territory tree (fig. 2). Every address begins with 0 or
1 with a probability of 0.5 respectively. The root node
divides the n nodes into two sets.

2) The cardinality of these two sets has a binomial distri
bution, and they sum up to n:

P(no address begins with 0) = (~) 2-n

P(1 address begins with 0) = (7)Tn

3) Let us assume that 5 addresses begin with 0 and n - 5
with 1. If Ffmin(x) and F;:'ig(X) is known, the COF
of their minimum can be written. As each of the two
branches has only 0.5 territory, we have to use Ffmin (2x)

FT . () {o if x :::; 1,
I mm X =

1 if x> 1.

In the rest of the paper we address this inconsistency by
assuming that the sizes of the addresses are unbounded. Note
that this assumption can be made without loss of generality as
the probability of address collision is negligible.

Definition 6: Let F~min (X) be the cumulative distribution
function (COF) of Tm in in a system with n independently and
randomly chosen node addresses. Then, in a system with one
node (n = 1):

To define the cumulative distribution function of Tmin for
all n, we use the following statement: If X and Y are two
independent random variables with cumulative distribution
functions Fx and F y , then the COF of Z = min(X, Y) is:

C. Distribution of Tm in

We have two conflicting assumptions:

1) Joining nodes choose their addresses from a finite
address space independently and randomly with uniform
distribution, thus address collision is possible

2) Every node has a unique address

Where a is the confidence parameter.
A simple numeric example: IAI := 232 (the address space

size), K := 10, and the result of our query gives (REBF)+ 1 =
1000000, then our simple estimated node number is

, K 32 10
IAI p = IAI (R EB F) + 1 = 2 1000000:::::: 42950

And the number of nodes is lower than:

232 232

nHigh = 2000000 X~2,O.Ol = 2000000 40.289 :::::: 86520

with a probability of 0.99. Of course any other a parameter can
be used easily with the X2 distribution. By repeating queries,
the boundaries of this interval converge to the mean . If the
Kademlia query is repeated two more times, and the aggregated
success rate (jJ) remains the same, then our new estimated upper
bound using the same confidence becomes:

232

6000000 X~2,O.Ol :::::: 64998

B. Visualizing territory size

To estimate Tm in we first have to understand the way
territories in the XOR metrics build up.

• The sum of territories for all online nodes in the system
is exactly 1.

• The sum of territories for online nodes whose addresses
start with 0 or 1 are 0.5 and 0.5 respectively, if there
is at least one online node in both the Oxxx... and the
1xxx. .. address space.

• Groups of nodes with prefix : 00, 01, 10, 11 share 0.25,
0.25, 0.25, 0.25 parts of the whole territory if all address
prefixes contain at least one online node .

• and so on. . .
What happens if there isn 't any node with prefix 1O? Then
nodes with prefix 11 will share 0.5 territory, as they are the
only nodes with address prefix 1, and nodes with prefix 1 share
0.5 territory according to bullet 2 above.

The easiest way to picture the division of territories is to
visualize it as a binary tree, where the leaves are the occupied
addresses. At the root the territory is 1, and at every lower
node the territory is divided by 2 if that node forks. Figure
2 shows a division of territories between nodes: 0000, 0001,
1001,1100,1111 in the four bit address space .

Now we can see the main difference from Chord or other
OHTs such as Pastry [15] or CAN [16] that use Euclidean
distance metrics. In the latter OHTs the territory size of a given
node depends only on the distance to its direct neighbors , but
in Kademlia the territory is affected by distant nodes - or their
absence - as well.

Digital Object Identifier: 10.4108/1CST.BROADNETS2009.7239

http://dx.doi.orgI10.4108/1CST.BROADNETS2009.7239

-

L- \ Lower bound of territory size (0.95 co nfidence) -
i Expected value of the minimal territory size •••••••••

0.0010

C
c 0.0008

.~

~
:~

0.1llX16

0

~,
0.1llX14

~
"8
;;
a
;n 0.1lllOZ

0.1lllOO
0 ZOO 4(XI 61Xl 81Xl rooo IZlXI 14(1()

Number of nodes

Knowing the CDF of Tmin it is easy. We only have to find
the greatest x where :

F;;min(x) < 0.05

again we only have to check F;;min in its stepping points. The
resulting estimations are depicted on figure 3.

and F;;~i5 (2x) instead. Note that this would not be the
case if the division was (n ;0) or (0; n).

4) Using the law of total probability we can write the
following recursive defimtion :

F;min(x) = 2~ ((~)F,;min(x) + C)F,;min(x)

n - l

+L (~) (Frmin(2x) + F~~'k(2x) - Frmin(2x)F~~ik(2x)))
k=l

(I)

5) Finally - after rearranging occurrences of F;:min(X) to
the left - we reach the following formula :

FTmin (x) _ {o if x::; 1,
ple asere fe r tol - 1 if x > 1.

n-l

F;min(x) = 2n~ 2 L (~) (Frm m (2x) + F~~ik(2x)
k=l

Figure 3. En(Tmin) and underestimation of Tmin with confidence 0.95

D. The En(Tmin) function

With the help of the COF of T min we can calculate
En (Tmin). For this we have to recognize that Tmin is a
discrete random variable, with the following possible values :
2° ,2-1 , oo . ,21- n .

Therefore even though we only have a complex recursive
definition of F;:min(X) we have to count it only in those
particular points where the COF has step discontinuity. This
means En(1'min) can be written as:

n-1

En(Tmin) = L ;i (F;:min(21
-

i) - F;;min(T i))
i = O

The exact En(Tmin) function is presented on figure 3 and
also on figure 5.

E. Interval Approximation

According to our algorithm (section IV), a node accepts the
result of a random route with probability T minlT (X) in every
iteration . Overestimation of Tmin results in probability values
greater than one; these values must be clipped to I . This means
that nodes with a territory size smaller than the estimated Tmin
are selected with lower probability. Therefore it is preferable not
to overestimate T min. Although underestimation of Tmin results
in higher complexity, it also ensures the uniform selection
of nodes : If the estimated T min is less than or equal to the
minimal territory size of the system, then our algorithm selects
each node with equal probability (l In) always and without
exception.

Fortunately with the help of the CDF function our estimation
is easily tunable as shown in the following example .

Let's assume we would like to underestimate T min with 95%
confidence. That means that the actual Tmin will be greater
than our estimation with probability 0.95.

If interval approximations are used, accuracy will be com
pletely tunable . An example in numbers : with an underestima
tion of Tmin with 95% confidence, and overestimation of node
numbers with 99% confidence (subsection V-Al), our algorithm
returns a completely uniform distribution with probability of:

0.95 . 0.99 = 0.9405

at least.
Note that the probabilty value above is a lower limit because

the two estimated random variables are not independent.

F. Approximation of En(Tmin)

Although the accurate value of En(Tmin) is computable
using the CDF, there is also a need for an approximate formula
for several reasons: Our F;;min (x) formula is recursive and
d'z'therefore rather slow for larger n values. The computation
of the large binomial coefficient requires high precision
arithmetic. Furthermore an approximate formula is essential
for understanding the asymptotic behavior of En(Tmin) .

To find the best approximation, trial and error method was
used, and numerous functions were examined in the domain:

I
En(Tmin) ~ -f(x)

n
We achieved the best asymptotic results with:

1
f(x) - .,...--.,........,..--

- ln n ln log. n

Where c is a constant. On figure 4 the deviation of this
approximation is depicted, first the constant was set to e, then
to the best value c = 4.9 - we computed by curve fitting using
the least squares method . The deviation is computed with the
following formula :

IEn(Tmin) - I III In nn n ogcn

Digital Object Identifier: 10.4108/1CST.BROADNETS2009.7239

http://dx.doi.orgI10.4108/1CST.BROADNETS2009.7239

On figure 5 the best approximation is depicted together
with the accurate values. Further on - especially in section VI
(Complexity) - we use the approximate function:

1
En(Tmin) ::::; ---,--..,..-,....--

n Inn In log4.9n

In section VII-A we evaluate this approximation using simula
tion results.

O(log2n log log n)

1 1

P nEn(Tmin)

According to our approximation (section V-F) this has a
complexity of:

Instead of the correct:

A. Cost of Overestimating n

Overestimation of n results in better failure probability. The
cost of overestimation is easily computable.

Let's assume n is overestimated by a factor of e. That means
our algorithm will use approximation:

Thus the estimated value of repetitions is:

O(log n log log n)

As routing in Kademlia has a complexity of O(logn), The
overall complexity of our method is:

14lX)

Deviation c =c -
Deviation c = 4.9 ---------.

200 400 600 800 1[)(X) 12[)()

\
:

\

\
~!\

\'\r:r , \ ..,_•••••~••• •• ••, .

0.000 1

.9
8c-05

~.;;
2 6c-05
Co
§o
~

-5
0 40-05
c
0
.~

"

8 2c-0 5

0
0

Numb er of nodes

Figure 4. The error of our two approximat ions

So the estimated number of repetition is larger by a factor
of:

Mean number of nodes
with territory smaller than En(Tmin)

0.87
0.498
1.79
I.

1.04

Number of nodes
1000
5000
20000
30000
100000

Table I
ACCURACY USING APPROXIMATE En (Tmin)

c Inen In log4.9en
Inn In log4.9n

This has a limit of e if n converges to infinity.

VII . EVALUATION

A. Evaluation ofour En(Tmin) approximation usingsimulation
results

We examined the accuracy of our algorithm using our
approximation (see section V-F) of En(Tmin) by running 1000
simulations with different system sizes. We measured the
mean number of nodes with smaller territory size than the
approximated En(Tmin).

In table I we can see the mean number of nodes that
our algorithm does not select correctly. The table shows that
on average there is approximately one node only, for which
En(Tmin) > T(X) .

That means that most of the time our approximation of
En(Tmin) is a correct lower bound of the actual territory sizes.

Expec ted value of the mi nima l territ ory size -
Approximation ---------.

200 400 600 800 1000 1200 1400

Number of nodes

En(Tmin) and approximation : I 1 \n n n n og4 .9 n

VI. COMPLEXITY

O.cX)lX) L-_~_~_~_~_~_~_~---'
o

Figure 5.

0.00 10

C 0.00080

.~

E 0.cXl06
:~
0
~,

O.(101J4
~
!l
E
ft 0.(Xl02cc

The complexity depends on the number of Kademlia searches
used by our algorithm.

We consider the case when Tmin is estimated using
En(Tmin). We analyze the number of required Kademlia
searches therefore we can first assume that our node number
estimation is exact. This can be done because our estimation
of n is an unbiased estimator (see [14]).

In this case the number of searches has a geometric
distribution with parameter p:

Digital Object Identifie r: 10.4108/1CST.BROADNETS2009.7239

http://dx.doi.orgI10.4108/1CST.BROADNETS2009.7239

B. Evaluation of complexity

Our complexity result - 0 (log2 n log log n) - is comparable
to, but a bit worse than the complexity result of [7]: O(log2n) .
This is a very good result considering the difficulties introduced
by the use of xor metric.

The practical values of our algorithm and [7] are also compa
rable. The authors made simulations with 10000 nodes, using
their two different algorithms and their mean complexity result
was 10.01 log nand 20.02 log n respectively. Our algorithm
has an expected repetition number 16.18 in a system of the
same size, where each repetition involves a Kademlia search
with O(log n) complexity.

As we can see on figure 6 the estimated repetition number
is below 30 even in a system of 1000000 nodes.

40 ,-----------------------.
Estimated value or the repetition number --

fr 35

'"~
§ 30

~ 25

.li
E 20
E
.g 15
1:.
~

] IO
§
&1

o L-~-~-~-~-~~-~-~-~-----'

o 100000 200DOn300000 400000 500000 600000 700000 800000 900000 le+06

Number of nodes in system

Figure 6. Estimated number of repetition of the Kademlia search (f(x) =
In xlnlog4.9 x)

The good complexity results of our algorithm are the direct
consequence of the Kademlia territory distribution. For example
in the Chord DHT the estimated value of the minimal territory
size - according to [17] - is:

EChord(T .) = ~
n mm n2

Thus the complexity of our algorithm in Chord would be O(n) .
This means that in Chord our algorithm would be unusable .
An interesting question would be to examine the distribution
of minimal territory size and the usability of our algorithm
in these DHTs using different load - territory - balancing
techniques [17] [18].

VIII. CONCLUSIONS AND FUTURE WORK

We have presented an algorithm for selecting a peer uni
formly at random in Kademlia, one of the most widespread
DHT systems in practice. The algorithm has an expected
complexity of O(log2 n log log n). We showed that in practice
the complexity of our algorithm is comparable to [7].

Some possible improvements :

• Kademlia search has a complexity of O(logn). Instead of
using independent Kademlia searches in every step of our
algorithm, we could replace some searching steps with
shorter random walks.

Digital Object Identifier: 10.4108/1CST.BROADNETS2009.7239
http://dx.doi.orgI10.4108/1CST.BROADNETS2009.7239

• Load balancing algorithms - for example [18] - can
cause a different, more balanced territory distribution in
Kademlia. Although our base algorithm remains correct in
this case too, with some tuning of the parameters, better
complexity values are achievable.

REFERENCES

[I] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge
University Press, 1995.

[2] M. D. Mitzenmacher, "The power of two choices in randomized load
balancing," Ph.D. dissertation , 1996, chair-Alistair Sinclair.

[3] C. Scott and L. J. Saia , "Scalable byzantine agreement," Tech . Rep.,
2004.

[4] V. Vishnumurthy and P. Francis, "On heterogeneous overlay construction
and random node selection in unstructured p2p networks." in lNFOCOM .
IEEE,2006.

[5] C. Gkantsidis, M. Mihail, and A. Saberi, "Random walks in peer-to-peer
networks ." in INFOCOM , 2004.

[6] --, "Random walks in peer-to-peer networks : algorithms and evalua
tion," Perform. Eval., vol. 63, no. 3, pp. 241-263, 2006.

[7] V. King, S. Lewis, J. Saia, and M. Young, "Choosing a random peer in
chord ," Algorithmica, vol. 49, no. 2, pp. 147-169, 2007 .

[8] R. Morris , D. Karger, F. Kaashoek, and H. Balakrishnan, "Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications ," in ACM
SIGCOMM 2001, San Diego, CA, September 2001.

[9] P. Maymounkov and D. Mazieres, "Kademlia: A peer-to-peer information
system based on the xor metric," in IPTPS '01: Revised Papers from the
First International Workshop on Peer-to-Peer System s. London, UK :
Springer-Verlag, 2002, pp. 53-65.

[10] D. Malkhi, M. Naor, and D. Ratajczak, "Viceroy: a scalable and dynamic
emulation of the butterfly," in PODC '02: Proceedings of the twenty-first
annual symposium on Principles of distributed computing . New York,
NY, USA: ACM, 2002, pp. 183-192.

[II] A. Binzenhofer, D. Staehle , , and R. Henjes, "On the fly estimation of
the peer population in a chord-based p2p system," in 19th International
Teletraffic Congress (ITCI9), Beijing , China, sep 2005 .

[12] T. D. Ross, "Accurate confidence intervals for binomial proportion and
poisson rate estimation ," Computers in Biology and Medicine, vol. 33,
no. 6, pp. 509-531, November 2003.

[B] A. Agresti and B. A. Coull, "Approximate is better than ' exact' for
interval estimation of binomial proportions ," The American Statistician,
vol. 52, no. 2, pp . 119-126, 1998.

[14] L. M. Leemis, K. S. Trivedi, H. C. F.P. Burch, H. Multhaup, B. Schmeiser,
and L. Vignati, "A comparison of approximate interval estimators for
the bernoulli parameter," The American Statistician , vol. 50, pp. 63-68,
1996.

[15] A. Rowstron and P. Druschel, "Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems," in IFlPIACM
International Conference on Distributed Systems Platforms (Middleware),
Nov. 2001, pp. 329-350.

[16] S. Ratnasamy, P. Francis, M. Handley , R. Karp , and S. Schenker,
"A scalable content-addressable network," in Proceedings of the 2001
confere nce on Applications, technologies, architectures, and protocols
for computer communications (SIGCOMM '01), vol. 31, no. 4. ACM
Press, October 2001, pp. 161-172.

[17] J. Cichon, M. Klonowski, L. Krzywiecki, B. Rozanski, and P. Zielinski,
"Equalizing chord ," Tech. Rep., 2004 .

[18] D. R. Karger and M. Ruhl, "Simple efficient load balancing algorithms
for peer-to-peer systems," in SPAA '04: Proceedings of the sixteenth
annual ACM symposium on Parallelism in algorithms and architectures.
New York, NY, USA: ACM, 2004 , pp. 36-43.

