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ABSTRACT

Pulse-coupled oscillator networks are a system of pulsing
devices that alter their pulsing patterns in response to the
pulsing events at other nodes. It is well known that these
networks can produce a number of different pulsing patterns,
among which the synchrony of pulsing. The primitive we
study in this paper belongs to the class of desynchronization
algorithms whose objective is collision resolution in networks
with extremely low power devices, which also are bound to
have very low complexity. In this paper, we introduce a new
decentralized scheduling algorithm based on the coupled os-
cillator model to achieve a schedule that allows to multiplex
in time a small network of very simple transmission devices,
based on the requests negotiated by the nodes.
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1. INTRODUCTION
The design of multiple access for Wireless Body Area Net-

works (WBAN), should account for two basic application
requirements: i) the sampling of biological signals occurs
regularly, making rather inefficient the use of asynchronous
Carrier Sensing Multiple Access (CSMA) protocols that are
adopted in most commercial interfaces, such as for exam-
ples, 802.11, Bluetooth, and 802.15.4 [12]; ii) the signals are
samples at heterogeneous rates that depend on the nature
of the phenomenon under observation [8] (for example, mo-
tion sensors, ECG sensors, breathing sensors, blood glucose
sensors etc.). The number of sensors used in different appli-
cations vary and may range from a handful of sensors to a
few dozens.

Thus, in this context one would want a multiple access
control (MAC) primitive capable of generating a regular
Time Division Multiple Access (TDMA) schedule with a
possibly variable number of nodes and satisfying heteroge-
neous bandwidth demands. Even if WBANs have naturally
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a clustered structure, decentralized MAC protocols are of-
ten lightweight and adaptive. The advantage of CSMA is
precisely its decentralized nature, that makes it suitable in
applications where nodes are intermittent, the size of the
network is unknown and the traffic demands are unequal.
However, for periodically sampled data, TDMA is more ef-
ficient and there is no reason to employ an asynchronous
medium access policy, if TDMA can be achieved in a simple
decentralized fashion.

As observed by several Authors (see e.g. [12]), the spec-
ifications of Zigbee [3], Bluetooth [1], Mica Motes [2] and
other commercial platforms are orders of magnitude above
the limits imposed by many WBAN applications. In general,
as we argued in [10], engineering WBANs can considerably
benefit from employing an integrated system point of view
in designing network primitives, based on novel and simple
physical models for the communications interactions and for
the computation of the network state.

The objective of this paper is the design and the analy-
sis of a scheduling protocol aimed at achieving proportional
fairness in dividing the bandwidth among the nodes of a
WBAN. In contrast to classical scheduling protocols, our
decentralized strategy is based on the emergent behavior
of Pulse-Coupled Oscillators (PCO) networks driven by ap-
propriate state dynamics, leading to a proportionally fair
TDMA schedule among the active nodes. Pulse-coupled os-
cillators (PCO) denote pulsing nodes that alter their emis-
sion patterns in response to the pulsing events heard from
other elements (hence the adjective coupled). The emission
of a pulse is usually referred to as firing event, whose effect
is to move earlier or later the recipients firing of the next
pulse, by altering a local state that is regulating the next
pulse emission of the node. PCO has been proposed first
in [5] as a powerful primitive for wireless networks synchro-
nization. By changing the update rule, PCOs can produce
a variety of pulsing patterns in addition to synchrony [9].
The simplicity of the hardware interface required, the scala-
bility and the low computational complexity of our protocol
make it particularly suitable for biomedical sensor networks
and brain-computer interfaces, which place extremely tight
constraints on the size and power of the sensors employed.

Background

Describing the node transmissions as those of PCO elements,
in [4], the authors found that it was possible to enforce
a TDMA schedule in a decentralized fashion, assigning to
each node 1/n-th of the frame duration, where n denotes the
number of nodes in a fully connected network. More specifi-
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cally, [4, 11] introduced two PCO protocols: 1) a scheduling
method called Desync where the nodes adjust their firing
time in each period based on two firing events of other sen-
sors, i.e. the firing that occurred right before its own and the
one that occurred right after it; 2) a protocol called Inverse-
MS which is essentially the same as the PCO technique pro-
posed for achieving synchrony in [5], except with a negative
coupling. Building on these results, in [10, 6] we proposed
two new PCO schemes to achieve TDMA distributedly with
faster convergence compared to [4, 11].

The basic hypothesis in [4, 11, 10, 6] is that the pulses sent
by the PCO elements have a very short duration compared
to the transmission period and, therefore, do not collide.
At the end of the protocol, the pulse emissions are equally
spaced in the time period of the frame. While the protocol is
running, the nodes do not know how much time is available
for transmission before the next pulsing event and, unfortu-
nately, none of the papers [4, 11, 10] explains how this self-
organizing primitive should be used for multiplexing data
transmissions in the same bandwidth without collisions. To
overcome this limitation, in [6] we proposed an implementa-
tion of the PCO-MAC as a reservation-based MAC protocol,
where each transmission frame is divided into a reservation
(or scheduling) phase and a data transmission phase. How-
ever, this method requires frame synchronization, thereby
increasing the complexity of the system.

Another drawback of the PCO state dynamics proposed in
[4, 11, 10, 6] is that they lead to uniform TDMA scheduling
only, where the same amount of time is allotted to each
sensor’s transmission.

Our main contribution in this work is the design of a bio-
inspired decentralized medium access control (MAC) proto-
col based on the PCO primitive that achieves a proportional-
fair schedule, as opposed to the uniform TDMA schedule,
while enabling transmission of sensor data in the same band-
width/time of the PCO protocol. The key difference of our
protocol compared to the ones we cited above is that each
PCO element emits two pulses, negotiating adaptively with
the other nodes a suitable collision free interval between its
own two pulses. By tracking two state variables per PCO
node, we naturally increase the flexibility of the method and
overcome the two limitations of the previous work in [4, 11,
10, 6] discussed above, with a modest increase in complexity.

In addition, our method readily defines the data transmis-
sion period as well as the guard time between sensors’ trans-
missions representing the window of opportunity for new
sensors to join the network without disrupting the collision-
free transmission.

Clearly, our approach is a departure from classical MAC
protocols, because: i) the desired TDMA scheduling can be
achieved without a master-slave architecture, nor an abso-
lute reference time; ii) regular data is exchanged during the
agreement phase and it is not necessary to split the network
activities into reservation and data transmission subframes.
The class of algorithms we investigate provides powerful, yet
very simple mechanisms to share resources, whose design can
be easily implemented in energy efficient hardware. For en-
ergy scavenging sensors, the state variables can be chosen
so as to ensure appropriate duty-cycles patterns, to save en-
ergy.

2. PULSE-COUPLING BASED NETWORK

SCHEDULING
Consider a network composed by n sensors, denoted by

s0, s1, . . . , sn−1, fully-connected through direct transmission
links. We answer the following question: Can TDMA be
achieved without a master-node architecture, nor a common
reference time?

In the simplest model, each node has a local clock of pe-
riod Tf , which we refer to as the firing cycle. The firing of
the local clock causes the node to transmit a pulse before
resetting the clock cycle and starting to count again until
Tf . When in isolation this results in the periodic emission
of pulses at the rate of 1/Tf . However, in an interconnected
network, the pulses are the tool of interaction among nodes.
The firing time of a node, in fact, embeds the information of
its local state. Therefore, the generic node i receiving a pulse
from node j at time t, can use this information to change its
local state accordingly. With coupling rules properly chosen,
this process drives the network to attain desirable emergent
properties. In mathematical terms, the generic ith node is
characterized by a local variable Φi(t), whose time-evolution
can be modeled as follows:

Φi(t) =
t

Tf
+ φi mod 1

where Φi(t) is the phase of node i at time t (local time
normalized w.r.t. Tf ), and φi ∈ [0, 1) is the initial phase
offset at time t = 0. When the clock reaches 1, node i fires a
pulse p(t) and then Φi(t) returns to 0. At the same time, the
generic node j receiving the pulse, updates its phase variable
Φj(t) according to

Φj(t
+) = f

“

∆̃j1(t), ∆̃j2(t), . . . , ∆̃jN (t)
”

(1)

where ∆̃jk indicates the phase difference between nodes j
and k, estimated by node j. Different algorithms have been
proposed, and they differ because of: i) the updating rule
(represented by the function f(·) in (1) ), ii) the updating
time (when to update), and iii) the number of nodes per-
forming the update, when a given node fires (the network
topology).

In the Inverse-MS [4], for example, when a node emits
a message, the others update their phases according to the
following model:

Φj(t
+) = f (∆ji(t)) = (1 − α)Φj(t), ∀j 6= i

assuming that i is firing at time t. This mechanism drives
all the nodes to weak convergence [4], in the sense that
the phase differences converge to Tf/n although the firing
times continuously change drifting forward. In contrast to
Inverse-MS, in the protocol proposed in [6] when node i
fires, only the nodes that are set to fire within the interval
(Tf − Tf/n, Tf ) are allowed to perform the update. In this
case, the updating function is non-linear, but it preserves the
ordering of the nodes and can achieve strong convergence,
i.e. the firing times settle to a periodic pattern, where nodes
space uniformly their firing epochs. In the Desync protocol
in [4] and in the method introduced in [10], when node i fires,
only the node with the smallest phase updates its state.

The important point to emphasize is that by properly
choosing the parameters, the algorithms proposed in [4, 6,
10] achieve strong synchronization, i.e., the phase differ-
ence between any two consecutive nodes converges to Tf/n,
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which is the sought TDMA schedule, and the firing times
converge to a constant value modulo Tf . Therefore, PCO
or consensus-based primitives can be employed to perform
round-robin activities in a network according to a uniform
TDMA schedule in a distributed, self-organizing, adaptive
(adds or removals of nodes are easily handled), and sim-
ple (low-complexity) fashion, without requiring an absolute
time reference.
The question we want to ask is whether it is possible to as-
sign different portions of the period Tf to different nodes
non uniformly. This is equivalent to say that the nodes have
different requests, and they are willing to agree, by inter-
acting, on the portions of time assigned to them in a ”fair”
manner, as we will explain in the following.

3. A PULSE-COUPLED PRIMITIVE FOR

PROPORTIONAL FAIRNESS
We assume that each of the sensors si has a specific re-

quest, Ki, which is the portion of the period Tf the node
is willing to obtain. Ki is an integer, for simplicity, within
a specified interval [1, Kmax]. For example, if Kmax = 10,
Ki = 5 means that node i is requesting the 50% of the pe-
riod Tf .
In general, the total amount of the requests K =

Pn−1
i=0 Ki

may exceed the available resource Tf , and, therefore, the
fair solution of the problem is, for each node, to obtain a
portion of the period equal to:

Ki
PN

i=1 Ki

Tf =
Ki

K
Tf . (2)

Achieving proportional fairness for us means to allow the
nodes to hold on to a portion of the frame of size equal
to (2) that preserves the ratio of the requests. For exam-
ple, if all the nodes request the 50% of the period, then, it
makes sense that they will obtain a portion of time equal
to Tf/n. Instead, if a node requests the 80% of Tf and all
the remaining nodes request the 20% of Tf , then, we would
like the former to get a portion of time which is four times
bigger than the others. Our main objective is to obtain
proportional fairness as an emergent PCO behavior, with-
out explicit knowledge neither of the total number of active
nodes nor of their requests Ki.
In order to obtain proportional fairness, we endow each node
with two state variables, namely, Ψi(t) and Φi(t). Each
PCO in our model fires twice, when each of the state vari-
ables reaches 1. In a nutshell, the node tries progressively to
separate the firing times that correspond to these two state
variables so that the time between them is equal to Ki/K,
where K =

P

Ki. This can be obtained as follows.
Initially, each node has Ψi(0) = Φi(0) = Ωi , with Ωi a

random number in [0, 1). While nobody is firing, the two
phases evolve as:



Ψi(t) = (Ωi + t/T ) mod 1
Φi(t) = (Ωi + t/T ) mod 1.

(3)

If no firings occur, the node is free to utilize the entire
frame for its own transmission, leaving a small gap of time
in the order of the pulse duration to allow other nodes to
join the network. Updates occur whenever there is a firing
event caused by one node having its Φj(t) = 1, which in
turn causes the two phase variables of other nodes to spread

Figure 1: Update of node i due to the firing of the
phase variable Φi−1 of node i − 1 at time t2.

apart. The nodes will use the gap created between its two
firing times as its own collision free interval for transmission.

In the following, the indices are going to be ordered based
on the order of the nodes’ firing times; the indices are in
descending order, so that node i + 1 fires before node i,
which fires before node i − 1 and so on. Upon hearing the
signals emitted by nodes i + 1 , node i records the firing
time t1 at which Ψi+1(t1) = 1. Then, node i fires its two
pulses. After that, upon hearing the signals emitted by node
i−1, node i records the firing time t2 at which Φi−1(t2) = 1
and updates its state. Specifically, the update at time t2
of the two state variables of node i are aimed at making
the difference Φtarget

i (t2)−Ψtarget
i (t2) as close as possible to

Ki/Ksum. We will show that this can be obtained through
the following update (see Figure 1):



Ψi(t
+
2 ) = αΨtarget

i (t2) + (1 − α)Ψi(t2)
Φi(t

+
2 ) = αΦtarget

i (t2) + (1 − α)Φi(t2)
(4)

where α ∈ (0, 1) and

Ψtarget
i (t2) = Φi−1(t2) +

1

2

Ψi+1(t2) − Φi−1(t2)

Ki + 1

=
1/2

Ki + 1
Ψi+1(t2)

Φtarget
i (t2) = Φi−1(t2) +

Ki + 1/2

Ki + 1
(Ψi+1(t2) − Φi−1(t2))

=
Ki + 1/2

Ki + 1
Ψi+1(t2).

In the update we assume that node i has access to the state
of node i + 1 at time t2.

Remark 1: Note that node i has only access to the state
of node i + 1 at time t1. Therefore, it only has an outdated
estimate of Ψ̃i+1 of Ψi+1(t2). This is similar to what was
assumed in analyzing the Desynch protocol in [4]. Since
the nodes transmit information during the interval between
their firing events, which are marked by their two state vari-
ables, Φi and Ψi, to guarantee the absence of collisions in
our setup, it is necessary to preserve the alternating order
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Figure 2: The state variable during the update of
node i.

of the state variables, · · · > Φi+1(t) > Ψi+1(t) > Φi(t) >
Ψi(t) > Φi−1(t) . . . . As a result, these intervals cannot over-
lap. The main problem with using outdated estimates is
that in a non-steady state condition it is possible to have
Ψi+1(t

+
2 ) < Φi(t

+
2 ) and, therefore, having overlapping inter-

vals which in turn cause collisions. However, in Section 4 we
will show how to modify the dynamics in (4) so as to avoid
clocks overlapping. We also discuss why using an estimate
Ψ̃i+1 in lieu of Ψi+1(t2) does not affect the convergence.
The next theorem proves that the dynamics in (4) converge
to the desired proportional fair schedule. More specifically,
we prove that the time gap ∆i(t) = Φi(t) − Ψi(t) between
the two state variables of each node converges to β Ki

K
Tf ,

where β = 1/(1 + n/(2K)).

Theorem: 1. For any initial condition (Ω1, Ω2, . . . , Ωn),
algorithm (4) converges. Furthermore, let ∆i(t) = Φi(t) −
Ψi(t), Θi(t) = Ψi(t) − Φi−1(t), and β = 1/(1 + n/(2K)).
Then, limt→∞ ∆i(t) = βKi/K and limt→∞ Θi(t) = β/(2K),
for all i.

Proof. To aid our proof, in Figure 2 we show the state
variables as points over the circle with perimeter Tf . The
firing events occur in counter-clockwise order. The situation
described is the update of node i, according to (4). In the
following we omit the time dependency.

The update made by node i when node i−1 fires, modifies
variables Θi, ∆i and Θi+1 as follows:

Θ′

i = Ψ′

i =
1

2

α

Ki + 1
(Θi + ∆i + Θi+1) + (1 − α)Θi (5)

=

»

1 − α
Ki + 1/2

Ki + 1

–

Θi +
1

2

α

Ki + 1
∆i +

1

2

α

Ki + 1
Θi+1

∆′

i = Φ′

i − Ψ′

i (6)

= α
Ki

Ki + 1
Θi +

»

1 −
α

Ki + 1

–

∆i + α
Ki

Ki + 1
Θi+1

Θ′

i+1 =Ψi+1 − Φ′

i = Ψi+1 − (Θ′

i + ∆′

i) (7)

=
1

2

α

Ki + 1
Θi +

1

2

α

Ki + 1
∆i +

»

1 − α
Ki + 1/2

Ki + 1

–

Θi+1

while all the other variables remain the same.
Based on our indices order, the first who performs the

update is node n, followed by n− 1 and so forth. Given the
initial condition provided by the vector

x[0] = (∆1[0], Θ2[0], ∆2[0], Θ3[0], . . . , ∆n[0], Θ1[0])

= (0, Ω2 − Ω1, . . . , Ωn − Ω1)

the evolution of the system can be described as:

xinf = · · ·Mn−1MnM1M2 . . .Mn−1Mnx[0]

= lim
k→∞

Mkx[0] = M∞x[0] (8)

where M =
Qn

i=1 Mi and M∞ = limk→∞ Mk. The state of
the network, at iteration k, can be characterized by a vector,
namely, x, whose components are given by the variables ∆i

and Θi. Thus, we define the state vector at iteration k
as x[k] = (∆1[k], Θ2[k], ∆2[k], Θ3[k], . . . , ∆n[k], Θ1[k]). In
order to achieve proportional fairness, in the limit for k → ∞
x[k] to converge to

xinf = (K1/K, 0, . . . , Kn/K, 0)

that corresponds to the case where the generic node i uses
a portion of time equal to Ki/K of the frame to transmit
data. Since

P

Ki/K = 1, with Θi = 0, ∀i there would not
be any remaining empty interval to accommodate external
nodes willing to join the network. Thus, a preferable fixed
point for (8) is

xinf = β(K1/K, Θ2,inf , K2/K, . . . , Kn/K, Θ1,inf)

where Θi,inf = limt→∞ Θi(t), and
P

xi,inf = 1 (assuming Tf

= 1). If Θi,inf > 0, ∀i, external nodes will have room to join
the network.

Consider equation (8). Each Mi is a full-rank matrix com-
posed of a 3-by-3 positive block at position 2i − 1, with
coefficients given by (5)-(6)-(7), while the rest is 1 on the
diagonal and 0 elsewhere. A finite product of full-rank ma-
trices is full-rank, thus, M is full-rank. In particular, it is not
hard to see that Mi is left-stochastic for all i, and, therefore,
M is left-stochastic. M =

Qn
i=1 Mi in Eq.(8) is, in fact, a

non-negative primitive matrix (see Appendix). Therefore,
we can conclude that there is a positive eigenvalue λmax = 1
strictly greater, in magnitude, than all the other eigenval-
ues, with eigenvector w. This eigenvalue is also eigenvalue of
M∞, corresponding to the eigenvector w (unique), because
Mw = w implies Mkw = w, for any k > 0. Therefore,
limk→∞ Mkw = M∞w = w. Hence, w is fixed point of M,
as well as of M∞ and what is left for us to show is that w
has the desired structure xinf . Consider the vector:

wi = [w1, w2, . . . , 1/(2K), Ki/K, 1/(2K), . . . , w2n−1, w2n]T .
(9)

We have that Miwi = wi, ∀i. In fact, Mi has a positive
3× 3 block centered at 2i− 1, 2i− 1, which modifies entries
(2i − 2, 2i − 1, 2i) of wi, while the remaining entries remain
constant, because the rest of the matrix is equal to one on
the diagonal and zero elsewhere. By equation (5), we have
„

1 − α
Ki + 1/2

Ki + 1

«

1

2K
+

1

2

α

Ki + 1

Ki

K
+

1

2

α

Ki + 1

1

2K
=

1

2K

and, by Equation (6) (similarly for (7) )

α
Ki

Ki + 1

1

2K
+

„

1 −
α

Ki + 1

«

Ki

K
+ α

Ki

Ki + 1

1

2K
=

Ki

K
.

If w is eigenvector of M =
Q

Mi, then w is eigenvector
for any Mi, or, in other words, w is the intersection of the
eigenvectors of matrices Mi, of the form given in (9). Thus,

w = [K1/K, 1/(2K), . . . , Kn/K, 1/(2K)]T (10)

where K =
P

Ki. Because M is nonnegative primitive and
stochastic, from the Frobennius-Theorem [7] we know that
M∞ = limk→∞ Mk has eigenvalue 1, while the others are
strictly less than 1 in absolute value. Moreover, from the
same theorem, the (positive) eigenvector corresponding to
eigenvalue 1 is unique, up to an amplification factor (if w is
eigenvector, so is βw). Since we have shown that w is the
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eigenvector of M∞ with eigenvalue 1, then w is the (unique)
fixed point of the system.

We know from the theorem that row i of M∞ is composed
of elements equal to the i-th entry of wnorm.
For any initial condition x[0] such that

P

xi[0] = 1, with
xi[0] > 0, ∀i, and M∞ = β[w11

T ; w21
T ; . . . ; w2n1T ], we

have

lim
k→∞

Mkx[0] = M∞x[0]

= β[w11
T ; w21

T ; . . . ; w2n1T ]x[0]

= β[K1/K, 1/(2K), . . . , Kn/K, 1/(2K)]T

because
P

xi[0] = 1. Since
P

xi[0] = 1, then β
P

wi = 1
and,

β
X

wi = β
“ n

2K
+ 1

”

= 1 ⇒ β =
1

1 + n
2K

. (11)

Therefore, Algorithm (4) converges to the (unique) fixed
point given by wnorm = β[K1/K, 1/(2K), . . . , Kn/K, 1/(2K)],
which corresponds to the desired proportional fairness schedul-
ing policy.

As we have shown in Equation (11), the portion of time
node i obtains by iteration, goes to βKi/K, as the time
evolves. Obviously we would like to have β = 1, which
corresponds to having no empty spaces between different
nodes, and this happens when n/(2K) → 0. However, as we
will see in the next section, in order to allow external nodes
to join the network, β must be less than 1 and there is a
trade-off between the number of nodes and K. In any case,
tha ratios between the requests are preserved, i.e., the ratio
between βKi/K and βKj/K is equal to Ki/Kj , ∀i, j, i 6= j.
Finally, notice that β = 1

1+ n
2K

> 1
1+1/2

= 2/3.

4. CROSS-LAYER SCHEDULING AND

DATA TRANSMISSION
As we mentioned before, the order of nodes’ clocks needs

to be preserved so that the nodes can transmit without col-
lisions in the interval gap between their own firing events.
This allows to use the bandwidth as the schedule is com-
puted and it has also the benefit of making unnecessary to
identify explicitly the node that it is firing. Thus, we need
to avoid the overlapping of intervals that are between the
two firing events of different nodes. In Remark 1 in Section
3 we noted that, even if node i can only obtain an estimate
of Ψi+1, the value (Ψ̃i+1 + Φi)/2 is the true value, since it
was obtained when node i+1 fired, hence, before the update
of both node i and i + 1.

To ensure that this constraint is met at all times, one can
modify the update equations as follows:
8

<

:

Ψi(t
+
2 ) = α max(Ψtarget

i (t2), Ψi/2) + (1 − α)Ψi(t2)
Φi(t

+
2 ) = α min(Φtarget

i (t2), (Ψi+1 + Φi)/2)
+ (1 − α)Φi(t2).

(12)
To see that the model in (12), intuitively, converges, let us

make some observations. For the dynamics in (4) Theorem
1 showed that the fixed point is given by wnorm. Therefore,
when node i − 1 fires, as shown in Figure 2, we have that
Φi−1 = 0, Φi −Ψi = βKi/K, and Ψi −Φi−1 = Ψi+1 −Φi =
β/(2K). Now, if we analyze the system in (12), we see
that max(Ψtarget

i , Ψi/2) = Ψtarget
i and min(Φtarget

i , (Ψi+1 +

Φi)/2) = Φtarget
i (where we omitted the time indices for

brevity). In fact,

Ψtarget
i = β

1/2

Ki + 1

„

β

K
+ β

Ki

K

«

=
β

2K

Ki + 1

Ki + 1
=

β

2K

> Ψi/2 =
β

4K

and

Φtarget
i =

Ki + 1/2

Ki + 1

„

β

K
+ β

Ki

K

«

=
β

K
(Ki + 1/2)

< (Ψi+1 + Φi)/2)/2 =
β

K
(Ki + 3/4).

Therefore we have

Ψ(t+2 ) = αΨ(t2) + (1 − α)Ψ(t2) = Ψ(t2)

Φ(t+2 ) − Ψ(t+2 ) = (1 − α)β
Ki

K
+ α

„

β

K
(Ki + 1/2) −

β

2K

«

= β
Ki

K
.

Thus, wnorm is also a fixed point of (12). Could there be
other fixed points? The answer is no. In fact, consider
the case where Φi − Ψi = γ 6= βKi/K, and Ψi − Φi−1 =
Ψi+1−Φi = γ0. We could have max(Ψtarget

i , Ψi/2) 6= Ψtarget
i

or min(Φtarget
i , (Ψi+1 + Φi)/2) 6= Φtarget

i or both.
Suppose, for instance, that max(Ψtarget

i , Ψi/2) = Ψi/2
and min(Φtarget

i , (Ψi+1 +Φi)/2) = (Ψi+1 +Φi)/2. We would
have

Φi(t
+
2 ) − Ψi(t

+
2 ) = (1 − α)γ + α

„

Ψi+1 + Φi

2
−

Ψi

2

«

= (1 − α)γ + α
Ψi+1 + γ

2
= γ (13)

which is not true for any i and Ψi+1. Moreover, we have

Ψi(t
+
2 ) = αΨi(t2)

2
+(1−α)Ψi(t2) = (1−α/2)Ψi(t2) 6= Ψi(t2).

We can make similar observations for the other two cases.
In conclusion, model (12) has a unique fixed point, which is
given by wnorm. If we look at (12), we see that the dynamics
the system follows, is equivalent to (4). The only difference
is that, in this case, the clocks of node i are bounded by Ψi/2
and (Φi + Ψi+1)/2, but the behavior is the same, as well as
the fixed point. Therefore, we provided an explanation on
why model (12) converges, while preserving the interval gap
between the two firings of each node as a collision free slot
for the node transmission. This is further detailed in the
next section.

4.1 The Proposed Scheduling Algorithm
Based on the two state PCO model described above we

are now ready to introduce an algorithm that combines both
the scheduling of the network activities with the transmis-
sions of data in the same bandwidth adaptively. The algo-
rithm is able to accommodate new nodes willing to join the
network, and re-arrange the system when nodes already in
the network leave and the adaptation occurs as the nodes
continue to transmit their data. Furthermore nodes do not
use a common time reference as in reservation protocols,
which increases the system complexity. In our proposed
MAC protocol each node, say node i, follows the dynamics
in (4). Suppose that, at iteration k, the firing times of node
i, namely Φi and Ψi, are tΦ[i, k] and tΨ[i, k] respectively. At
time tΦ[i, k] node i fires, i.e., he emits a pulse. Within the
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interval (tΦ[i, k], (tΨ[i, k]), node i is allowed to transmit reg-
ular data. At time tΨ[i, k], node i stops transmitting data
and delivers his second firing. The problem of this scheme is
that it is not easy for the nodes to distinguish between short
pulses and regular data traffic, and this introduces addi-
tional complexity on the implementation of physical devices.
To overcome this difficulty, we stipulate that node i trans-
mits data between its own firing times. If so, the channel
transitions IDLE->BUSY, and BUSY->IDLE, identify the
firing times Φi(t) = 1 and Ψi(t) = 1, respectively, of node
i. Thus, in our protocol, node i transmits data between the
firings of Φi(t) and Ψi(t). While not transmitting, node i
can interpret as firing events the transitions of the channel
from IDLE to BUSY or viceversa, and identify the Φj(t)
and Ψj(t) firing events of the other nodes. Alternatively, a
unique signature can be assigned to be the PCO pulse.

An external node willing to join the network can identify
an interval with no transmissions (whose beginning is iden-
tified by a BUSY->IDLE channel state transition) to begin
negotiating with other nodes some space. Hence, the incom-
ing node only needs to realize when transmissions stop, at
which point it can perform its first firing according to (3).
On the other hand, if a node leaves the network, the others
will start eroding the interval of time left empty, and they
will redistribute the resource according to their requests.

As we have seen so far, the fixed point of the system (10)
is such that the time elapsed between Φi and Ψi converges to
β(Ki/K)T . On the other hand, the time difference between
two consecutive firings of different nodes, Ψi −Φi−1 goes to
β(1/(2K))T . Therefore, in order for the network to host new
nodes we need the quantity β(1/(2K))T to be greater than
the duration of the message an external node delivers to join
the network. Hence, if δ is the duration of this message, we

must satisfy the condition β T
2K

> δ, or K < βT/δ
2

. We have

then K =
P

Ki ≤ nKmax < β
Tf /δ

2
and, thus,

n ≤ β
Tf/δ

2Kmax
≤

3

4

Tf/δ

Kmax
= nmax.

nmax is the maximum number of nodes a network can
handle, in the sense that if n = nmax no external nodes can
join the network, unless some of them leave the system. If,
for example, T = 1s, δ = 1ms, and Kmax = 10, then for
n > nmax = 70, no external nodes can join the network. We
cannot have the cake and eat it too: as long as we wish to
allow new nodes to join the network, we need to have periods
of time with no transmission, and therefore, there is a trade-
off between the total bandwidth that can be used and the
number of nodes a network may accommodate. nmax is a
rough estimate, since variables Θi may be less βTf/(2K) if
the network has not reached the steady-state yet. However,
nmax gives an idea on the maximum number of nodes the
network can handle.

A simple event-driven algorithms that implements our
protocol is given in Al. 1. The SFD signal event is the
start of frame delimiter, which indicates the beginning of
the stream from another node. When SFD is set to low-
high it indicates the transition of the channel from busy to
idle; when set to high-low it indicates a transition of the
channel from busy to idle. Those events identify variables
Φj(t) and Ψj(t), for some external node j. Alternatively, the
nodes can explicitly indicate their firing times with a dedi-
cated signature waveform that delimits their slot. Between
the two local firings of node i, the node transmits data, while

the ”enable” flag is used to determine when to perform the
update.

Algorithm 1 Event-driven description of our proportional
fairness scheme.
1. SFD Interrupt
2. if( SFD Interrupt == high-low )
3. next = 1 - Φi; SFD Interrupt == low-high;
4. else
5. SFD Interrupt == high-low;
6. if( ∼enabled)
7. return;
8. (Ψi, Φi) = update(Ψi, Φi + next)
9. set timer Ψ; set timer Φ; enabled = 0;

10. Timer Φ tick
11. start stream; set Φ( t + T );
12. Timer Ψ tick
13. stop stream; set Ψ( t + T ); enabled = 1;

In algorithm Al.2, is shown the procedure for joining the
network. The incoming node waits until it senses that there
is no signal in the channel, which means the last firing event
Ψi = 1 happened, for some i. Then, the node emits a pulse,
and begins performing algorithm Al.1.

Algorithm 2 Join procedure for an external node.

1. set SFD Interrupt = high-low;
2. SFD Interrupt
3. start stream(δ); start algorithm 1;

5. NUMERICAL RESULTS
In Figure 3 is reported the evolution of variables Φi and

Ψi for each node, with respect to Ψ1, when Ψ1 = 0. In
this case, the requests of the nodes are given by the vector
K = [10, 10, 4, 4, 2]. As we can see, nodes 1 and 2, requesting
K1 = K2 = 10, obtain the biggest portion of the period,
and these portions are equal. Notice that the ratio of the
intervals are the same w.r.t. the ratios of the requests Kis.

In Figure 4 is reported the evolution of variables Φi and Ψi

for each node when the requests are K = [10, 10, 10, 10, 10].
As expected, the nodes obtain an equal amount of the to-
tal period Tf . We would like remark that the intervals
(Φi, Ψi+1) are different in Figures 3 and 4. This is because
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Figure 3: The colored area is the elapsed time be-
tween Φi and Ψi. K = [10, 10, 4, 4, 2].
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Figure 4: The colored area is the elapsed time be-
tween Φi and Ψi. K = [10, 10, 10, 10, 10].
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Figure 5: Evolution of Φi and Ψi, with respect to Ψ1,
when the objective vector K changes over the time.
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Figure 6: Evolution of Φi and Ψi, with respect to Ψ1,
when nodes join and leave the network.

variables Θi converge to 1/(2K), which is different in the
two cases.

In Figure 5 the nodes change their request as the time
evolves. At the beginning the requests of the nodes are
given by the vector K = [5, 5, 5, 5, 5]. At iteration 200 node
1 changes its demand to K1 = 20. At time 400 node 5
changes its demand to K5 = 20. Finally, at iteration 700,
the requests vector becomes K = [10, 10, 10, 10, 10]. We can
observe that the network adaptively changes the portion of
time for each sensor, according to the actual requests.

In Figure 6 we allow nodes to leave or enter the network.
The initial configuration of the network is characterized by
5 nodes, whose requests are K = [5, 5, 5, 20, 20]. At iteration
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Figure 7: Error as a function of the number of iter-
ations, for different values of N .

200, nodes 4 and 5 leave the network. Therefore, nodes 1,
2 and 3 remain, and we can see that the share the period
Tf equally, since K1 = K2 = K3 = 5. At iteration 500
a new node, node 6, joins the network, and its demand is
K6 = 20. The final state of the network is then given by
4 nodes: node 6 obtains the biggest amount of time, while
the rest is equally divided by the remaining nodes, node 1,
2 and 3.

In order to evaluate the performance of the proposed pro-
tocol, we consider the following metric

error = E
˘

||x[L] − wnorm||2
¯

where x[L] = (∆1, Θ1, . . . , ∆n, Θn)[L] is the state of the net-
work after a fixed number of updates equal to L.
In Figure 7 is reported the error, defined above, as a func-
tion of the number of iterations, for different values of the
number of nodes N and random initial conditions. As we
can see, the error asymptotically converges to zero, and the
speed of convergence decreases with the number of nodes,
as expected.

6. CONCLUSIONS
In this paper we introduced bio-inspired algorithm to sched-

ule the access to the wireless medium. This scheme is adap-
tive, serves heterogeneous traffic, does not require an ab-
solute time-reference, and is fully-decentralized. We pro-
vided a proof of convergence of the proposed algorithm, and
derived an implementation for event-driven embedded soft-
ware architectures, such as TinyOS. Finally, we provided
performance results, in terms of the achievable accuracy, as
a function of the number of iterations and the number of
nodes involved.
The results we provided indicate that there are promising
alternatives to research in the class of PCO MAC protocols
that could lead to self-organizing schemes for collision-free
multiple access. Future work will include the practical im-
plementation of the PCO-MAC protocol we proposed.
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APPENDIX

Lemma: 1. M =
Qn

i=1 Mi is a nonnegative primitive ma-
trix. In particular, M2 > 0.

Proof. The matrix Mi has a 3×3 positive block centered
at position (2i − 1, 2i − 1) for all i. The rest of the matrix
is equal to one on the main diagonal and zero elsewhere.
When i = 1, the 3 × 3 block is divided into one 2 × 2 block
on the top-left of the matrix, a 2 × 1 on the top-right, a
1 × 2 block at the bottom-left, and a 1 × 1 block at the
bottom-right. This is because the update of node i modifies
variables ∆1, Θ2 and Θn+1, and the latter is in common
with node n. We will refer to the nonzero block of matrix
Mi to as Si.

M =
Qn

i=1 Mi is a nonnegative matrix, since it is a prod-
uct of nonnegative matrices. We prove now that M is also
primitive, by induction. The first product Mn−1Mn is a
product of two nonnegative matrices with 3 × 3 positive
blocks centered at (2n−3)×(2n−3) and (2n−1)×(2n−1),
respectively. The submatrix Mn−1Mn(1 : 2n−5, 1 : 2n−5)
is equal to the identity matrix, since both Mn−1 and Mn

are equal to the identity matrix in that block.

The elements corresponding to the positive elements of
Sn−1 and Sn are positive. This is because Mn−1 and Mn

are both positive on the main diagonal. Consider, now, the
elements on the right side of block Sn−1 in Mn−1Mn. The
elements on row 2n − 2 are positive, because they were in
Sn, and, as we said, they remain in Mn−1Mn. The elements
at rows 2n− 3 and 2n− 2 are given by the product of a row
in Mn−1 whose 2n − 2th element is positive, and a column
in Mn, whose 2n − 2th element is positive too. Therefore,
the elements on the right side of block Sn−1 in Mn−1Mn

are positive.
Suppose at step i, with i = n, n − 1, . . . , 3, matrix Mi is
positive on the diagonal and on the upper-triangular part
Mi(2i − 2 : n, 2i − 2 : n). Because Mi−1 is positive on
the diagonal, then Mi−1Mi is positive on the diagonal and
on the triangle M(2i − 1 : n, 2i − 1 : n). Moreover, each
element at rows 2i − 3 and 2i − 4 of Mi−1Mi, is a product
of a row with a positive entry at 2i− 1, and a column which
is positive at position 2i−1. Therefore, Mi−1Mi is positive
on the triangle M(2i− 4 : n, 2i− 4 : n), while the rest of the
matrix is one on the diagonal and zero elsewhere.
At the last step we multiply M1 by

Qn
i=2 Mi. Each element

of the top row of
Qn

i=1 Mi is a product of the top row of
M1 and the corresponding column of

Qn
i=2 Mi. They both

have a positive entry at position 2, therefore, the top row of
the resulting matrix is positive. Similarly, the bottom row
of

Qn
i=1 Mi is positive.

Thus, matrix M =
Qn

i=1 Mi is positive on both the right
triangular part and the bottom row. Element (i, j) of M2

is the product of row i and column j of M. Row i has, at
least, one positive element (the last element). Column j has
the last element which is positive too, therefore the product
is positive. Since this is true for every (i, j), then M2 > 0.
In Figure 8 an example, with n = 6, is depicted.

Figure 8: Spreading of non-zero elements of the
product

Qn
i=1 Mi. From the top-left to the bottom-

right it is shown the evolution of the product, with
n = 6 (non-zero elements are in gray).
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