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ABSTRACT
In this paper we present a novel wireless sensor node de-
sign, called BodyANT. BodyANT has a miniature outline
of 20x10x3mm and reaches almost 5 days of battery op-
eration when continuously transmitting acceleration data
at 32Hz. We evaluate the performance of BodyANT in an
extensive set of laboratory and naturalistic experiments over
multiple days. Our sensor node implementation showed ro-
bust performance for up to eight simultaneously operating
nodes. We deployed three BodyANT nodes in a study of
daily activities in combination with two further devices, a
heart rate monitor, and a GPS receiver and analysed the net-
work performance over multiple recording days. The data
loss per sensor node in the experiment was 3.3% on average.
We present and discuss detailed results on data losses per
user activity.
Our results demonstrate the feasibility of using BodyANT
for long-term activity monitoring and recognition applica-
tions.

1. INTRODUCTION
Body-worn sensors are a primary source of information for
health and well-being coaching and personalized services.
While these services essentially benefit from continuous wea-
rer state and fine-grained activity information, unobtrusive
monitoring during everyday life remains a challenging task.
In daily routine, most activities are too complex and variable
to be captured by one sensor alone. Instead, a complement-
ing network of several distributed nodes is needed to monitor
activities. However, these body sensor networks (BSNs) be-
come more complex and cumbersome compared to a single
sensor, even when the network relies on wireless communi-
cation links.

For successful BSN deployment, nodes must comply with a
number of requirements regarding day-long use in natural
environments. Most critical technical challenges are related
to sensor size, weight, cost, wireless operation, and runtime
between recharges. Moreover, for a wireless BSN, the entire
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network must operate robustly, even in potentially harsh sit-
uations, such as during physical activity, interfering radios,
and obstruction by body parts. While a spectrum of sen-
sor node implementations have been proposed (see our dis-
cussion of related approaches in Section 2), the challenges
for on-body use of sensor networks persist. Continued sen-
sor node developments are needed that address BSN vali-
dation in naturalistic monitoring scenarios. For monitoring
of daily activities using BSNs, it is essential to confirm a
robust wireless data transmission performance. Particular
routines, such as working in an office may involve sitting
body postures, activities close to furniture with metal parts,
and other radio services that all interfere with the BSN data
transmission. Similarly challenging conditions exist, e.g. for
traveling in trains, and outdoor activities. Nevertheless,
transmission performance has not been widely analyzed in
frequently observed activities and contexts during daily rou-
tine.

In this paper we present a new wireless sensor node design,
called BodyANT. With a miniaturized node outline and a
size-matched coin cell battery, we optimized the BodyANT
system for on-body use in day-long monitoring applications.
The device achieves a runtime of several days while con-
tinuously transmitting sensor data within a BSN. While
these properties are excellent among on-body solutions, our
BodyANT design builds on standard off-the-shelf compo-
nents and inexpensive production techniques.

1.1 Paper contributions
The focus of this work is to introduce BodyANT and demon-
strate its applicability for monitoring of daily activities. We
confirm applicability by presenting results from different lab-
oratory experiments and from our monitoring study of to-
tally 81 hours during seven days. In particular, the paper
provides the following contributions:

1. Our BodyANT sensor node design is presented, which
can be integrated with many different sensing modal-
ities. The system consists of sensors, a controller to
capture and process sensor data, and a wireless trans-
ceiver based on the ANT protocol. The implementa-
tion considered in this work incorporates a 3-axis ac-
celeration and temperature sensor in a BodyANT node
outline of 20x10x3mm.

2. We analyzed the sensor node performance regarding
network scalability, runtime between recharges, and
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data reception rates in separate laboratory and daily
activity monitoring experiments. Our evaluation showed
that a network of multiple nodes can perform continu-
ous sampling and robust wireless transmission at 32Hz
for up to ten days from 230mAh coin cell batteries,
when used for 12 hours each day.

3. We demonstrate the BodyANT network operation un-
der naturalistic everyday life conditions of different
wearers and typical node placement on the body. In
this study, we included our BodyANT sensor nodes (at
wrist, leg thigh, chest), a heart rate monitor (at chest),
and a GPS sensor (at upper arm). We evaluated wire-
less transmission and recognition performance in fre-
quently observed activities, body postures, and con-
texts.

In Section 2 we summarize different approaches and applica-
tions in BSN node design and highlight their performance.
Moreover, we review previous works that addressed daily ac-
tivity monitoring using on-body sensor data. The BodyANT
design is presented in Section 3, and our laboratory per-
formance evaluation in Section 4. Subsequently, Section 5
presents evaluation and results of our daily activity moni-
toring and performance evaluation.

2. RELATEDWORK
Unobtrusive on-body monitoring requires a lightweight, min-
iature battery comparable to the dimensions of state-of-
the-art BSN node designs. To this end, coin cell batteries
have a most suitable form factor, while setting constraints
regarding the energy to operate low-power wireless sensor
nodes. Platform metrics of sensor nodes include also size
and weight, battery runtime between recharges, processing
capabilities, number and type of sensor modalities, as well
as RF communication characteristics [5]. Sensing modalities
are related to specific on-body monitoring applications and
include e.g. environmental conditions such as air pressure
and temperature, or physiological processes such as heart
rate and body motion. Among others, body motion was
shown to be a vital source of information to recognize daily
activities [3, 9].

Different wireless sensor node designs for on-body monitor-
ing have been proposed in the literature. Due to the large
space of platform characteristics and possible sensing sce-
narios a comprehensive comparison of existing node designs
is challenging. For this reason, we included in the review ex-
isting wirelessly transmitting sensor node designs that have
been demonstrated for on-body monitoring in naturalistic
environments, in particular for body motion.

2.1 On-body wireless node designs
A miniature wireless sensor node should be as small and
lightweight as possible to not interfere with a wearer’s daily
activities. To compare different node designs we consider
the node outline including the antenna dimensions. Wire-
less nodes using RF protocols operating in the 315-916MHz
ISM band require large centimeter-long antennas, compared
to the sensor node PCB. Examples of these ISM band de-
velopments include uParts [4] and Mica2Dot [5]. Large an-
tennas constrain node usage in naturalistic environments,

especially when worn at limbs. Moreover, these ISM bands
require region-specific node implementations to comply with
local RF regulations. Wireless nodes which operate in the
global 2.4GHz ISM band facilitate the use of miniature chip
antennas, e.g. MITes [20] and BSN nodes [12].

Depending on the application focus different mechanical sen-
sor node designs have been proposed in the literature. BSN
nodes [12] and Mica2Dot nodes adopted a connector board-
based design where different sensor boards can be stacked on
the node, e.g. a 3-axis accelerometer board. This allows a
flexible design at the expense of size and mechanical robust-
ness due to board interconnects. Eco nodes [16] are most
similar to our design in size (12x12x5mm) and weight (2 g),
and allow to connect other sensors via an expansion port.
Wireless accelerometer MITes [21] are part of the MITes
platform [20], a set of different wireless sensor nodes used for
naturalistic data collection in homes. Wireless accelerome-
ter MITes have a node outline of 30x25x6mm including an
additional daughter-board to capture 3-axes acceleration.

Battery life of a wireless sensor node is important when
targeting at day-long monitoring of daily activities. The
time between battery recharges depends on multiple param-
eters including, but not limited to, battery capacity, type
of RF communication, message rate, number and type of
sensor modalities. Using a 560mAh battery, Eco nodes op-
erated for 7.56 h and Mica2Dot nodes for 3.18 h [16]. Power
consumption of both platforms does not permit continuous
day-long operation with size-matched batteries. Wireless
accelerometer MITes have been shown to operate for 20.5 h
on a 230mAh battery at 200Hz sampling rate [21].

uParts [4] were designed for large scale use. The platform
employs low-end components including a PIC12F675 micro-
controller, transmitter, and binary output ball switch sen-
sor. In combination with a duty cycling of 36 s it allows for
coarse-grained activity sampling.

Applications of these wireless on-body nodes include physi-
ological monitoring (BSN node) [12], recognition of different
gym activities (MITes) [19] and activities in a home set-
ting (MITes) [10], infant monitoring (Eco) [16], interactive
dance performance (Eco) [14], and human behavior moni-
toring in a conference environment (uParts) [4].

Few wireless sensor devices using the ANT communication
protocol were previously documented in scientific literature.
Most notably, a bioimpedance and ECG device was intro-
duced [18, 22] and a posture measurement system for pa-
tients recovering from hip surgery was proposed [11]. Nev-
ertheless, a spectrum of commercial devices existsa.

2.2 Activity monitoring using on-body nodes
In previous works on daily activity monitoring data was of-
ten acquired using data logging or other wire-bound devices,
e.g. [3,6,9]. Wire-bound devices are not affected by data loss
in the wireless transmission channel, but require additional
procedures to synchronize data streams recorded with mul-
tiple logging devices. In contrast to these data loggers, the

aSee: http://www.thisisant.com/pages/ant/interoperability-
matrix
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use of wireless nodes allows for continuous multi-modal in-
formation fusion from sensors located at different parts of
the body.

Huynh et al. [9] used a stacked data logging device to record
daily routines. The wearer was required to upload the recor-
ded activity data every 4 h due to the limited memory ca-
pacity of the logging device. Bao et al. [3] used data logging
devices that required four AAA-sized batteries, rendering
the device rather obtrusive for long-term recording. Intille
et al. [20] used wireless accelerometer MITes in the semi-
naturalistic home environment of the PlaceLab. In [20],
wireless characteristics of the MITes were evaluated regard-
ing transmission range and robustness to environmental noise.
However, no evaluation of wireless transmission performance
was reported when attached to the human body.

The influence of positioning wireless nodes at different body
parts during static sitting and standing postures in indoor
environments was found to marginally influence the mes-
sage reception rate [13]. Combinations of multi-modal wire-
less sensor nodes, e.g. accelerometer and wireless heart
rate monitor, were used for recognizing activities in semi-
naturalistic environments [10] and for gym exercises [19].
Activity-specific data transmission performance of wireless
on-body nodes in naturalistic environments was not specifi-
cally analyzed in these works.

3. SYSTEM DESIGN
BodyANT is a new wireless sensor node design based on
standard off-the-shelf components and the ANT communi-
cation protocol. While using standard components our de-
sign goal was to minimize form factor and node energy re-
quirements to use BodyANTs during day-long monitoring of
everyday activities. The node dimensions are 20x10x3mm
with a weight of 1 g without battery. Size and weight al-
low to unobtrusively wear the node inside a shirt-sleeve or
trouser leg. Figure 1 shows a BodyANT node equipped with
a 3-axis acceleration sensor.

Figure 1: BodyANT node. Left: Node dimensions
compared to a thumb. Right: Node attached to a
coin cell battery and holder.

BodyANT comprises sensor and host parts. The design is
simple, yet flexible as the node’s sensor part can be modified
to provide different sensors according to application needs,
without altering the design concept and host part. Figure 2
illustrates the BodyANT system design.

The host part comprises of a Nordic nRF24AP1 radio trans-
ceiver and an Atmel ATmega88V microprocessor. Radio

Accelerometer

SMB380

µProcessor

ATmega88V

Radio
transceiver

nRF24AP1I2C UART Chip

antenna

Sensor Host

Figure 2: BodyANT node system design: Host and
sensor parts communicate via I2C, microprocessor
and transceiver via serial interface.

transceiver and microprocessor communicate via UART. The
Nordic radio transceiver is a low-power version that embeds
the ANT protocol. ANT is an adaptive TDMA commu-
nication protocol, operating in the 2.4GHz ISM band. It
is equipped with mechanisms to minimize message colli-
sion and features 1Mbps RF data rate, 20 kbps true data
throughput with up to 125RF channels. The microproces-
sor ATmega88V integrates 8K Bytes Flash program mem-
ory, 512Bytes EEPROM, 1K Bytes SRAM, programmable
USART, SPI, I2C (TWI), 8-channel (10-bit) ADC, and up
to 23 IO ports.

Our BodyANT node implementation consists of a total of 35
standard off-the-shelf components. The BodyANT consid-
ered in this work is equipped with a Bosch SMB380 3-
axes (10-bit) digital accelerometer with optional tempera-
ture output. Acceleration can be measured with a band-
width of up to 1.5 kHz in ranges of ±2g/±4g/±8g corre-
sponding to a resolution of 4.0mg/7.8mg/15.6mg.

With the selected components our design requires no ad-
ditional voltage regulation. Power supply voltage ranges
from 2.4 to 3.6V. The node switches to power down mode
when the battery voltage falls below 2.4V to ensure con-
trolled system behavior. A stable clock cycle is provided
using a 16MHz crystal as clock source for both the radio
transceiver and microprocessor. When active, the micropro-
cessor periodically reads sensor values and sends messages
to the radio transceiver according to the ANT message pro-
tocol. The transceiver continuously broadcasts the messages
at a predefined message rate. If not activated, the micropro-
cessor and radio transceiver are kept in power save mode.

Only few configuration parameters are needed to set up an
ANT communication channel, including RF frequency and
message period. The broadcast message payload is 64 bits of
which 54 bits are used in this implementation: three 10 bit
values for 3-axes acceleration readings, 8 bit for tempera-
ture, 8 bit for battery voltage, and 8 bit for a sequence
counter. Individual nodes can be identified by a protocol-
specific channel identifier. To receive data that has been
transmitted from BodyANT nodes we used a commercially
available ANT-USB dongle. In addition to the default sen-
sor sample transmission mode, our implementation includes
a wireless programming mode to change system parameters,
such as the message rate, during runtime.

4. LABORATORY SYSTEM EVALUATION
Wireless nodes for monitoring daily activities require day-
long battery life and sufficient system scalability to use mul-
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tiple wireless nodes simultaneously. To evaluate the per-
formance of BodyANT regarding these two criteria, we con-
ducted two dedicated laboratory experiments. Wireless trans-
mission performance was measured by data loss rate rd. We
defined the data loss rate as one minus the ratio of samples
received N within time period ∆T at sampling rate fs:

rd = 1 −
N

fs · ∆T
(1)

The BodyANT node configuration parameters used in the
experiments are: system clock fCPU=2MHz, system sam-
pling rate fs=16Hz, and a battery of 230mAh (VARTA
CR2032). ANT protocol-specific configuration parameters
were set to: message rate fmsg=32Hz, transmit power level
PTx=0dBm, bidirectional transmit channel type, broadcast
data type, and default public network.

We used a sampling rate of 16Hz to capture daily activ-
ity dynamics of postures and movements. In addition, each
node transmits sensor readings twice to increase robustness
against occasional loss of single messages. We used ANT
bidirectional transmit channels to exploit the protocol’s mes-
sage collision avoidance capabilities. A simple unidirectional
TDMA communication protocol would assign fixed time slots
to each transmitter and could cause considerable data loss
due to interference of simultaneously transmitting nodes.
Interference can occur periodically as a result of individual
transceiver clock drift. This requires additional synchroniza-
tion and collision detection capabilities in order to minimize
data loss.

As our goal is to maximize battery life the ANT broadcast
data type is used which consumes the least amount of RF
bandwidth and power. The experiments were conducted in
the same laboratory premises where BodyANT nodes were
placed on a wooden surface in the receiver’s line-of-sight
(LOS). The nodes were equally spaced and oriented in a
row. To receive transmitted messages from the nodes an
ANT-USB receiver was attached via USB to a notebook.
Messages were recorded using the Context Recognition Net-
work Toolbox [2] running on a notebook. Data loss rate was
computed from the recorded data.

4.1 System scalability
Typically multiple sensor nodes are used in parallel to mon-
itor human activities. Maximum number of simultaneously
operating nodes depends on the RF protocol bandwidth and
node message rate. We evaluated message and data loss rate
for our design by operating two to eight BodyANT nodes si-
multaneously. The receiver’s LOS distance was 1.80m which
corresponds to the human body height. Messages were re-
corded for 1 h for each set of N nodes (2≤N≤8).

Figure 3 illustrates the mean data loss rate. The mean data
loss rate was less than 0.06%, while simultaneously operating
two to eight nodes. This indicates a robust operation of our
node design. The number of simultaneously operating nodes
could be even increased if each node is assigned a dedicated
RF frequency (as it has been done, e.g. for accelerometer
MITes [20]). However, the receiver must be configured with
a list of transmitter RF frequencies beforehand, which sig-
nificantly constrains flexibility for BSN deployment.

Number of sensors
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Figure 3: Data loss rate for simultaneous operation
of two to eight BodyANT nodes. Min-max values
show node-specific variations.

4.2 Battery life
The battery runtime between recharges is crucial as we aim
at monitoring of daily activities over periods of days. Node
shutdowns due to insufficient battery life results in loss of
potentially vital episodes of daily activities.

We define battery life of a single node as the time between
the transmission of the first and last message before the
node switches to power save mode. We evaluated BodyANT
battery life by operating three nodes simultaneously. In
this evaluation we included power consumption contribution
of the ANT protocol build-in message collision avoidance
mechanism.

BodyANT node battery life was measured to be 116±3 h
during which 12.7±0.8 million messages were transmitted.
We attribute the variances to dynamics in the medium and
transmission protocol as well as electrical variations in the
node transmission hardware as the nodes were populated
and assembled by hand.

Switching to Tx-only channel type further increased the bat-
tery life by a factor of two. However, when using multiple
nodes simultaneously message collision cannot be handled
automatically, e.g. when transmitting on the same RF fre-
quency. This may lead to data losses of up to several minutes
if nodes start transmitting at the same time.

Compared to existing wireless node implementations, our
design further extends battery runtime performance. uParts
were reported to operate for weeks on a 130mAh battery
at a message interval of 36 s using Tx-only transmission
mode [4]. However, uPart node’s ball switch sensor allows
for coarse-grained daily activity sampling only. In addition,
very long message intervals significantly increase battery ef-
ficiency [15]. This benefit was not exploited for BodyANTs
in this investigation, however, it may further extend battery
runtime.

5. DAILY ACTIVITY MONITORING
We evaluated the performance of BodyANT for daily activ-
ity monitoring in a naturalistic monitoring study of seven
days. We summarize here first quantitative results for trans-
mission performances during daily routines based on the ac-
quired experimental data.

5.1 Activity recording setup
We selected a body-worn recording system consisting of three
BodyANT nodes, a heart rate monitor chest-belt (HRM),
and GPS device. The latter two are commercially available
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from Suuntob. A Q-Belt Integrated Computer (QBIC) from
ETH Zurich [1] was used to record data from all sensors. The
data was wirelessly transmitted to the QBIC system using
the ANT protocol, and a single-hop star network topology.
Two ANT-USB receivers were attached to either side of the
QBIC belt. The data recording and alignment on QBIC
was performed using the Context Recognition Network Tool-
box [2]. In addition to the sensor readings, reception time-
stamps and message sequence counters were transmitted to
ensure data stream alignment. Figure 4 shows the entire
on-body sensor system.

GPS
receiver

QBIC

HRM

BodyANT
leg thigh

BodyANT
wrist

BodyANT
chest

Figure 4: Wearable system used for recording daily
activity. The QBIC belt computer served for ac-
quiring, time-stamping, and storing sensor network
data.

We adopted the same parameters for the BodyANT config-
uration as in the laboratory experiments, detailed in Sec-
tion 4. As the majority of motion patterns in daily life
are symmetric only the dominant body side was equipped
with BodyANTs. BodyANTs where attached at dominant
wrist, dominant leg thigh, and at HRM (chest position) to
record arm, leg, and upper body motion, respectively. Sim-
ilar sensor positioning has been frequently used for motion
and activity monitoring, e.g. in [8]. The HRM provided
heart period data (RR intervals) by measuring time dura-
tion between consecutive QRS complexes. The GPS device
provided speed and distance by evaluating the GPS satellite
signal. The heart period and GPS messages were transmit-
ted at 5Hz.

Two ANT receivers were used in this setup to split the traf-
fic among the nodes. While this has been an initial precau-
tion to avoid system failures, we observed during the exper-
iments that the components work very robustly and are not
restricted to this configuration.

5.2 Recording procedure
The sensor system was worn by two male users (aged be-
tween 25 and 33 years) during several days for at least 12 hours
each day. Daily routine during the study included various
activities. Most time was spent on office work (2389min),
attending meetings and lectures (220min), transitions be-
tween office and home (738min), as well as eating (329min)

bSee: http://www.suunto.com

and personal hygiene (33min). The system was attached in
the morning after getting up and continued to be worn until
late in the evening.

The users maintained a manual log of daily activities. They
were asked to specifically note activities that extended for
several minutes or longer, as well as to specify transition and
locomotion activities. In total we acquired 81 hours of sensor
data during seven days from both users. In a post-recording
step the data was inspected and manual user annotations
were added to the dataset.

5.3 Total network transmission performance
The total data loss of the wireless sensor system in our
recordings was 3.3%, i.e. within a period of 10 s only five
of 160 transmitted samples were not received (cf. Eq. (1)
in Section 4). Figure 5 shows the sensor node-specific total
data loss rate in different loss duration intervals. The inter-
vals denote the time during which no data was received.
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Figure 5: Sensor data loss rate in the daily activity
study in different loss duration intervals (a, b].

These results confirm a robust operation of our BSN. Al-
though the network was exposed to very dynamic conditions
in this experiment, none of the nodes failed completely. Ta-
ble 1 shows the total data losses for individual users and
sensor nodes.

Table 1: Sensor data loss rates for individual users
and sensor nodes in our daily activity monitoring
study, (BA=BodyANT).

User BA BA BA HRM Time in
wrist leg thigh chest dataset

Data rate 16Hz 16Hz 16Hz ∼1Hz

User 1 3.7% 6.4% 14.2% 0.0% 40 h

User 2 0.5% 1.4% 0.5% 0.1% 41 h

Total 2.0% 3.9% 7.2% 0.1% 80 h

Data losses for the HRM sensor were lower than losses of
BodyANTs because this device transmitted heart period
data of ∼1 Hz at a message rate of 5Hz. In comparison,
BodyANTs had a data sampling rate of 16Hz at a message
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rate of 32Hz. We observed a difference in data losses be-
tween the users, in particular for the chest-worn BodyANT
sensor node. As user 1 and user 2 wore the same BodyANT
node devices, we assume that user 1 exhibited different skin
tissue properties, which may have perturbed RF propagation
characteristics, in particular at the trunk. Similar issues had
been reported before [17].

We analyzed the data loss for all nodes in the network, ex-
cept the GPS device. Our recordings included long periods
of indoor activities where no satellite signal was available.
As the device detected such situations and would turn off
during these phases, it did not transmit samples that could
be analyzed and counted.

5.4 Activity recognition analysis
We applied a continuous activity recognition for each sensor
data stream to derive basic activity, user state, and physio-
logical information. This recognition was subsequently used
to analyze the transmission performance during different ac-
tivities in Section 5.5.

For all BodyANT sensor nodes, we trained feature models
from mean and variance of each acceleration sensor axis.
These feature models were obtained using a separate train-
ing dataset that was not part of the study set. The feature
models were subsequently used to recognize activities in the
study set. The training set was recorded from one user only
and had a duration of 10minutes. We annotated all activ-
ities in this set that were used for training the recognizer.
Continuous recognition was performed by applying a near-
est center classifier on sliding windows of 3 s and step-size
of 0.5 s. On this result a majority vote of 3 s windows was
applied to obtain a final result.

At the wrist sensor five arm postures, which are typical in
daily activities, were investigated: adducted-normal, adduc-
ted-pronation, adducted-supination, elevated over head, and
extended. All adducted postures were performed with an
elbow flexion of 90◦. At the leg thigh, we recognized four
activity classes: sitting, walking, standing, and bicycling.
Finally, for the chest-worn sensor we considered: walking,
bend forward, lean back, and upright. For our training
dataset we obtained recall and precision rates of above 90%
for all recognizers and classes, confirming that the activities
could be discriminated. We performed an evaluation on the
unseen study dataset for the leg-based activities only, since it
was not feasible to annotate all other categories in the large
data set. The leg-based recognizer achieved a good recogni-
tion performance for all categories (R=Recall, P=Precision),
with sitting: R=98%, P=99%, walking: R=90%, P=98%,
standing: R=73%, P=97%, and bicycling: R=87%, P=93%.

Using the HRM data, we distinguished three heart rate
levels with fixed thresholds to estimate physiological state
as low (< 70 bpm), normal (70 bpm < x <90 bpm), and
high (> 90 bpm). A threshold was applied on GPS speed
data to identify outdoor transitions, such as walking, riding
bicycle and using public transport from indoor and station-
ary activities. For both HRM and GPS recognizers, we se-
lected a sliding window size of 6 s. Subsequently, we utilized
the recognized activities to analyze the BSN transmission
performance.

5.5 Activity-specific transmission analysis
We further investigated the data losses in more detail to
determine impact of individual activities and to derive first
quantitative results for activities frequently observed in daily
routine. For this analysis we considered both, our manual
annotation of activities and the continuous activity recog-
nition detailed in Section 5.4 above. This strategy allowed
us to robustly analyze high-level daily routines from annota-
tion, such as eating and social interaction. As particular low-
level activities and states, including activity intensity, up-
per body postures etc., were not systematically reported by
the users, no annotation was available in our study dataset.
Consequently, we utilized activity recognition results for the
loss analysis of these activities. Our good recognition results
for selected low-level activities presented in Section 5.4, con-
firm that this strategy is a feasible approach.

Table 2 shows data loss rate comparisons between annota-
tion and recognition for individual activities. For this cate-
gory of activities, annotations were made by the users and
refined after the recording. Nevertheless, these annotations
were still not precise, e.g. short periods of walking may
have been omitted. Hence, the recognition provides addi-
tional insight in the data loss distribution. Our results show
that annotation and recognition are in good agreement.

Table 3 presents our transmission performance summary
for recognized upper body and arm postures, physiological
state (heart rate level), activity dynamics (rhythmic move-
ment vs. sedentary), and GPS-based activity (stationary vs.
moving).

These results were obtained by recognizing states and activi-
ties from the BSN data. Our analysis showed that transmis-
sion losses were depending on activity dynamics, especially
for the chest-worn BodyANT node. While this node posi-
tion worked well for sedentary activities and different torso
postures, it incurred elevated losses for physical activities.
We observed that physical activity seems more critical re-
garding data losses than a particular posture. Loss rates
of the HRM and BodyANT nodes at wrist and leg thigh
showed only minor variations across different activities. We
surmised that the relative orientation of the sensor node to
the receiver contributed to this observation. However, it
should be noted that loss rates with respect to activity cate-
gories primarily serve as an indicator of the influence caused
by different postures and activities. The data loss results in

Table 2: Comparison of annotation-based (A) and
recognition-based (R) data loss rate w.r.t. activity
duration, (BA=BodyANT).

Activity A/R BA BA BA HRM Time in
wrist leg thigh chest dataset

Sitting
A 1.9% 3.5% 6.2% 0.0% 3413min
R 2.5% 3.1% 4.6% 0.1% 3414min

Walking
A 2.0% 3.0% 6.8% 0.1% 377min
R 0.8% 4.7% 14.3% 0.0% 713min

Standing
A 2.3% 4.5% 9.3% 0.1% 921min
R 1.2% 6.7% 13.6% 0.0% 686min

Bicycle
A 0.1% 0.7% 0.8% 0.0% 23min
R 1.0% 8.1% 6.2% 0.2% 56min
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Table 3: Recognition-based sensor data loss rate in
the daily activity monitoring experiment w.r.t. ac-
tivity duration, (BA=BodyANT).

Category BA BA BA HRM Time in
wrist leg thigh chest dataset

Heart rate state∗

Low 2.0% 2.7% 3.0% 0.1% 2973min
Medium 2.4% 6.1% 13.9% 0.0% 1698min
High 0.4% 3.7% 12.6% 0.0% 235min

Activity dynamics

Movements 0.9% 4.7% 12.8% 0.0% 900min
Sedentary 2.3% 3.7% 6.0% 0.1% 3978min

GPS-based activity

Stationary 2.3% 4.3% 8.3% 0.0% 3712min
Moving 1.1% 2.4% 3.6% 0.2% 1132min

Torso posture

Walking 0.7% 4.1% 11.3% 0.0% 874min
Bend forward 2.8% 4.0% 6.9% 0.1% 2734min
Lean back 3.9% 5.2% 5.4% 0.0% 130min
Upright 1.2% 3.4% 5.4% 0.0% 1172min

Arm posture∗∗

Adducted, normal 4.6% 4.1% 8.2% 0.1% 914min
Adducted, pronation 1.6% 3.3% 5.1% 0.1% 2443min
Adducted, supination 1.5% 4.1% 10.7% 0.1% 218min
Elevated, above head 1.3% 3.7% 9.6% 0.0% 1011min
Extended 1.1% 8.1% 11.6% 0.0% 295min

∗) Heart rate states: Low:<70bpm, Medium:70<x<90bpm,
High:>90bpm.

∗∗) Arm postures: adducted postures with 90◦ elbow flexion.

Table 4: Annotation-based data loss rate w.r.t du-
ration of frequent daily activities, (BA=BodyANT).

Activity BA BA BA HRM Time in
wrist leg thigh chest dataset

Office 1.7% 4.0% 6.9% 0.1% 2389min

Lecture 3.2% 3.5% 10.9% 0.0% 220min

Conversation 4.2% 5.7% 14.0% 0.0% 538min

Eating 1.7% 4.7% 7.0% 0.0% 329min

Hygiene 2.4% 2.3% 9.4% 0.0% 33min

Public transport 2.0% 1.9% 3.2% 0.1% 738min

Table 3 cannot be compared between the different activity
categories as these categories are not independent from each
other.

Data loss analysis results for daily routines that were anno-
tated by the users are summarized in Table 4. As this sum-
mary shows, our network performed very well for all daily
routines. However, the chest-worn BodyANT node lost most
of the data during conversations. We attributed this loss to
motions of the upper body, arm gestures in particular, which
may have perturbed the transmission to the receiver, located
at the belt. Similar observations had been made earlier [7].
These results confirm our observations made for physical ac-
tivities in Table 3 before.

Figure 6 shows the data loss rate of the BSN in different
loss duration intervals for frequent daily routines. Predom-
inantly, loss durations are shorter than 1 s. The probability
of loss durations longer than 0.5 s is below 10−2.
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Figure 6: Data loss rate w.r.t. annotated daily ac-
tivities in different loss duration intervals (a, b].

6. CONCLUSION AND OUTLOOK
In this paper we introduced BodyANT, a novel on-body sen-
sor node design for BSN-based monitoring of daily activities.
Our design particularly addressed challenges for on-body
use, including a small outline and low weight, as well as mini-
mal energy requirements, while continuously sampling and
transmitting sensor data. BodyANTs exhibit excellent prop-
erties with respect to these challenges. While our current
BodyANT implementation focused on body motion, which
provided vital information on daily activities, our design
can accommodate various other sensing modalities as well.
We analyzed BodyANTs in laboratory experiments and con-
firmed their applicability for daily activity monitoring. The
nodes can continuously transmit at 32Hz for almost 5 days,
or at least 10 days, when used in a typical monitoring task
for 12 h each day. Moreover, our design performed well for
typical BSN setups of up to eight nodes. In a naturalistic
study of daily activities, we evaluated BodyANT nodes in
a BSN with two further devices, a HRM to monitor heart
activity, and a GPS device to track speed and distance. We
collected and annotated an extensive dataset of 81 h.

Overall data loss due to wireless transmissions was 3.3%, in-
dicating an excellent performance of our network. Transmis-
sion performance of individual BodyANT nodes depended
on node location at the body, but also on performed activ-
ities. A quantification of this performance can provide es-
sential information on the feasible BSN configurations. We
analyzed node performances for individual activities and
daily routines using manual annotations as well as auto-
matic recognition results. Our results show that body move-
ments can alter antenna orientation and consequently per-
turb transmission of individual nodes, resulting in up to 15%
data loss for individual activities.

Activity-specific data loss rates presented in this work had
been derived by normalizing lost samples during a specific
activity by the total activity duration. If a daily loss rate
is considered, these results should be weighted by the con-
tribution of the activity during the entire recording day. As
a result, relatively short activities, such as personal hygiene
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have a reduced impact on the loss, whereas the contribution
of long-lasting activities, such as office work, become very
crucial. Hence, BSN data loss should be analyzed in the con-
sidered application scenario to confirm its proper operation.
Data loss distributions in our study showed that losses were
typically shorter than 10 s. Short-term data interpolation
approaches could be applied to compensate such errors.

Given the excellent performance of our BodyANT design,
our future work will address feature computation on the
nodes and recognition of daily routines using this new sens-
ing platform.
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[22] T. Vuorela, V.-P. Seppä, J. Vanhala, and J. Hyttinen.
Wireless measurement system for bioimpedance and
ECG. In Proceedings of the 13th Int. Conference on
Electrical Bioimpedance, pages 248–251, 2007.

Digital Object Identifier: 10.4108/ICST.BODYNETS2009.5899 
http://dx.doi.org/10.4108/ICST.BODYNETS2009.5899 


