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ABSTRACT  
Human gait has been studied in biomechanical and clinical 

research for a long time. Researchers use many different tools to 
detect and analyze human walking motions. 3D kinematic data 
captured by motion capture system is one of powerful tools to 
analyze the human motions. However, not many researches have 
focused on coordination of upper extremities during human 
locomotion. In this paper, we introduce the concept of feature 
extractions to analyze the upper and lower extremities on human 
gait. For analyzing coordination between arm joint and leg joint 
movement, we developed a gait visualization tool to measure 
velocity and angle of each arm joint and leg joint pair, and 
compare three different gait speeds (e.g., slow walk, casual walk, 
and fast walk) for each feature extraction.     
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1. INTRO DUCTION 
    Walking is the most common daily-functional activity among 
people. When people walk, swinging motion of their arms along 
with bipedal action is a natural human behavior. Positional and 
rotational movements of hand and leg joint occur in a coordinated 
fashion between upper and lower body segments.  However, these 
actions may not be very well coordinated in disease states such as 
arthritis. This smoothness and coordination in human movement 
is reflected in the complexity involved in designing the walking 
motion in a humanoid robot. Therefore, it is important to 
understand the biomechanics and coordination of upper and lower 
extremity movements while walking. In particular, the rotational 
movements of hand and leg joints: a correlation between position 
of arm joints and leg joints (position angles of left arm and right 
leg and right arm and left leg) and a correlation between 
acceleration of rotational movements of arm joints and leg joints  
are important to study.  
    There are many different tools and techniques to analyze 
human gait [1][4][6][13][10]. 3D kinematic motion data captured 
by the 3D motion capture system is one of powerful tools to 

capture human motion. The advantages of 3D motion data are: 1) 
visualizing positional and angular changes of human joints 
without any extra visualization tool and 2) capturing speed 
acceleration of each body segments. 

    In this paper, we try to study the walking pattern of human 
locomotion and hand and leg coordination using 3D kinematic 
data. Our main objective is to understand and analyze walking 
that can provide the guiding information for a natural human walk. 
To find correlations between arms and legs, we chose the cross-
pairs of data in upper and lower body segments. In order to 
understand the natural human gait, obviously, we cannot ignore 
the balancing coordination of pendular movement of arms. For 
this, we introduce a gait cycle visualization tool and analyze the 
positional correlation of cross paired arm and leg kinematic -- left 
arm joint/right leg joint (LHRF), right arm joint/left leg joint 
(RHLF). Our data analysis indicated that there are 11 feature 
points (see chapter 3.5 for detail explanation on feature 
extractions) which can distinguish three walking speeds of natural 
human gait pattern. Figure 1 shows the flow of our approach to 
visualize and analyze upper and lower human body segments 
during the gait cycle. 

2. Related Study 
The long history of gait study started with the development of 

photograph at the early 1900 [7]. Many researchers studied 
normal gait as well as locomotion after certain disability factors 
such as stroke, Parkinsonism, Cerebellar disease and so on[1][4] 
[8][15] 

 
           Figure 1. Motion data analysis flow 
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2.1 Gait Capturi ng Tool 
   Many different tools have been used to capture features of 
human locomotion which cannot be seen with the naked eye. [8] 
introduced three measurement tools in Biomechanics: 3D motion 
capture systems (for measuring kinematics), force plates (for 
measuring kinetics), and Electromyography sensors (for 
measuring electrical muscle activity).    

However, these tools have some limitations—cost 
effectiveness and probability. Recently some researchers were 
focused on more affordable solutions.  An accelerometer is one of 
the tools to capture quantitative data because of its portability and 
relative accuracy [4][6][13].  

    Kito and Yoneda used a light weight distance meter to measure 
the speed and angle of participant to see whether the cycle 
duration is the dominant factor [10].  

2.2 Upper Extremities during Gait Cycle 
    Compared to the long history of gait analysis, the study on 
upper extremities during gait has a relatively short history.  The 
pendular action of hand swing during human locomotion has 
more degrees of freedom than gait thereby making it more 
complicated to analyze human locomotion [11] 

    P. Requejo et al. used compression-closing footswitches and 
3D kinematic model with 7 rigid body segments on upper 
extremities and computed cadence, walking speed, stride length, 
stance duration, and each joint angle. For data analysis, P. 
Requejo et al. used thorax, shoulder, elbow, and wrist in the upper 
extremities to calculate sagittal plane joint motion (flexion/ 
extension) and captured the peak force and each joint angle [12]. 

    B. Slavens et al. used 3D kinematic model with the upper arm, 
forearm, hand, upper crutch (UC), and lower crutch (LC), to 
measure crutch peak forces [13]. However, both [13] and [12] 
particularly focused on walking with crutches.  

 
    R. Emmerik and R. Wagenaar used an accelerometer to 
compute speed as well as angles of two groups of people (control 
group and Parkinson’s disease group) walking on a computer 
controlled treadmill. For data analysis, they used four different 
sets of joint pairs: 1) left arm/right arm, 2) left leg/right leg, 3) left 
arm/left leg, and 4) right arm/right leg [4]. 
 

J. Stephenson et al. measured the self-selected speed of normal 
walking and fast walking speed between the healthy group and 
the stroke group. Then, they captured the relative phase (lag 
between the peek shoulder angle and the peek hip angle) and the 
frequency relation on hip and shoulder angle time series to assess 
the coordination between upper and lower extremities [14]. 
 

3. Experiment Procedure  
        In order to analyze the feature point, we made a visualization 
tool using Matlab. In our approach, instead of observing a fixed 
gait percent point, we chose several unique feature points for each 
participant. Since each walking trial with the same participant 
have differences in their gait cycles, it is more relevant to choose 
feature point dynamically  rather than to choose a fixed gait cycle 
point (e.g., instead of choosing 65% for phase change point, 
choose an actual phase change point in each individual). 

 

3.1 Participants 
We conducted walking data collection in ten healthy 

participants. Eight males and two females with ages of 23 to 53 
years old performed walking motions in a controlled environment 
(Table 1). Each participant performed five trials at three different 
walking speeds. For the data accuracy, instead of walking on a 
treadmill, we asked each participant to walk at their self-selected 
three different walking velocities. 

 

 
 

 

(a) Positional time series              (b) Velocity time series                     (c) Angular  time seri es 
Figure 2.  Three visualized time series 
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Table 1. Participants’ Physical characteristics   
 Median Mean STD Min Max 

Age (years) 29 32.6 11.057 23 53 

Height (cm) 175 173.8 7.159 156 181 

Weight (kg) 75 73.72 11.01 50.8 89 

3.2 Data collection 
    For analyzing upper and lower extremities in human gait, we 
used 16 Vicon MX cameras to capture 3D kinematic data. The 
captured 3D motion capture data gives the positional and 
orientational information of 19 body segments at a frequency of 
120 Hz.   

3.3 Preprocessing 
Participants initially  stood still and started walking by moving 

his/her foot forward. In our experiment, participant is walking 
along the x-axis. Figure 3 (a) illustrates the original data capture 
from the 3D motion capture system. Notice that once the 
participant’s leg reaches its peak stride, it does not move, so the 
line curve remains flat. To obtain an accurate walking motion, the 
origin moves along x-axis with human locomotion (Figure 3 (b)). 
Figure 3 (c) represents one gait cycle segment of a whole walking 
motion. 

 
(a) Origi nal Data 

 
(b) Geometric conversion of data 

 
(c) Gait cycle of selected time interval 

Figure 3. 3D motion capture time series data 

 

3.4 Upper and Lower Extremi ties 
Visualization Tool 
   The most common observable features in gait analysis are joint 
positions, joint angles, and joint velocities [17][16]. We propose a 
visualization tool that can help to visualize these three different 
aspects with cross pair wise analysis: left lower body segments 
and right upper body segments; and vice versa. The positional 
time series (Figure 2. (a)) captures the stride length as well as a 
phase change point in the gait cycle from stance phase to swing 
phase. The velocity time series (Figure 2. (b)) captures speed 
variation occurring during the gait cycle in three body segments. 
Finally, the angular time series shows the angle changes within 
each segment’s movements (Figure 2. (c)).  

3.5 Feature Extraction 
     For observing and finding the correlation between leg joint 
movements and arm joint movements, we used cross pairs of 
upper extremities and lower extremities since one major function 
of the arm motion during walk is balancing. To compare three 
walking speeds (slow walk, normal walk, and fast walk), we 
carefully selected 24 feature points for each cross pair set. For 
cross each pair set the ipsilateral is the standard of the gait cycle. 
For example, RALF feature points are calculated based on the left 
leg gait cycle and vice versa. In each pair set, we chose the three 
body segments: a humerus segment, a hand segment, and a foot 
segment (Figure 4). 
 

For feature extraction, we considered two selection points; 1) 
the phase change point from stance phase to swing phase that are 
varies in each participant and 2) velocity time series has more 
noticeable changes before and after a phase change. Every 
participant has different walking patterns and phase change 
moments. Even within the same participant during different 
walking trials, those moments are not similar sometimes.  Hence 
we identified the following as our feature points: velocity time 
series’ pick points, phases change point and zero velocity points 
in the upper extremities. Table 2 and Figure 5 indicate our feature 
points.  

 
For measuring speed and angles of the leg and arm joint 

motions, we used time and distance differentiation (1) and vector 
angle function (2); and a 3rd order Butterworth filt er with 
normalized cutoff frequency of 42Hz. We set  the participant’s 
waist as the origin of each axis; therefore for measuring angles of 
each arm and foot segment, we set a vector from an origin(waist) 
to a clavicle as a base vector and use arctan function to measure 
angles between 0̊ to 180̊ (See Figure 4 and Equation 2). 
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Figure 4.Obtained angle from equation (2) 

 

     Table 2. Feature points 

Feature Description 

F1 First down peak speed(Humerus) 
F2 F1 Angle(Humerus) 
F3 Gait percent on Speed Zero point (Humerus) 
F4 F3 angle (Humerus) 
F5 Phase change point (Humerus) 
F6 F5 angle (Humerus) 
F7 Slope on phase change point(Humerus) 
F8 First up peak speed(Humerus) 
F9 F8 angle(Humerus) 
F10 First down peak speed(Hand) 
F11 F10 angle(Hand) 
F12 Gait percent on Speed Zero point (Hand) 
F13 F12 angle (Hand) 
F14 Phase change point (Hand) 
F15 F15 angle (Hand) 
F16 Slope on phase change point(Hand) 
F17 First up peak speed(Hand) 
F18 F17 angle(Hand) 
F19 First down peak speed(Foot) 
F20 F19 angle(Foot) 
F21 Last down peak speed(Foot) 
F22 F21 angle(Foot) 
F23 First up peak speed(Foot) 
F24 F23 angle(Foot) 

 

 

 

 
Figure 5. 24 Feature points on X-axis of 3D motion capture 
time series (For fully  implemented version of Tool refer 
Appendix A) 
 

3.6 Data Analysis 
For data analysis, we used the one way Analysis of Variance 

(ANOVA) to compare three different speeds of LHRF and RHLF.  
The ANOVA is one of statistical analysis techniques. One way 
ANOVA tests for the differences among two or more of 
independent groups. To see the difference among group, F-test 
and p-value are used. In general if the F-value increase the p-
value decrease. Equation 3-6 indicates the calculation of F-value. 
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Where, SSamong is the sum of squares among groups, 
SSwithin denotes the sum of squares within groups  
a is the number of groups,  
n is the number of  observations  within each group 
Y is individual observations within each group 
M is a mean of each group 

              G is grand mean. 
 
For feature analysis, we set two different comparison aspects. 
 
1) Comparison on three different speeds of LHRF and 

RHLF. 
A. Dependent parameter: walk speed 
B. Independent parameter: Each feature point 
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2) Comparison on among participants’ each feature point 
of LHRF and those of RHLF. 
A. Dependent parameter: Every participant 
B. Independent parameter: Each feature point and 

walk speed. 
 

Since each participant had a different stride lengths and 
walking speeds, we normalized each person’s performance and 
compared the speed variations for comparison on each 
participant’s performance. 

 

4. Result 
    Based on the analysis of each person’s LHRF and RHLF pair, 
we found that the feature points F2, F4, F6, F13, F15, F20, and 
F22 were significant with p<0.01 during the fast walking trial; F1, 
F2, F4, F6 F11, F13, F15, F20, and F22 during the normal 
walking trial; and F1, F2, F4, F6, F9 F13 F15, and F22 during the 
slow walking trial were signifi cant with p < 0.01 (Figure 6(d)). 

    For comparisons between every participant’s feature points, all 
feature points were significantly different with p<0.01 in all 
walking speeds. This indicates that every participant has his/her 
unique gait pattern (Figure 6(a) and (c)). In fact there were 
significant differences from trial to trial within the same 
participant. (Figure 6(b)). 

    For comparison result among three different walking speeds, 10 
feature points (F1, F7,F8, F10, F14, F16, F17, F19, F21, and F23) 

on LHRF; and 11 feature points (F1, F7, F10, F11, F16, F17, F19, 
F20, F21, F23, and F24) on RHLF were significant with p<0.01 
(Table 3). 

    The most common area of significant feature points on the 
comparison among three walk speeds occurred at the F1, F7, F10, 
F16, F17, F19, F21, and F23. Based on this result, we may 
conclude that we can differentiate three different walking speeds 
in each participant at those feature points. For example, if one 
participant in experiment group has his/her slope at the phase 
change point of left hand speed is 13 (norm value), it may indicate 
that this person’s walking speed is likely in the fast walk category 
(Figure 6(d)). Of course, we need to consider other significant 
feature points for better understanding of the overall performance.  

Table 3. F and P-value of three different walk speed  

LHRF RHLF 
Feature F(2,147) p-value F(2,147) p-value 
F1 25.7902 2.51E-10 22.0533 4.21E-09 
F2 0.3667 0.6937 0.2137 0.8078
F3 6.0032 0.0031 3.0124 0.0522 
F4 0.0023 0.9977 1.0869 0.34 
F5 1.4189 0.2453 2.3886 0.0953 
F6 1.3918 0.2519 0.9973 0.3714 
F7 22.623 2.72E-09 20.4418 1.47E-08 
F8 8.0811 4.68E-04 0.5039 0.6052 
F9 1.4836 0.2302 0.7005 0.498 

 
(a) Each participant’s (‘A’-‘ J’) avg slope with three walking 

speeds.(F7) 

 
(b) Five different trials result of the same  

person’s performance (F7). 
   

(c) Comparison between each participant’s down pick speed (F10) 
 

(d) Comparison between three walking speeds – Left 
hand slope at the phase change point (F16) 

         Figure 6.  Participants’  data analysis result of feature points  
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F10 12.0078 1.48E-05 13.9943 2.73E-06 
F11 1.4701 0.2333 11.0879 3.27E-05 
F12 1.0356 0.3576 5.2813 0.0061 
F13 1.6026 0.2049 0.6966 0.4999 
F14 5.7904 0.0038 0.6139 0.5426 
F15 1.3918 0.2519 0.9973 0.3714 
F16 167.969 0 135.012 0 
F17 38.9975 2.59E-14 29.6011 1.57E-11 
F18 2.8499 0.0611 0.7807 0.46 
F19 75.3389 0 82.5785 0 
F20 3.4983 0.0328 7.5738 7.40E-04 
F21 141.59 0 183.568 0 
F22 0.0333 0.9672 1.8547 0.1601 
F23 84.2788 0 73.7293 0 
F24 3.0466 0.0505 5.3545 0.0057 

5. Conclusion 
     In this paper, we introduce d the concept of cross pair wise gait 
analysis of upper and lower extremities as well as the 
visualization tool for human locomotion. The objective of our 
approach is to find features that can separate distinctive walking 
speeds and find the normal walking pattern. For this we 
introduced the upper and lower extremities visualization tool 
which visualizes extracted features of the upper body segments 
during human gait to understand any correlation between upper 
extremities and lower extremities.  

Compared to the limited degree of freedom of gait, arms 
have more freedom which makes the study of upper extremities 
more difficult. 3D kinematic data is as powerful as any other gait 
capturing system, yet it only provides the visible movement 
analysis of human gait. To better understand natural walking 
motion, it is necessary to integrate external data (e.g., 3D 
kinematic data) with internal force data (e.g., kinetic data). 
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Appendix A 
 

 
Figure 7. Gait Cycle Visualization Tool 
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