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ABSTRACT 

In most wireless body sensor network (BSN) applications, the vast 

majority of the total energy is consumed by the wireless 

transmission of sensed data. Transmitting one bit using a typical 

wireless communication system can consume as much energy as 

1000 cycles of an embedded processor. Reducing this 

transmission energy – even at the expense of increasing another 

component’s energy – is essential to meeting the battery life and 

form factor (i.e. small battery) requirements of many BSN 

applications. While improved wireless communication and 

networking techniques can help do just that, simply compressing 

the sensed data to reduce the number of transmitted bits can 

provide significant savings. However, BSN platforms and 

applications impose many constraints on compression techniques, 

including fidelity (focus on lossless techniques, as required for 

many medical BSN applications), programmability (enable ease 

of code development and deployment), adaptability (achieve high 

compression ratio regardless of location, subject, activity, etc.), 

and implementability (require low processing and memory 

resources). This paper analyzes variations of two known real-time 

lossless compression algorithms, Huffman encoding and delta 

encoding, within the context of these BSN constraints. 

Experimental results on a multi-node accelerometer-based BSN 

show the strengths and weaknesses of each algorithm and 

ultimately reveal the superiority of dynamic delta encoding for 

BSNs, including an average 35% energy savings across a range of 

activities, sensor locations, and sensor axes. 

1. INTRODUCTION 

Wireless BSNs are emerging as a technology with tremendous 

potential for a variety of applications, including healthcare, 

clinical medicine (including telemedicine), biomedical research, 

emergency medicine, first responder safety, homeland security, 

athletics, etc. While significant efforts have been made to develop 

and deploy BSNs, there are numerous technical challenges that 

remain in order for BSNs to be practical for the applications for 

which they are envisioned. In particular, BSN nodes must be 

smaller to minimize invasiveness and maximize wearability and 

must have longer battery lifetimes to enable significant data 

collection. However, these are competing metrics, as the size (and 

therefore capacity) of the battery is the primary factor in 

determining the dimensions of a BSN node. While improved 

energy harvesting and storage provide promise for the future [9], 

the options immediately available to BSN developers involve 

improving energy efficiency – especially the energy related to the 

wireless transmission of sensed data, which is the largest energy 

consumer in most BSN systems. 

While work is being done to improve the energy efficiency of 

wireless transceivers and to explore the energy vs. quality-of-

service tradeoffs in communication coding and wireless 

networking protocols, the most direct way to reduce energy due to 

wireless transmission is to simply reduce the number of bits that 

need to be transmitted. On-node signal processing algorithms, 

such as feature detection and pattern recognition, can be used to 

convert some of the raw sensed data into application information 

that can be coded using fewer bits, but most of these algorithms 

are application-specific. It is desirable from a programmability 

and deployment perspective for BSN devices to be general 

enough that a single device executing the same code can be 

efficient for a wide range of applications and even sensor 

locations and activities within applications. Even within a 

particular application, the critical data/information cannot always 

be reliably determined/extracted, so any such pre-processing may 

be problematic for fidelity-critical applications, such as the many 

medical applications for which BSNs are envisioned. Therefore, 

lossless compression techniques are the most general and reliable 

tools for reducing wireless transmission energy in BSNs. 

However, given the severe resource constraints of most BSN 

nodes, any compression algorithm must have low processing and 

memory requirements while still providing real-time throughput 

(i.e. the processing must keep up with the data sampling rate) and 

an overall energy savings (i.e. the additional energy consumed by 

the processor running the compression algorithm cannot exceed 

the wireless transmission energy saved). The embedded 

processors on BSN nodes typically operate in the tens of 

megahertz and have on-chip memories of only several kilobytes. 

These restrictions can limit the implementability of many 

dictionary-based compression techniques (e.g DEFLATE, RLE). 

Efforts to increase total memory by including off-chip memories 

have been proposed [12], but off-chip access time can be quite 

high and the additional resources (particularly area and power) 

may not make this approach worthwhile, especially in resource 

scarce BSNs. Finally, the characteristics and requirements of 

many BSN applications are significantly different from most 

WSN applications, including both static parameters (e.g. higher 
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data rates and fidelity requirements) and dynamic variables (e.g. 

rapidly varying data properties and channel conditions). 

This paper provides an analysis of resource-aware lossless 

compression techniques specifically targeting BSN characteristics 

and requirements. The following metrics are considered in the 

analysis: 

• Compression ratio: Number of bits before compression divided 

by the number of bits after compression. 

• Processor cycles: Number of cycles the processor needs to run 

the compression algorithm for each sample, which is 

proportional to the processing energy consumption of the 

algorithm. 

• Average energy savings: Combination of the previous two 

metrics that is estimated from the data sheets of common BSN 

transceivers and embedded processors. 

• Memory requirement: Approximate amount of memory 

required to implement the algorithm. 

• Adaptability: Ability of the compression algorithm to adapt to 

static parameters (application, wearer, sensor type, sensor 

location) and dynamic variables (activities, time), continuing to 

provide high performance without negatively affecting the 

other metrics of interest. 

• Programmability/deployment: Related to the previous metric, 

the ability to adapt to static parameters enables the developer to 

program and deploy all nodes the same way, regardless of the 

application, wearer, sensor type, and sensor location. 

Background work considered a number of lossless compression 

techniques, but this paper focuses on two of the most promising 

with respect to the metrics of interest – delta encoding and 

Huffman encoding. Delta encoding transmits the difference 

between each reading rather than the full reading. If the number of 

bits required to encode the delta (referred to as delta bits) is 

regularly less than what is required to encode the full reading, 

significant compression ratios can be achieved. The compression 

can be made lossless by including a special code after a reading 

that exceeds the representable delta range. The number of delta 

bits can be determined statically or dynamically, and both 

approaches are considered here. Huffman encoding depends on 

some readings occurring more than others, so by assigning 

frequent readings codes with fewer bits, the total number of 

transmitted bits will decrease. This paper compares both 

algorithms and some of their derivatives within the context of 

BSNs and with respect to the above metrics. 

The rest of this paper is organized as follows. Section 2 describes 

some related work done in the field. Section 3 provides additional 

detail on the BSN domain specific metrics by which the 

compression techniques are evaluated, and Section 4 presents 

some background information about the compared compression 

techniques. Section 5 specifies the experimental setup, including 

the accelerometer-based BSN that provided the sample 

experimental platform for this study, and Section 6 details the 

experimental results and provides analysis on the compression 

techniques with respect to the metrics.  

2. Related Work 

While many previous results evaluate compression techniques, 

few evaluate them from sensors network perspective. For BSNs, 

the focus must be on energy and other resource requirements 

rather than solely the compression ratio. 

Some compression techniques have been modified to suit general 

sensor network applications. One group focused on exploiting the 

spatial correlation in sensor data [4][6], but those techniques are 

directed towards specific applications. Other researchers tried to 

exploit the spatio-temporal correlation by focusing on data-centric 

routing and aggregation [1][17]. 

Some researchers tried to modify existing techniques to suit 

sensor networks, such as Saddler and Martonosi’s work focusing 

on LZW compression [19] and some of its derivatives aimed at 

embedded systems [4]. In their research, they show that such 

techniques, while suitable for embedded systems, are still not 

suited for sensor systems in general [16]. They looked into several 

compression techniques like LZO, ZLib, bzip2 and PPMd, and 

they concluded those techniques will not be suitable for sensor 

networks because they need more than 10 kB of RAM, which is 

the typical RAM size in many sensor nodes. As a result, they 

proposed a technique derived from LZW, called S-LZW. 

In this paper, we selected off the shelf techniques that showed 

potential to be suitable for BSNs. In the same time the techniques 

are general enough to be application independent.  

3. METRICS 

Normally to evaluate a compression technique, only the 

compression ratio is taken into consideration. However, like in 

WSNs, compression in BSN devices must consider several other 

metrics [15]. In this section, we detail a mix of metrics that 

provides an overall performance evaluation for compression 

techniques within the context of BSNs. 

3.1 Energy Savings 

Since the main point of implementing a compression algorithm 

directly on BSN sensor nodes is to reduce energy consumption, a 

formal energy savings equation must be introduced. Given that the 

embedded microprocessor on the sensor node may be in a sleep 

mode if it were not being used for compression, the energy 

equation must include both the reduction in transmission energy 

due to the reduced number of transmitted bits and the increase in 

processing energy. Given that compression does not affect other 

sources of energy consumption (e.g. the energy drawn from the 

sensors), only those two sources are considered here. 

The average energy savings per sample is simply the difference 

between the energy before and after compression: 

 IdleBitBefore ECYCERESE ** +=   (1)  

 ActiveBitAfter ECYCE
CR

RES
E ** +=  (2) 

where EBefore and EAfter are the energy consumption per sample per 

sensor before and after the compression, respectively, RES is the 

number of bits for each reading (i.e. bits per sample per sensor), 

CR is the compression ratio, EBit is the energy required to transmit 

one bit wirelessly, CYC  is the number of active processor cycles 

the compression algorithm needs to compress one reading, and 

EIdle and EActive are the energy per idle and active processor cycle, 

respectively. RES, EBit, EIdle, and EActive are specific to the BSN 

platform – specifically the transceiver and the embedded 

microprocessor. CYC is a function of both the compression 

algorithm and the microprocessor, and CR is as function of the 

compression algorithm and the actual data. As discussed in 

Section 6, this paper uses a custom accelerometer-based BSN 
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platform in a motion capture application to obtain all of these 

values. 

Even within a given BSN platform, EBit may vary based on a 

number of factors. Wireless devices typically stay connected all 

the time, consuming energy constantly, and the energy 

consumption surges during transmission. In Equations 1 and 2, 

EBit represents the difference between the “stay connected” energy 

and the “transmit” energy. In order to break down this energy on a 

per bit basis, one must also consider the transmit rate and packet 

size. This paper assumes a transmit rate of 115.2kbps and the 

maximum packet length, which minimizes the per bit transmission 

energy. This maximum packet length will be maintained 

regardless of the compression ratio, so EBit is reduced due to the 

lower packet rate. 

Many embedded microprocessors are programmed to go into a 

sleep mode (i.e. a very low power mode) when no processing is 

required, so the additional active cycles required – and processing 

energy consumed – by the compression algorithms are considered 

in the energy savings, as EActive>>EIdle. However in many systems, 

the overhead of going to sleep and waking up does not justify the 

often short amount of time spent in the sleep mode. In such cases, 

the processor will perform NOPs until functional processing is 

again required. NOPs often consume almost as much energy as a 

functional cycle, so EIdle almost equals EActive. In such systems, the 

additional processing energy consumed by the compression 

algorithm is negligible. 

In most BSN systems, EBit>>EActive, often by several orders of 

magnitude. However, if the processing load imposed by a 

compression algorithm is significant, the additional processing 

energy can be significant. For example, Algorithm A may provide 

a higher compression ratio than Algorithm B, but if the 

complexity of Algorithm A is significantly higher, Algorithm B 

may actually provide greater total energy savings. An example of 

this is demonstrated in Section 6.2. 

3.2 Resource Requirements 

Since any compression algorithm will be implemented on the 

embedded processor, the algorithm will be constrained by the 

processor’s limited resources. The processors used on BSN 

platforms are typically significantly smaller and less capable than 

those used in WSNs, making algorithm implementability a 

significant constraint. 

The processor’s memory imposes one of the key constraints, as 

many embedded processors that are appropriate for BSNs have 

only a few kilobytes of memory. Algorithms that use tables, trees, 

or dictionaries could easily exceed this memory restriction and 

therefore be excluded from use in BSNs. 

Algorithms must also operate under the limited throughput 

capabilities of the processor, which typically has a relatively 

simple datapath and runs at tens of megahertz. Depending on the 

sampling rate of the BSN platform (the accelerometer-based node 

used in this study samples three sensor axes at 120 Hz, resulting 

in 360 readings per second), it may be difficult for a compression 

algorithm to be executed in real-time, which is a hard 

requirement. 

3.3 Adaptability 

It is highly desirable to have a compression algorithm for a BSN 

platform that will perform well for any application, wearer, sensor 

location, activity, etc. While different compression algorithms can 

be programmed onto each BSN node based on these factors, this 

requires significant additional programming and deployment 

effort; not to mention the challenge of profiling that would be 

required to determine the appropriate compression algorithm for 

each scenario. In addition, the data being collected by a BSN is 

rarely static, as the wearer is often performing different activities 

that change the compression capabilities of the implemented 

algorithms. 

Instead of using such static techniques, BSN compression 

algorithms should have the ability to adapt and perform well 

across different 

• applications, 

• test subjects (wearers), 

• sensor locations and orientations, 

• axes of the same sensor, and 

• activities over time. 

As shown in Section 6, the performance of compression 

algorithms across these static and dynamic variables can vary 

greatly. While traditional WSNs also suffer from this problem due 

to node location and dynamic data, the effects are typically more 

extreme in BSNs. The overall energy efficiency of a BSN 

therefore depends on identifying the algorithm that performs the 

best on average across an entire data collection. 

4. TECHNIQUES BACKGROUND 

The work detailed in this paper included the consideration of a 

number of lossless compression algorithms. The two families that 

were identified as the most promising given the BSN metrics 

detailed above are Huffman encoding and delta encoding. Several 

variations of each are evaluated in Section 6. 

4.1 Huffman Encoding 

Huffman encoding leverages the uneven distribution of readings 

in datasets, using fewer bits to encode more common readings to 

achieve an overall compression. An imbalanced tree structure is 

generated based on the presumed frequencies of each reading, 

with high frequency readings at shallower leaf nodes than those 

occurring less often. Each reading’s code is determined by 

traversing the tree from root to leaf, with each branch node 

providing one bit to the code. The length of each code is therefore 

determined by the depth of its leaf. 

A number of practical issues make the use of Huffman encoding a 

challenge for BSNs. First, Section 6 reveals that many of the 

reading frequency distributions (using the accelerometer-based 

BSN platform and multiple sensor locations and activities) are 

relatively flat, thus limiting the compression capabilities of 

Huffman encoding. Second, while the computational complexity 

of the Huffman algorithm as it is running with an existing tree is 

small, the tree itself can be quite large and potentially exceed the 

memory constraints of many BSN embedded processors. This is 

especially problematic in lossless compression when every 

possible reading must be encoded and must therefore have a leaf 

in the tree, even if that reading is extremely rare. Finally, 

traditional static Huffman encoding depends on the existence of a 
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reading frequency distribution to generate the tree, and the 

compression performance achieved depends on how well the 

dynamic data conforms to that frequency distribution. It is 

therefore essential that a BSN developer wanting to use Huffman 

encoding perform extensive data collections to profile the reading 

frequency distribution. As discussed in Section 3.3, this can be 

extremely difficult given the numerous static and dynamic 

variables. Therefore, this static technique’s ability to perform well 

across many applications, wearers, sensor locations, sensor axes, 

and activities is limited.  

It is therefore desirable to also consider an adaptive Huffman 

encoding technique that dynamically generates and alters its tree 

based on the actual reading frequency distribution as it occurs and 

changes. This does not require a previously constructed tree or 

any reading profiling. In the tree, each reading will carry its value 

along with the frequency of its use. This way, the tree can update 

itself, keeping the most frequent readings on the shallower levels 

to minimize their code lengths [8]. This adaptability can 

potentially provide higher compression performance across all of 

the static and dynamic variables without additional programming 

and deployment effort. However, as discussed in Section 6, the 

performance of adaptive Huffman encoding in a sample BSN 

application is limited due to a number of factors. 

While this adaptive technique is significantly more 

computationally complex than static Huffman encoding, it can 

potentially be implemented in real-time on BSN embedded 

processors, although the number of processor cycles (CYC in 

Equation 2) required per reading may be relatively high. While 

adaptive Huffman encoding includes the storage of reading 

frequencies in addition to the coding tree, its total memory 

requirements are often smaller than those of the static technique. 

The static tree remains a fixed size in memory throughout 

execution regardless of the occurrence (or lack thereof) of certain 

readings. The adaptive technique can choose to discard certain 

readings that have not occurred for some time, keeping the tree 

size to some maximum memory requirement and reinserting a 

discarded reading should it reoccur in the future [16]. 

4.2 Delta Encoding 

Delta encoding achieves compression by sending the difference 

between a reading and its predecessor rather than sending the full 

reading. This technique has been used effectively for a variety of 

applications, from images to web pages [10]. The compression 

rate is determined by the difference between the number of bits 

designated for conveying the difference (delta bits) and the 

number of bits required for the full reading. This technique is 

often used in lossy compression, as differences may occur that 

exceed the range that can represented by the number of delta bits. 

However, delta encoding can be made lossless by including a 

special overflow code in place of the difference, followed by the 

full reading. This lossless algorithm has been employed here for 

BSNs. 

One of the challenges for both the lossy and lossless versions is 

the selection of the number of delta bits to be used. If too few bits 

are used, the lossy delta encoding will become extremely lossy 

(too many readings will be beyond the encoding range) and the 

lossless encoding may actually have a compression ratio that is 

less than one (many readings will both be transmitted in full and 

include the special overflow code). If too many are used, the 

compression ratio will be lower than what is possible. Like as is 

required to determine frequency distributions for the static 

Huffman tree, the BSN application must be profiled, and the 

collected data must be analyzed to determine the optimal number 

of delta bits. This again adds significantly to programming and 

deployment effort and is still limited by dynamic variables, such 

as different activities over time. 

Delta encoding can also be made capable of adapting to static and 

dynamic variables, much in the same way as adaptive Huffman 

encoding but with significantly lower complexity. For a given 

interval of time (or number of samples), dynamic delta encoding 

determines whether it would have been better to use a different 

number of delta bits, and it sets the number of delta bits for the 

next interval accordingly, including a special code to indicate to 

the receiver that the number of delta bits has been changed. 

Equation 3 calculates the number of bits needed for encoding an 

interval of samples: 

 FROFDBIBits ** +=   (3) 

where I is the number of samples in each interval, DB is the 

candidate number of delta bits, OF is the number of samples that 

results in overflow given DB, and FR is the number of bits in a 

full reading. Using this equation, the processor reevaluates DB 

every interval, always adjusting to maximize the compression 

ratio. 

The computational and memory requirements of this technique are 

slightly higher than static delta encoding but are significantly 

lower than both static and adaptive Huffman encoding. The 

complexity depends on the range considered for delta bit 

alteration. As discussed in Section 6, this study determined that ±1 

delta was sufficient to provide high performance. 

5. EXPERIMENTAL SETUP 

To compare between the identified compression techniques, we 

used the TEMPO BSN, shown in Figure 1, that measures linear 

acceleration in three axes [14]. The sampling frequency is 120 Hz, 

and the resolution of each sample is 12 bits per channel. Without 

any on-node compression, each node sends its 4320 bits per 

second over a Bluetooth wireless channel. The node has 

approximately 10kB of RAM for data. The compression 

algorithms were implemented on the resident MSP430F1611 

embedded microprocessor. (The code is available online at 

http://www.ece.virginia.edu/inertia/embedded.php) 

 
Figure 1. TEMPO BSN node 

TEMPO nodes were attached at multiple points on the body 

(including the wrists, ankles, hip, and forehead) of a healthy 22 

year old male. The results in Section 6 are for both a 45 minute 
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recording of various movements and activities and shorter 

recordings of specific activities. The compression techniques 

described in Section 4 were implemented and evaluated with 

respect to the metrics described in Section 3. To measure the 

number of cycles each algorithm required, an implementation of 

the algorithm was mapped to the MSP430F1611. Then by 

switching an output pin at the beginning and at the end of the 

algorithm, we were able to calculate the number of cycles. 

Many factors can affect the outcome of the compression, such as 

the processor, wireless device, packet size, transmission rate and 

memory. The results obtained in this paper are specific for this 

platform and the type of the data taken. The trend, however, 

should be similar on other platforms and other types of data. 

6. RESULTS 

Figure 2 shows the average compression ratios for each axis of 

selected sensor locations across the entire 45 minute dataset for 

adaptive Huffman, static Huffman, and dynamic delta encoding. 

The tree for the static Huffman was generated based on the 

probability distribution of the readings over the entire 45 minute 

dataset. Figure 3 shows the compression ratios for selected sensor 

locations for a 15 second window of healthy symmetric gait. The 

static Huffman tree was generated from the probability 

distribution over this specific 15 second window. 
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Figure 2. Compression ratios for entire 45 minute recording 
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Figure 3. Compression ratios for 15 seconds of normal gait 

6.1 Huffman Encoding 

6.1.1 Static Huffman 

As shown in Figure 2, across the entire collected dataset, sensor 

locations, and axes, static Huffman encoding was able to achieve 

an average compression ratio of approximately 135%. Even 

though the Huffman tree was constructed based on the actual 

dataset, it was not tailored to each of the individual activities and 

movements over the 45 minute period. Therefore, the frequency 

distributions of readings may have matched well during certain 

periods with the probability distribution used to generate the static 

tree (as was the case in Figure 3, when an average compression 

ratio of almost 160% is achieved), but that is not always the case, 

and the overall compression ratio suffers from this lack of 

adaptability. As expected, it was difficult to identify a single static 

probability distribution that was appropriate across a wide range 

of activities, axes, and locations, so the overall frequency 

distribution was used. It is possible to generate a number of 

Huffman trees from profiled probability distributions and invoke 

them at the appropriate time and for the appropriate sensor 

location and axis, but this is problematic with respect to 

programmability and deployment. 

It is interesting to note in Figure 3 that Huffman encoding did 

better than dynamic delta encoding for the ankle sensors but not 

for the hip sensor. The hip acceleration is much less than the 

ankles and therefore requires few delta bits for encoding. 

Another major issue regarding static Huffman is that it requires a 

relatively large amount of memory. For lossless compression, 

each reading value must have its own dictionary index, so a 12 bit 

resolution system like TEMPO has 4096 indexes. However, some 

applications may assume that only a subset of the reading values 

actually occur and simply assign one more index for all other 

values. The data collected during this study revealed that less than 

1024 of the possible readings occurred, but that still requires that a 

large number of leaves and the accompanying tree structure be 

stored in memory. Some techniques can be used to minimize the 

memory requirements for such structures, but this is still likely to 

be problematic for most BSN platforms. In addition, the 

complexity of the tree search is high, which increases the number 

of active processor cycles (CYC in Equation 2) and can cause the 

throughput constraints of the system to be violated. 

6.1.2 Adaptive Huffman 

As described in Section 4.1, the adaptive Huffman technique is 

designed to address the static technique’s lack of adaptability with 

the goal of dynamically tailoring the Huffman tree to the current 

reading frequency distribution. However, the compression ratios 

provided by adaptive Huffman encoding were mixed based on 1) 

the amount of time it took for a tree to be adapted vs. the amount 

of time the new tree provided good performance, and 2) the 

distribution of the readings to be encoded, with more even 

distributions providing lower compression ratios. 

Both of these factors come into play when examining the 

performance of adaptive Huffman in Figure 2. Given the 

adaptability of this technique and the various activities that were 

performed over the 45 minute data collection (and the resulting 

various reading frequency distributions), one might expect that 

adaptive Huffman would perform significantly better than the 

static version. However, it is clear that the activities and resulting 
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distributions were not held constant long enough to enable the 

Huffman tree to adapt to them and provide an extended 

compression ratio benefit. This is revealed in Figure 3, as the 15 

seconds of walking does not provide enough time for the adaptive 

technique to settle on the appropriate tree and ultimately benefit 

from it. In fact, the compression ratio is < 1 for some sensor axes. 

It is likely that longer-term activities would result in better 

adaptive Huffman performance. In addition, some of the activities 

had relatively even reading frequency distributions on some axes 

and locations, resulting in lower compression rations regardless of 

adaptability. Finally, the memory and processing requirements of 

adaptive Huffman encoding also pose challenges, as described in 

Section 4.1. 

6.2 Delta Encoding 

It is clear from Figure 2 that dynamic delta encoding provides by 

far the best compression ratio for every sensor and axis over a 

long data collection that includes a variety of activities. Figure 4 

shows how the number of delta bits changes for different activities 

over the 45 minute data collection (data from the right wrist), 

demonstrating the algorithm’s ability to adapt to the current 

activity and achieve the highest compression ratio without having 

to change the algorithm. Figure 3 shows that it also does well over 

short periods of a single activity, even performing better than the 

optimized static Huffman for the hip sensor for the reason 

mentioned above. 

In addition to providing the best compression ratio, it also requires 

little memory and the fewest processor cycles, further adding to 

its energy savings capabilities relative to static and dynamic 

Huffman. Finally, it uses the same simple algorithm regardless of 

the application, test subject (i.e. BSN wearer), sensor location, 

sensor axis, or activity, making it extremely flexible and adaptable 

and easing the programming and deployment. It is therefore the 

conclusion of this paper that delta encoding is the best algorithm 

for lossless compression in BSNs. The question therefore 

becomes one of optimizing dynamic delta encoding for the 

metrics detailed in Section 3. 

 
Figure 4. Number of delta bits across different activities 

As mentioned in Section 4.2, the algorithm changes the number of 

delta bits every predetermined interval and does so by inserting a 

special code, which incurs an overhead. Therefore, changing the 

number of delta bits too often may reduce the compression ratio 

or cause rapid oscillations between settings. However, not 

changing often enough may reduce the algorithm’s ability to 

adjust to rapid changes in the data characteristics. Figure 5 shows 

the compression ratio for the three axes on the right wrist over the 

45 minute data collection period as a function of the delta bit 

update interval. It is clear that the optimal interval for all three 

axes lies between 0.25 and 1 second, and 0.5 seconds was selected 

for the rest of the results in this paper, including those in Figures 2 

and 3. However, this optimal interval is data- (and therefore BSN 

system-, application-, wearer-, sensor-, and axis-) dependent, and 

the proper selection of the update interval is essential to 

compression performance. 
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Figure 5. Compression ratio across different update intervals 

Another interval-related issue is how large changes in optimal 

delta bits are handled. Consider, for example, the situation when 

the current number of delta bits is set to four and the data 

suddenly changes to include large deltas that require six or more 

delta bits for representation. Using Equation 3 and the ±1 delta bit 

options, it may be determined that the number of delta bits should 

be reduced by one rather than increased by one because the new 

deltas will overflow any of the available choices – three, four, or 

five delta bits. Given that every reading will result in overflow, 

the highest compression ratio will be provided by the fewest 

number of delta bits. Three approaches were considered to address 

this issue. First, the maximum change in the number of delta bits 

could be increased to ±2 or ±3, but that dramatically increases the 

computational complexity of the algorithm and is unlikely to 

provide a significant benefit for real BSN data streams. Second, 

the update interval could be increased in the hope that any 

dramatic change in delta sizes are not long lasting, but this cannot 

be guaranteed. Third, Equation 3 could be altered to only make 

changes in the number of delta bits when the benefits of the 

change exceed a defined threshold, but that does not guarantee 

that the algorithm will converge on the optimal number of delta 

bits over time. Combinations of these three methods were 

investigated, but none improved the compression ratios more than 

2%. 

Figure 6 compares the performance of dynamic delta encoding to 

two other variations of delta encoding. The first, passive delta 

encoding, always uses seven delta bits. Seven was selected based 
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on an analysis of the deltas for all of the sensor locations and axes 

from several datasets. The second, optimized delta encoding, also 

uses a constant number of delta bits, but that number was 

determined for each individual sensor location and axis based on 

the deltas in the 45 minute dataset. Neither technique benefits 

from dynamic adaptation and, therefore, neither achieves the 

compression ratios provided by dynamic delta encoding. 

Optimized delta encoding approaches that of the dynamic 

algorithm, but it has issues related to programmability and 

deployment. It is impractical to individually characterize and 

program every sensor location and every axis, especially since 

that process will likely have to be performed for every BSN 

platform, application, and wearer. Dynamic delta encoding 

provides better compression while enabling the same algorithm to 

be pervasively implemented. 
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Figure 6. Compression ratios for delta encoding 

While neither of these alternative delta encoding techniques 

benefit from dynamic adaptation to activities, they are both 

simpler algorithms (no dynamic decision making and no need to 

keep track of the number of overflows) and require fewer 

processing cycles and less memory as a result. The average 

number of processor cycles per sample on the MSP430F1611 to 

execute dynamic delta encoding was about 95, while the two 

static techniques (passive and optimized) required only 75. 

Figure 7 shows the percent energy savings provided by the three 

delta encoding techniques over the uncompressed baseline. As 

specified in Equations 1 and 2, these results take both 

transmission energy and processor energy into account. The 

transmission energy per bit and processor energy per active cycle 

were taken from the datasheets of the Bluetooth module [3] and 

the MSP430F1611 [11], respectively. It is interesting to note that 

when processor energy is taken into account, the optimized delta 

encoding sometimes provides slightly higher energy savings than 

the dynamic algorithm. However, the programmability and 

deployment issues remain and prevent optimized delta encoding 

from being practical for most BSN applications. Dynamic delta 

encoding provides nearly the same energy savings while being 

much easier to program and deploy. 
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Figure 7. Percent energy savings for delta encoding 

7. CONCLUSION 

Given that the vast majority of energy consumption in most BSN 

platforms is due to the wireless transmission of sensed data, pre-

transmission data compression is one of the most direct and high-

impact ways to increase the energy efficiency of BSNs. However, 

the use of compression comes with tradeoffs and constraints, 

especially given the extreme resource limitations on BSN nodes 

and the many static and dynamic variables associated with various 

BSN applications, wearers, sensor locations, sensor axes, dynamic 

activities, etc. First, the compression algorithm must fit within the 

limited memory of a BSN embedded processor while providing 

real-time performance. Second, given the difficulty of 

differentiating important from unimportant data and the criticality 

of many target BSN applications (e.g. those in the medical 

domain), lossless compression is desirable and can be made 

application independent. Finally, in order to provide significant 

energy savings, the algorithm must maintain a high compression 

ratio regardless of the static and dynamic variable settings and 

without significant additional programming and deployment 

effort. That is, it is highly desirable to program every sensor node 

the same way without profiling and without consideration of 

application, sensor location, etc. 

This paper evaluated two families of lossless compression 

techniques – Huffman encoding and delta encoding – within the 

context of these BSN requirements using a custom accelerometer-

based BSN platform within a motion capture application. Both 

static and adaptive/dynamic variations of these techniques were 

considered. Results revealed that dynamic delta encoding 

provided the best combination of energy savings (including both 

reduced transmission energy and increased processing energy), 

low memory requirements, high performance across a range of 

activities and sensor locations/axes, and low programming and 

deployment effort. The approximately 35% average energy 

savings provided by dynamic delta encoding can go directly 

towards extending a BSN platform’s battery life and/or reducing 

the required battery (and total BSN node) size. The results for 

compression ratios and the energy savings depend on the 

platform’s processor and wireless communication system. 

However, the trend of these results and the analysis of the other 

metrics can be generalized to other platforms, applications, and 

dynamic data. 

While dynamic delta encoding showed strong adaptability, future 

work will evaluate its performance on other BSN platforms and 
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applications and in combination with other on-node signal 

processing techniques, such as feature detection and pattern 

classification algorithms.  
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