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ABSTRACT 

Energy-fidelity tradeoffs are central to many battery-constrained 

systems, but they are essential in body area sensor networks 

(BASNs) due to energy and resource constraints, and the critical 

nature of many healthcare applications. On-node signal 

processing and compression techniques can save energy by 

greatly reducing the amount of data transmitted over the wireless 

channel, but lossy techniques can incur a reduction in application 

fidelity. In order to maximize system performance, these tradeoffs 

must be considered at run-time due to the variable nature of 

BASN application, including sensed data, operating 

environments, user actuation, etc. BASNs therefore require 

energy-fidelity scalability, so automated and user-initiated 

tradeoff decisions can be made dynamically. 

This paper explores the utility of energy-fidelity scalability in 

BASNs from a data-centric perspective. Compression algorithms 

are identified that can be implemented on resource constrained 

BASN nodes and that have “knobs” capable of trading off 

compression ratios (and resulting transmission energy) with 

fidelity. To demonstrate the potential of energy-fidelity scalability 

on a real BASN and for a real application, the tradeoff space is 

established by adjusting these algorithms for different movement 

disorder data sets collected by a custom accelerometer-based 

BASN. Finally, mechanisms for energy-fidelity dynamic control 

are explored. 
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1. INTRODUCTION 
A confluence of advancements in diverse areas of research, 

including device integration, energy storage, sensor technology, 

and wireless communications, have facilitated the creation of 

body area sensor networks (BASNs) [1]. BASNs have made an 

early and significant impact in healthcare applications because of 

intrinsic and unique capabilities of the technology – networked 

body area sensor nodes continuously capture objective measures 

of human physiology and performance both inside and outside of 

traditional healthcare settings [2]. For example, research efforts at 

the University of Virginia have resulted in the development of a 

BASN platform, TEMPO (Technology Enabled Medical 

Precision Observation), which is an integral component of three 

clinical studies related to movement disorder assessment [3-4].  

BASNs like TEMPO are helping clinicians improve healthcare 

assessment accuracy and precision for better diagnosis, treatment, 

and assistance.       

Continued evolution of this nascent field requires compelling new 

applications of the technology, as well as research to address 

formidable practical barriers to adoption, such as form factor, 

battery life, and quality of service (QoS). Additionally, BASNs 

must be minimally-invasive to users. Unlike typical wireless 

sensor network (WSN) implementations, BASNs have fewer, 

smaller nodes. The lack of sensor redundancy increases the 

importance of preserving the fidelity of sensed data, as do safety-

critical considerations of some healthcare applications. Moreover, 

diminutive packaging bounds battery size and therefore, capacity. 

Battery lifetime and application fidelity are competing metrics, as 

the majority of the energy consumption in BASN applications is 

due to the wireless transmission of sensed data [5]. Therefore, 

BASN nodes either suffer from poor battery life or operate at 

reduced data rates to decrease time-on-radio and lower system 

energy needs. If the reduction of data rate is governed by lossy 

processes, fidelity likely suffers. 

Thus, there exists a need for design space expansion in the BASN 

domain that creates efficient tradeoffs between energy and 

fidelity. For example, some sensing tasks require longer battery 

life at lower data rates and lower fidelity (e.g. activity 

monitoring). Other sensing tasks require much higher data rates 

and fidelity at the expense of battery life (e.g. gait analysis). 

However, many applications have dynamically changing 

requirements [6], which incur momentary increases in data rate 

over long periods of low data rate operation (e.g. fall detection). 

Furthermore, run-time factors, such as the variability of the body 

area wireless channel [7], the availability of harvested energy, and 

the desire for graceful degradation of function as the battery 

drains, necessitates dynamic control over the energy-fidelity 

tradeoff. 

This paper explores the utility of energy-fidelity scalability in 

BASNs from a data-centric perspective – those that involve the 

processes of signal acquisition and digital signal processing – 

through the following contributions: 

x Identification of energy-fidelity scalable algorithms 
for BASNs: The paper identifies two algorithmic data 

rate reduction techniques: Haar wavelet compression 

and sample rate-resolution adaption. Both algorithms 
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are capable of operating in severely resource 

constrained environments such as those found in 

BASNs. Within each approach, tunable “knobs” that 

enable the tradeoff of energy and fidelity are explored. 

x Demonstration of energy-fidelity tradeoff space: 
Selected data rate reduction algorithms are implemented 

on a mixed signal processor found on the TEMPO 

BASN node. Demonstration of the tradeoff space is 

illustrated using real BASN data collected by TEMPO 

in a clinical study of Essential tremor. 

x Proposal of energy-fidelity dynamic control: Two on-

node and two off-node techniques are presented, which 

create opportunities for dynamic control over “knobs” 

associated with both schemes. The on-node approaches 

introduce fidelity-estimation and control-theoretic 

mechanisms. The off-node techniques extend the theme 

of feedback to the aggregator and system levels. 

The results are presented within the context of a derived processor 

energy model used for approximation of energy consumption, and 

for two measures of fidelity: mean squared error (MSE) and 

percent RMS distortion (PRD). As discussed in Section 2, these 

information-theoretic measures are not necessarily representative 

of application fidelity, but they offer examples for how scalability 

can be analyzed in a given BASN setting. The analysis uses data 

collected by the TEMPO system in clinical studies of movement 

disorder; however, these techniques are applicable to the larger 

domain of applications and BASN platforms. 

The remainder of this paper is organized as follows. Section 2 

discusses issues related to the identification of fidelity metrics. 

Section 3 presents the tunable compression techniques that enable 

the dynamic tradeoff of energy and fidelity. A generalized 

processor energy model is described in Section 4. Section 5 

demonstrates the energy-fidelity tradeoff space using the 

identified algorithms and the collected TEMPO data, and Section 

6 presents the mechanisms for dynamic control. Section 7 

provides conclusions and opportunities for future work. 

2. FIDELITY 
Data reduction is an important goal of BASN systems, as energy 

is saved when the radio does not have to transmit as frequently. 

Arbitrary reduction of data rate, however, will increase distortion 

and decrease fidelity. Although accepted measures of distortion 

and fidelity exist in information theory, the fidelity measures of 

concern are ultimately related to application fidelity. 

For example, BASN applications in healthcare come with strict 

application-level requirements, including precision, accuracy, 

reliability, etc. But ultimately, application fidelity measures, such 

as misclassification rates for feature extraction, false positive and 

false negative rates for event detection, and a number of other 

quantifiable measures, are what define a system’s success. In 

other words, blindly using MSE or PRD as node-level fidelity 

metrics without determining their relationships to application 

fidelity could lead to poor system performance. 

However, it is often difficult to evaluate – especially at the sensor 

node level – the impact that changes in signal processing and data 

reduction will have on such high-level fidelity metrics. 

Application-specific analyses are therefore required to explore 

how turning certain fidelity-compromising “knobs” affects 

application fidelity metrics, thus enabling the creation of models 

between data reduction techniques and fidelity metrics that can be 

calculated at different levels in the BASN, such as MSE and PRD. 

Given that this paper is providing an application-agnostic analysis 

of data-centric energy-fidelity scalability in BASNs, we must 

resort to information theoretic fidelity metrics. However, even the 

use of these metrics reveals complexities. For example, MSE and 

PRD often provide very different assessments of fidelity, which 

further emphasizes the need to identify the most appropriate 

fidelity metrics for each BASN application. 
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Figure 1. Tremor Data Collected by TEMPO 

Tremor analysis provides an example of the impact that fidelity 

metric selection has on energy-fidelity scalability. The single-axis 

acceleration data in Figure 1 was collected by the TEMPO system 

(120 Hz sampling at 12-bit quantization) on patients diagnosed 

with Essential tremor. Each plot spans ~4.3 seconds of data (6144 

bits) extracted from an hour long data set. The top plot represents 

a small stationary tremor, the bottom plot represents a large 

stationary tremor, and the middle plot illustrates the same patient 

transitioning from a small to a large tremor. 

The signals in Figure 1 were compressed using the Haar wavelet 

compression algorithm described later in this paper. The 

algorithm yielded a nearly 4:1 compression ratio for all three 

signals. The resulting post-compression plots are shown in Figure 

2 and were assessed with both MSE and PRD as follows: 
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While both metrics are generally accepted measures of fidelity 

from an information theory perspective [9], their assessments of 

the waveforms in Figure 2 were completely different. Using MSE 

as the metric, the Haar compression hardly affected the small 
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stationary tremor and horribly distorted the large stationary 

tremor. Conversely, PRD assessed the small stationary tremor as 

being the most distorted by the compression. 
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Figure 2. Reconstructed Tremor Data 

In addition, the use of different compression techniques can 

impact how metrics such as MSE and PRD are evaluated. Figure 

3 shows the small to a large tremor transition after being 

compressed using the Haar wavelet algorithm (top) and a rate-

resolution algorithm (bottom). Both signals have nearly identical 

MSE and PRD; however, the top signal appears much more 

quantized than the bottom. 

As discussed above, application-specific analyses must be 

performed to determine if these or other information theory 

fidelity metrics correlate well to the application fidelity metrics 

that ultimately matter for users. Such analyses are central to 

ensuring that energy-fidelity scalability techniques achieve the 

desired results. 

3. ALGORITHM IDENTIFICATION 
Data rate reduction is a pervasive goal of networked embedded 

systems, but identifying algorithms that are suitable for highly 

resource constrained environments remains challenging. Many 

mixed signal microcontrollers lack the rich resources found even 

in portable consumer electronic devices. BASN node resource 

constraints include: limited memory, clock frequency, storage, 

and even lack of co-processors such as floating point units.  

Therefore, computationally complex, yet highly effective, 

transform based coding is not a viable option. Data rate reduction 

on BASN platforms must meet three criteria: 

x capable of being implemented on resource-constrained 

BASN embedded processors, 

x capable of executing in low-latency and soft real-time 

applications, and  

x adjustable by key “knobs” to alter expected data 

reduction rates. 
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Figure 3. Comparison of MSE to PRD for Haar Wavelet 
Compression (Top) and a Rate-Resolution Algorithm 

(Bottom) 

Data rate reduction is quite simple, but controlling how much data 

is reduced (and the resulting impact on the defined fidelity metric) 

is more challenging. For example, simple run-length encoding, a 

lossless form of compression that exploits repeated values, 

achieves different compression ratios for different input data 

streams. Other efforts [8] have evaluated lossless data 

compression (e.g. bzip2, compress, LZO, PPMd, etc.) and have 

identified memory footprints ranging from 3 KB to 6 KB to 

achieve compression ratios of 1.4 to 5 in times ranging from ~0.5 

s to 12 s on the StrongArm SA-110 processor. These levels of 

resources and performance are not well suited to far less capable 

BASN processors operating in soft real-time applications. 

Identifying algorithms suitable for BASN implementation and 

capable of producing deterministic compression ratios based on 

tuning “knobs” is therefore a focus of this effort. 

Perhaps the simplest scheme to reduce data rate involves 

decimation and quantization of data. Decimating will reduce the 

data rate by the decimation factor. Figure 4 demonstrates different 

data compression options pertaining to decimation and 

quantization. For instance, successive decimation at a rate of 2, 

results in equivalent 2X reduction of data if no quantization is 

present. 

In a typical mixed signal processor execution environment, such 

as the Texas Instruments MSP430, integer multiple decimation 

factors are simple to implement and place minimal overhead on 

execution times. Before decimation, incoming signals are filtered 

to a rate of: 

 
D

F
F sampling

bwin
2

_ �  (3) 

where the maximum frequency present in the original sampled 

data (Fin_bw) is less than the sampling frequency (Fsampling) divided 

by twice the decimation factor (D). By taking advantage of the 

multiply accumulate (MAC) peripheral, a feature found in many 
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mixed signal microcontrollers, a high-order finite impulse 

response (FIR) low-pass filter is employed prior to decimation in 

order to reduce aliasing artifacts. The FIR filter is sub-sampled at 

the decimated rate, reducing the processor overhead by a 

proportional factor. 

 

Figure 4. Sample Rate-Resolution Adaption 

Beyond sample rate scaling, data rate may be further reduced by 

changing the sample resolution (quantization), as shown in Figure 

4. Computationally efficient on a mixed signal microprocessor, 

this form of scaling removes successive least significant bits from 

each sample (e.g., retain the 8 most significant bits and discard 

the 4 least significant bits in a 12 bit sample).  It is assumed for 

both evaluation purposes and practical implementation that a 

more resource-rich aggregator or other post-processing apparatus 

would perform an interpolation to restore the signal to its original 

rate.  Calculation of fidelity in Section 5 is performed using a 

cubic spline interpolation on the compressed data.           

A second form of compression utilizes the Haar discrete wavelet 

transform (DWT) discussed in Section 2, which performs 

successive sub-band decompositions using quadrature mirror 

filters [10]. The Haar DWT is attractive for data compression in a 

resource-constrained environment because coefficients may be 

readily computed using only basic arithmetic operations such as 

addition, subtraction, and logical shifts.  The algorithm completes 

in O(N) operations.  Furthermore, the Haar DWT creates 

opportunities for multi-resolution access and spatio-temporal data 

mining on-node [11], which are desirable for context awareness 

and highly selective data reduction in-network. 

 

Figure 5. Haar DWT Compression 

Decompositions are performed iteratively to increase frequency 

resolution. To limit the size of output coefficients, successive 

transforms are only performed on the approximation coefficients 

representing lower frequency information. 

Cascaded as described, the Haar DWT produces a joint-time 

frequency representation of the data with an output equal in size 

to the input (Figure 5). To achieve deterministic data rate 

reduction, low-order detail coefficients (starting at d1) are zeroed. 

Following the Haar DWT with a run-length encoding (RLE) 

scheme removes the repeated zero coefficients. Thus, by 

increasing the level of decomposition, more compression is 

possible, but at the expense of fidelity. 

To summarize, data rate-resolution scaling is a simplistic and 

computationally efficient form of data rate reduction that features 

two knobs: decimation factor and quantization bits removed. Haar 

wavelet compression also reduces data rate by adjusting the level 

of decomposition required along with the number of detail 

coefficients removed. All four knobs produce deterministic 

compression ratios and are therefore more easily modeled within 

an energy-fidelity scalability framework.         

4. ENERGY MODEL 
With fidelity metrics and compression algorithms identified, the 

energy model is now formalized to complete the energy-fidelity 

scalability analysis. The model is necessary to evaluate the 

performance of our energy-fidelity scheme with previously 

collected medical data from our TEMPO platform, and to isolate 

individual components (e.g. radio, sensors, mixed signal 

processor) that contribute overheads to the total energy function, 

yet cannot be measured in isolation on our integrated platform.  

Additionally, this energy model is generalizable to other BASN 

platforms.  

 

Figure 6. BASN Node Architecture 

Similar to WSNs, typical BASN node implementations are 

designed to encompass sensing, signal processing, and 

communication functionality (Figure 6). The central component 

of the BASN node architecture is the mixed-signal processor. This 

resource-constrained microprocessor may integrate a multi-

channel analog to digital converter (ADC) for sensor output 

conversion, digital signal processing (DSP) capability, and a 

Universal Synchronous-Asynchronous Receiver/Transmitter 

(USART) peripheral for radio interfacing. Control logic is 

typically coordinated by a lightweight operating system.  

Unlike WSNs, BASN devices are physically constrained by 

packaging capable of being worn, implanted, or ingested. 

Therefore, battery capacity is limited by the small form factor of 

the enclosure. As an example, a mote-like WSN node powered by 

two AA batteries will have a capacity of ~20 kJ; however, a 

BASN node inside of a wrist watch enclosure could be limited to 

as few as ~2 kJ using a common lithium coin cell battery. This 

places additional demands on BASN designs to tame conspicuous 

power consumption. 

In prevailing wireless sensor implementations, power-

consumption is dominated by the radio [5]. For a BASN with a 

star topology network and nodes communicating directly to a base 
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station, the nature of communication is usually asymmetrical – 

i.e. the nodes generate and transmit the majority of network 

traffic. Therefore, modeling radio energy consumption for most 

BASN applications can be simplified by neglecting receiver 

power and assuming fixed-interval, round-robin polling. The 

energy consumed by the radio (Figure 7) can be modeled as a 

follows [12]: 
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where Ptx is the power consumed by the transmitter circuitry, Pout 

is the power consumed by the power amplifier, Ltx is the bit 

length of the packet to transmit, Rtx is the bit rate, and Ttx_st is the 

start-up time for the modulation circuitry to settle.  

 

 

Duty cycling of the radio is essential for decreasing power 

consumption in BASN nodes. A power-gated radio can be duty-

cycled between full-on and full-off states. Therefore, energy is 

saved when the radio is not in use, and as a result, not consuming 

power. Typical values for Ptx, Pout, and Ttx_st derived from a 

commercial 2.4 GHz RF transceiver [13] and normalized for 

packet length, illustrate that radio energy is minimized by 

transmitting larger packets at higher bit rates; thus, reducing radio 

start-up overhead (Figure 8).  
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Figure 8. Energy Consumed by a 2.4 GHz IEEE 802.15.4 
Radio Transceiver 

BASNs in the healthcare domain are often designed to capture 

and forward data to a base station for post-processing into 

clinically-significant, non-obvious information. However, in other 

application domains, data reduction may be equally important. 

The volume of information extracted may only represent a 

fraction of the volume of data collected in-network. Therefore, 

reducing the quantity of transmitted data has the potential to 

increase node battery life without sacrificing relevant information. 

Such a reduction can be lossless or lossy. Although lossy source 

coding increases distortion of the input signal post reconstruction, 

it also yields higher compression ratios, on average, than lossless 

alternatives (e.g. run-length encoding, Huffman encoding). Lossy 

source encoding must be carefully implemented to reduce data 

rates for wireless transmission without significantly sacrificing 

application fidelity due to distortion. The implementation must 

analyze the rate-distortion performance over the application data 

to make appropriate decisions about the design of a source coder. 

The energy needed to compress data using a mixed-signal 

processor (Edsp) adds to the total node energy dissipation: 

 dspradiototal EEE �  (5) 

As energy is dissipated in processing, data is compressed, and like 

its radio counterpart, the processor can sleep when idle. Dynamic 

power management (DPM) is also used by the processor to move 

between ultra-low power sleep modes and active mode power. 

Data reduction is measured by a compression ratio (CR), defined 

as the size of the uncompressed message (Luncompressed) divided by 

the compressed message (Lcompressed): 

 

compressed

eduncompress

L

L
CR  (6) 

The time needed to compress an arbitrary-size message, or 

collection of samples on the microprocessor, is related to the CR 

for specific compression algorithms. This time (TPc_compress) is an 

aggregation of the time to capture samples from the ADC 

(Tcapture), the time to process the samples (Tprocess), the time spent 

waking the microprocessor from its sleep state (Tst_Pc), and the 

time to transfer the message to the radio FIFO buffer over 

USART (Ttx_fifo).   

 fifotxcstprocesscapturecompressc TTTTT ___ ��� PP  (7) 

The USART time is non-trivial, and for some modern low-power 

mixed signal microprocessors is an order of magnitude slower 

than that of the supported radio data rate.  This overhead must be 

considered when designing low-power systems. 

The processing energy (Edsp) is therefore shown in Equation 8:  

� �

¸
¸
¹

·
¨
¨
©

§
��

� 

compressc
sampling

samples
sleepc

compresscactivecdsp

T
R

N
P

TPE

__

__

...

...

PP

PP

 (8) 

where (PPc_sleep) is the sleep mode power consumption of the 

microprocessor and (Nsamples) is the number of samples taken over 

a given sampling rate (Rsamples). 

Finally, the following relation between the length of the 

transmitted packet and the compression ratio is evident, which 

includes the ADC sample resolution (Nbits/sample): 

 
CR
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L samplebitssamples

tx
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  (9) 

In summary, a higher CR, larger packet size, and higher active 

mode radio transmission bit rates will yield the largest energy 

Figure 7. Radio Power Model 
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savings. Despite the energy advantages of data compression, high 

fidelity reconstruction and high CR are competing objectives for 

lossy source coding. 

5. DEMONSTRATION OF SCALABILITY 
To demonstrate the feasibility of our data-centric, energy-fidelity 

scalable algorithms, we employed the TEMPO BASN platform at 

the University of Virginia.  TEMPO 2.0 (Figure 9) is custom 

BASN node, based on the previously described reference 

architecture (Figure 6). The device consists of a TI MSP430F1611 

mixed-signal processor, a Mitsumi 2.4 GHz radio transceiver, a 

Kionix KMX52-1050 monolithic tri-axial MEMS inertial sensor, 

and front-end signal conditioning circuitry. The filtered sensor 

outputs are captured by the on-board 12-bit ADC. Processed data 

is forwarded to the FIFO buffer of the USART-interfaced radio 

transceiver for base-station offload. 

 

Figure 9. TEMPO 2 BASN Node 

The two data reduction schemes described above were tested 

using the three data sets collected by the TEMPO system for a 

study of deep-brain stimulation efficacy in tremor control (Figure 

1). The 512 sample data sets, captured at 12 bits of resolution, 

represent an upper-bound for message length capable of being 

held in memory by a typical BASN microprocessor such as the 

MSP430. 

 Data rate reduction was measured by a compression ratio and 

included in measures of average energy-per-bit.  Distortion of the 

data was measured by mean squared error (MSE).  To compare 

two compression schemes, we adjusted the following “knobs”: 

Haar wavelet decomposition level and number of zeroed 

coefficients, sampling decimation rate, and sampling resolution.  

Finally, both data reduction methods were implemented on the 

TEMPO platform’s TI MSP430F1611 microprocessor.  

Processing energy was calculated from the previous energy model 

(Equation 8). Delays associated with processing (Equation 7) 

were measured by a Tektronix TPS2024 triggering on toggled 

port pins between sections of the data reduction firmware. Fixed 

delays are: Pµc_active=8.1mW, Pµc_sleep=24.6µW, Tcapture=13.2µs, 

and Tst_µc=6µs. The processor was operated at a 4 MHz clock rate, 

while the supply voltage was set to 3.3 V. The wireless 

transmission energy-per-bit of 2.82 µJ was estimated for a 2.4 

GHz transmitter using the 250 Kbps plot and associated packet 

lengths above (Figure 8).  This value assumes that the radio 

buffers the entirety of a message before sending it across the body 

area channel. 

Figure 10 illustrates two plots: the fidelity vs. total energy per 

incoming bit for both Haar wavelet compression and sample rate-

resolution adaption.  All three tremor signals are plotted for both 

schemes.  The top plot shows the highest energy per incoming bit 

existing at approximately 2 µJ for all three signals.  These data 

points correspond to a zeroing of only the d1 coefficients in a 

level-8 Haar decomposition.  As successively more d coefficients 

are removed, the energy-per-bit is reduced, however, so is the 

fidelity, as measured by the inverse MSE.  There are diminishing 

returns in reducing energy-per-bit as the higher level d 

coefficients have fewer bits than the lower coefficients (Figure 5).  

By adjusting the number of zeroed bits, a knob in this scheme, a 

BASN designer would be able to move along the energy fidelity 

curve for the Haar scheme.  By zeroing the first 4 d coefficients, a 

designer would like save half the total energy-per-bit of a system, 

resulting in an increase in battery life.  These results are 

comparable to results of other energy/resource constrained 

compression schemes (i.e. S-LZW) [14], yet the Haar DWT also 

enables multi-resolution processing on-node, completes in less 

time (~12 ms), and has a smaller computational and memory 

footprint.   
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Figure 10. Demonstration of Energy-Fidelity Scaling 

The bottom plot for of Figure 10 illustrates four distinct energy-

fidelity curves that correspond to each level of decimation.  

Curves start at the right hand side of the plot and are decimated 

by a factor of 2, 4, and 8 respectively.  At the top of each 

decimation curve, are samples quantized to full resolution (i.e. 12 

bits).  Decreasing the resolution of the samples moves the energy-

fidelity point down within a decimation level curve.  This result 

suggests that BASN designers should decimate as much as 

possible while remaining cognizant of Nyquist bounds for their 

application.  Once at the appropriate level of decimation, the 

sampling resolution can be tuned.   

Both plots reveal two important observations about enabling data-

centric energy-fidelity scalability in BASNs: 

x A large energy-fidelity design space for BASN nodes 
exists and is ripe for exploration.  Placed in context, 

the results clearly demonstrate that energy-fidelity 

scalability is a feasible option for resource-constrained 

BASN nodes and real data.  Knobs for Haar wavelet 

compression and for sample-rate resolution adaption 
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move BASN operation points to new levels of fidelity 

and energy-per-bit.  More work is needed to 

characterize the sensitivity of the knobs and to create 

control schemes that are appropriate for measures of 

application fidelity and not necessarily MSE.  

x Energy-fidelity curves will change over time as 
captured signals fluctuate. The three tremor signals 

each have different energy-fidelity curves for both data 

reduction schemes.  These signals, however, are in 

actuality a single axis of inertial data from one BASN 

node.  Therefore, there exists a need to dynamically 

tune knobs to adjust to situational observations.  

Moreover, fidelity estimation at the node may create 

opportunities to adapt to changes in signal 

characteristics.     

The total BASN node energy consumption is often assumed to be 

dominated by the radio. Figure 11 plots the total power consumed 

by the processor to achieve various compression ratios for both 

data reduction schemes.  The figure paints a new picture of 

BASNs energy use for data-centric, scalable operation.  At 

compression ratios between 2 and 20, the processor begins to 

consume more than 50% of the node’s total energy.  This finding 

implies that there exists a need to explore both energy efficient 

processing as well as energy efficient transmission in current and 

future BASN designs.     
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Figure 11. Processor Power Percentage 

6. DYNAMIC CONTROL 
A key aspect of achieving optimal energy and fidelity tradeoffs in  

BASN nodes is the inclusion of a dynamic control scheme which 

adapts both to the incoming data from the sensors, as well as the 

highly variable radio frequency medium employed for data 

transmission. The locus of this control mechanism may reside 

both on-node and off-node. For example, in a typical BASN 

environment, several sensor nodes may feed data to an aggregator 

at a central location on the body (i.e. the belt or pocket). The 

aggregator node usually has a larger form factor, more energy 

availability, and a more capable processor than that found on a 

sensor node. This resource asymmetry suggests employing a 

hierarchical scheme in which the aggregator may provide 

feedback to the sensor nodes in an effort to promote an optimal 

energy versus fidelity strategy. 

First, consider data-centric control strategies that originate on-

node. With proper input scaling, one node could simply make a 

decision based on the amplitude or frequency of a sensed variable 

and periodically broadcast a short status message indicating that 

no significant signal is present. However, when significant 

amplitude is reached then control strategies must exhibit a higher 

degree of intelligence. 

Another simplistic strategy may consider the relative stationarity 

of the observed data. Haar wavelet coefficients may be compared 

in successive time periods and at various decomposition levels. 

With little to no significant change in coefficients from one block 

of data to the next, it may be considered stationary in a wide-

sense. The coefficients may be sent once, and then follow up 

messages again indicate that there has been no significant change 

since the previous transmission. This method has the advantage of 

only transmitting a representation of the signal infrequently, with 

a high degree of fidelity, and if the signal remains relatively 

stationary, then little extra energy is required. 

As the input signal transitions from stationary to non-stationary, 

the control strategy must again be changed. A possible solution 

may be to employ wavelet/run length compression or bit depth 

scaling. Such a decision must be driven, in part by the availability 

of bandwidth for transmission, and any pre-established priorities 

on reconstructed signal fidelity. This may call for making on-node 

control decisions according to the availability of bandwidth in the 

radio transmission system. One possible software approach for 

implementing the interface between data acquisition and radio 

transmission is the use of a first-in-first-out (FIFO) queue. 

Conveniently, the availability of the transmission medium may be 

determined by measuring the level of queue occupancy.  

The availability of this variable facilitates a decision strategy 

based on control-theoretic approaches. One may establish a 

preferred level of queue occupancy, and use the current level of 

occupancy to develop an error indication that in turn drives a 

conventional control loop. The rate of change of this queue 

occupancy error may also be easily determined, which facilitates 

a control strategy based on the common proportional-integral-

derivative (PID) method, which is both very effective as well as 

implementable in a typical microcontroller execution 

environment. The magnitude of the feedback signal derived from 

these three terms may be used to drive further data compression, 

or increase radio power, providing that the limit in power has not 

been reached. 

The aggregator may be considered a second locus of control for 

driving decisions based on energy and fidelity requirements. This 

is especially attractive as it alleviates algorithmic complexity on-

node and may serve as a further check and feedback mechanism 

for testing the efficacy of on-node decisions as well as adding 

sensor fusion information to and control decisions. 

In one scenario the aggregator may request the node to send a full 

uncompressed block of data as well as the current compressed 

version for comparison. The aggregator could then further classify 

these results as being satisfactory or not for the type of signal 

being received. For example, it may be critical not to lose 
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information pertinent to a potential fall and should the aggregator 

sense this condition, it may advise the node to employ less 

compression and more radio power until the situation is 

ameliorated. If the recovered movement data is clearly in the 

normal range, then the aggregator may indicate that the node 

should go back to higher compression levels. In both of these 

scenarios, advantage is made of the higher computational abilities 

of the aggregator to perform signal classification and use the 

results of this classification to feed information down the 

hierarchy, and augment on-node strategies. The aggregator may 

even send its classification results back to the node, enabling a 

rudimentary form of self adjustment. 

We envision a system of interacting control strategies as being 

desirable. For example the aggregator may assist the node in 

making decisions to change the level of compression, while the 

node may inform the aggregator of the availability of on-node 

energy resources, i.e. the battery, in making decisions to increase 

radio power. Optimizing the decision space for these variables 

remains an area of active research. 

7. CONCLUSION 
BASNs represent a highly dynamic execution environment and as 

such, provide unique challenges to researchers.  Demands for 

delivering ever increasing battery life while delivering high 

quality data represent opposing factors in their design; additional 

form factor requirements are also an imposing restriction, directly 

affecting battery size and therefore energy availability. 

In order to meet these challenges, a dynamically adaptable 

execution model is necessary. The ability to alter compression 

ratios while maintaining adequate fidelity of the recovered signal 

requires careful attention to both distortion as a function of the 

algorithms employed as well as the capabilities and limitations of 

the microcontroller employed. Computationally efficient lossy 

compression techniques such as Haar wavelet transform 

compression and rate-resolution adaption are capable of 

acceptable distortion figures when appropriately applied on a 

dynamic basis to variable signals.  Moreover they provide energy 

savings on-par with other resource-constrained compression 

techniques, yet they may also enable context awareness.  

In order to maximize the effectiveness of a dynamically flexible 

signal processing and transmission chain, the control system must 

possess a great deal of intelligence. We envision hierarchical 

feedback control allowing nodes and aggregators to coordinate –  

with the aggregator having the ability to request operational level 

changes from individual nodes, and the nodes having the ability to 

respond to the aggregator with current functional abilities, such as 

remaining battery life. 

Future research will encompass rigorous characterization and 

optimization of the control scenarios. In addition energy-fidelity 

efficient partitioning of the processing load between the node and 

aggregator remains an open research question.  
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