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ABSTRACT
Freezing of gait (FOG) is a common gait deficit in advanced
Parkinson’s disease (PD). It is often a cause of falls, inter-
feres with daily activities and significantly impairs quality
of life. PD patients can be assisted by auditory cueing. In
daily life cueing should be automatic during gait freeze.
This paper describes our ambulatory research platform for
context-aware online FOG detection and auditory cueing.
The system analyzes frequency components of body motion
to detect FOG and provides a metronome sound until the
patient resumes walking. We characterize the sensitivity and
specificity of the system as functions of: sensor placement
and orientation, walking style and algorithm parameters.
We have performed a study with ten PD patients, which
have worn our system performing several walking tasks. Over
8h of data has been recorded and 237 FOG events have been
identified by professional physiotherapists in a post-video
analysis. The system detected the FOG events online with
a sensitivity of 73.1% and a specificity of 81.6%. We show

∗Corresponding author

1 Wearable Computing Lab.
Swiss Federal Institute of Technology Zürich
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that the theoretical maximum performance of this algorithm
with patient specific optimal parameter sets is 88.6% sensi-
tivity and 92.8% specificity. By separating the patients into
saccadic and smooth walker with separate feature sets a de-
tection accuracy of 85.9% sensitivity and 90.9% specificity
was measured.
The vertical axis of the sensor at the knee is the best sensor
position and orientation for FOG detection. However the de-
tection performance is relatively insensitive to the location
and orientation, showing the robustness of the algorithm.

1. INTRODUCTION
Context awareness is an essential basis for providing the
relevant feedback and assistance in various health-related
applications such as rehabilitation or elderly assistance.

On body sensing, data processing and user feedback are gen-
erally favored as they are ’worn’, thus available anytime
and anywhere. We consider here a self-contained lifestyle
assistant for Parkinson’s disease patients with the freezing
of gait syndrome, including sensors, online data processing,
and user auditory assistance.

In this paper we present the online FOG detection perfor-
mance analysis using our modular research platform that
consists of wireless acceleration sensor nodes and a wearable
computing system. In detail our paper presents the follow-
ing contributions:

1. A detailed description and complexity analysis of the
real-time FOG detection algorithm that we developed
and optimized for online execution in wearable sys-
tems.

2. A detailed performance analysis of the algorithm in
offline use to evaluate the limits of this algorithm.

3. Evaluation of performance at three different body po-
sitions and orientation.

4. A summary of the positive outcomes from this wear-
able assistant identified from the field study with the
Parkinson’s disease patients.
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2. MEDICAL BACKGROUND
Parkinson’s disease (PD) is a common neurological disor-
der, caused by a progressive loss of dopaminergic and other
sub-cortical neurons [5]. PD often leads to impaired motor
skills, speech, and other functions [7]. Beside a flexed pos-
ture, tremor at rest, rigidity, akinesia (or bradykinesia) and
postural instability, motor blocks are a common negative
effect of PD. Most commonly the legs are affected during
walking, which is generally referred to as freezing of gait
(FOG).
FOG typically manifests as a sudden and transient inability
to move. About 50% of PD patients experience freezing,
10% of patients with mild PD symptoms and 80% of those
severely affected by PD. Freezing occurs more frequently
in men than in women and less frequently in patients whose
main symptom is tremor [9]. Freezing is associated with sub-
stantial social and clinical consequences for patients. In par-
ticular, it is a common cause of falls [4], interferes with daily
activities, and significantly impairs quality of life [6]. Gait
deficits and FOG are often resistant to pharmacologic treat-
ment [4, 12]. Therefore effective non-pharmacologic treat-
ments need to be developed as an adjunct therapy to relieve
symptoms and improve mobility. Literature shows that PD
patients can take advantage of external cueing, such as au-
ditory rhythmic sound, to help themselves out of the freezes
[8, 13, 14]. While this has been investigated with manual
triggered sound in laboratory settings, in daily life cueing
should be automatic during FOG. We investigate how to
automatically detect and react to FOG.

3. WEARABLE FOG ASSISTANT
3.1 Hardware
Figure 1 shows our system and the accelerometer sensors as
worn by a patient. Sensors measuring 3D-acceleration are
attached to the shank (just above the ankle), to the thigh
(just above the knee) and to the lower back (on the belt)
using an elasticized strap and Velcro. The acceleration sen-
sors are 27x47x12mm3 in size and weight less than 22 gram,
including a rechargeable Li-ion battery [2].

The wearable computing system for the data recording and
online processing is a research platform based on an Intel
XScale family processor and a Linux operating system, de-
signed for rapid prototyping. It offers processing power com-
parable to an ultra portable PC. The system offers by default
USB and Bluetooth as extension interfaces, allowing connec-
tions to a diversity of physiological and non-physiological
sensors [2]. Due to the general-purpose and energy-efficient
processor the system allows running online algorithms while
the power consumption is between 1.5 and 2 Watts. On
the 3.7V, 3.3Ah battery the system can run for more than
6h. The wearable computer is 132x82x30mm3 in size and
weights 231 grams. It is also attached to the belt, placed
around the trunk.

The wearable computer detects all available sensors auto-
matically and start the online processing. The acceleration
data (64 Hz) are transmitted over a wireless Bluetooth link
to the computing system for real-time identification of FOG.
Earphones placed around the patient’s neck and connected
to the computing system produce a 1 Hz ticking sound when-
ever an FOG episode is identified and last until the patient
resume walking.

Figure 1: FOG detection and feedback device worn
by one patient. Sensors are attached to the shank
(just above the ankle) and the thigh (just above the
knee) using an elasticized strap and Velcro. A third
sensor is attached to the belt where also the wear-
able computer is attached to.

3.2 Online FOG detection algorithm
Moore et al. analyzed the power spectra of the vertical
acceleration of the left shank on a 6 sec window of 11 PD
patients [10]. They found that high-frequency components
of leg movement during FOG in the 3-8 Hz band were not
apparent during volitional standing or during walking. For
an objective method to identify FOG automatically offline,
Moore introduced a freeze index (FI), defined as the power
in the ’freeze’ band divided by the power in the ’locomo-
tor’ band (0.5-3 Hz). FOG can be detected using a ’freeze’
threshold. FI values above this threshold are identified as
FOG.

We developed an online FOG detection algorithm based on
the principle described by Moore with emphasis on low la-
tency. The latency of the algorithm is dominated by the
window length needed for the fast fourier transformation
(FFT) calculation. The smallest resolution of the FFT is
determined by the sampling frequency (fSR) of the signal
and the FFT-length (NFFT = number of frequency points

between ’− fSR

2
’ and ’+ fSR

2
’) by the equation: fres = fSR

2
·

1

0.5·NF F T
= fSR

NF F T
. Given a minimum fres the FFT must

have at least NFFT ≥
fSR

fres
points. In order to be able to

sum up the energy in the two frequency bands a minimum
number of components is required. We decided to have at
least 10 frequency components between f0.5 = 0.5 Hz and
f3 = 3.0 Hz. To achieve this fres has to be equal or smaller
than 0.25 Hz/point (fres ≤

f3−f0.5

10points
= 2.5 Hz

10points
), and the
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window length must therefore be NFFT ≥
fSR

fres
= 4 sec ·fSR.

In other words, the window length must be at least 4 sec
long, independent of the sampling frequency (fSR) used.
The energy in the ’Loco band’, the low frequency part be-
tween 0.5 and 3 Hz is summed up as well as the energy in
the ’Freeze band’, the higher frequency part between 3 and
8 Hz. We also compute the complete energy (Etotal) between
0.5 Hz and 8 Hz by the addition of both parts.

If the power content of the signal between 0.5-8 Hz is above
the power-threshold (PowerTH ), the freezing index (FI) is
calculated by dividing the energy in the freeze band by the
energy in the locomotor band. For signal parts with a power
content Etotal below the PowerTH (standing parts), FI is
set to zero. Finally FOG is detected whenever the FI exceeds
the ’freeze’ threshold (FreezeTH ).

The PowerTH is needed to avoid that standing parts are
detected as FOG. This can happen, because in these parts
there is almost no energy in the two frequency band and
a division of two very small numbers is very sensitive to
small variations resulting in almost random output num-
bers. With the PowerTH the sensitivity of the algorithm
for detecting volitional standing parts can be adjusted, re-
spectively the specificity of the FOG detection by avoiding
that volitional standing is detected as FOG.
The FreezeTH determines the sensitivity of the FOG detec-
tion. A too low FreezeTH introduces too many false detec-
tions. A too high FreezeTH results in missing events and
increases the reaction time, because the FI must first rise up
to the threshold value before FOG is detected (see figure 10).

The key differences to Moore’s algorithm are a reduced, op-
timized window size, and the introduction of the second
threshold. Both of these are necessary modifications to make
it suitable for online use. A signal extract together with the
FI and the parts where FOG is detected is depicted in fig-
ure 10.
For the implementation on the wearable device we used the
Context Recognition Network (CRN ) Toolbox [3]. During
the study only the shank sensor data has been used for the
online FOG detection. Sensor data coming from the accel-
eration sensor with 64 Hz are windowed by a 4 sec window.
The windowing is done in steps of 0.5 sec.

4. EVALUATION STUDY
Ten idiopathic PD patients with a history of FOG, able to
walk un-assisted in “OFF” period (at a non-effective level of
medication) were recruited for our study by the specialists
at the Movement Disorders Unit, at the Tel Aviv Sourasky
Medical Center. The diversity of the participating patients
covered a wide spectrum of PD patients (Hoehn-Yahr score
(H&Y) between 2-4). It included PD patients difficult to
differentiate from healthy people by their gait performance
when they do not have an FOG event, as well as a PD patient
not able to walk distances > 15m (often using a wheelchair
in normal life). A detailed characteristic of the participants
is given in [1].

The study protocol had two sessions, one without auditory
feedback and one with auditory feedback. Each session con-
sisted of 3 basic walking tasks, designed to represent normal
daily walking. The first two tasks included straight walking

Figure 2: Snapshot of the study, depicting one PD
patient, the therapist (near the patient for safety
reasons) and the research assistants (more remotely
from the patient) who were documenting the trials.

with several turns, the third task included more typical ac-
tivities of daily living at home as for example moving around
rooms, going to the kitchen, carrying a glass of water. Par-
ticipants walked without assistance, but with a therapist
close by for safety reasons (see figure 2), at their own nat-
ural pace. A detailed description of the protocol is given
in [1].

Real-time annotation and simultaneous video taping were
used to determine the number and exact times of FOG
episodes (figure 2). Each patient was watched closely by
an assistant who real-time annotated the patients’ current
activity (standing, walking, turning and freezing). In a sub-
sequent process professional physiotherapists analyzed the
video recordings to identify the FOG events and determine
the exact start times, durations and end times.

5. RESULTS AND DISCUSSION
Eight patients out of the ten exhibited FOG during the
study, two patients did not have any freeze event (patient
04 and 10). The walking distance and number of turns de-
pended on the patients’ gait speed. One patient could not
perform the ADL part (patient 08). Overall 8h 20min of
data have been recorded. 237 FOG events (range 0-66 per
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Figure 3: Number of FOG events per patient.

patient; mean 23.7 [S.D. 20.7]) have been identified from
the video recordings by the physiotherapists. The detailed
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distribution of number of FOG per patients is given in fig-
ure 3. The length of the FOG events ranged from 0.5 sec
to 40.5 sec (mean 7.3 sec [S.D. 46.7 sec]). 50% of the FOG
episodes lasted less than 5.4 sec, and the majority of 93.2%
of FOG events had a duration less than 20 sec. The detailed
distribution of number of FOG events within 1 sec bins is
given in figure 4. We did not experience any technical prob-
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Figure 4: Distribution of duration of FOG events.

lems during the recordings. For the online detection of FOG
we used the vertical axis of the sensor at the ankle and one
global parameter set. The auditory cueing started properly
whenever a FOG episode was detected.

5.1 Algorithm performance evaluation
The algorithm detection performance is evaluated using a
0.5 sec based frame evaluation, allowing a maximum detec-
tion delay of 2 sec (tolerance). The reference for all our
evaluations is the video annotation of the physiotherapists.
Figure 5 shows examples of the detection evaluation. The
evaluation is done on a time basis, because we have to ac-
count for the duration of the freezes and freeze detection,
and not just their occurrence as one single event. Each
0.5 sec frame is compared with the reference annotation.
’True positive’ (TP) are all frames counted where the al-
gorithm has correctly detected FOG. At the beginning and
end of each FOG episode there is a tolerance of 2 sec (see fig-
ure 5c). ’False positive’ (FP) are all frames which have been
detected by the algorithm as being FOG, however there is
no FOG (see figure 5b). ’False negative’ (FN) are all frames
counted where the algorithm has missed to detect FOG (see
figure 5a+d). Finally all frames where correctly no FOG is
detected are counted as ’true positive’ (TN).
The Sensitivity (Sens = TP

TP+FN
) measures the proportion

of correct detected ’FOG time’ to whole ’FOG time’. The
Specificity (Spec = TN

TN+FP
) measures the proportion of cor-

rectly as ’no FOG’ detected time to whole time where no
FOG occurred.

96.2% of the identified FOG episodes (n=237) were detected
online by the wearable device. The frame based sensitiv-
ity and specificity of the online detected FOG were 73.1%
and 81.6%, respectively. The evaluation is based on 0.5 sec
frames with a 2 sec delay tolerance.

Figure 6 depicts the detection accuracy in terms of sensitiv-
ity and specificity for each patient individually. It can be
seen that the system did not work equally well on all pa-
tients. Worst results in terms of specificity performance was
obtained for patient 01. Only 38.7% specificity was achieved
(with 97.1% sensitivity). On the other hand worst results in
terms of sensitivity was obtained for patient 08 with a sen-
sitivity of 28.7% (specificity of 87.7%). We identified these
large variations to be caused by the different walking styles
of the patients. For example, patient 01 suffered from foot
drop while walking, which we call a saccadic walking style.
For patient 01 the system was most of the time not able to
distinguish between walking periods and very short freezing
events using the global algorithm parameter settings.

TN FN TN FP TP FP TPTN TN

TP FPFNTN TN TN TNFP

a) b) c)

d) e)

toleranceo rant le cetolerance

tolerance

Figure 5: Examples of the FOG detection perfor-
mance evaluation. The red bars indicate the ref-
erence annotation of FOG. The black lines are the
FOG detection signal (0 = ’no FOG’; 1 = FOG).
Vertical dashed lines mark the allowed tolerance.
a) Nothing detected: Sens = 100%, Spec = 0% b)
Everything ’detected’: Sens = 0%, Spec = 100%
c) Correct detected within the tolerance: Sens =
100%, Spec = 100% d) Correct detected but with
too big offset: Sens = 66.7%, Spec = 78.6% d)
Wrong detected event.
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Figure 6: Sensitivity and specificity distribution for
the online detection accuracy. Numbers correspond
to patient ID.
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Figure 7: Sensitivity, Specificity and Min(Sens,Spec) plots for patient 01 (vertical axis of sensor at ankle).

5.2 Algorithm complexity analysis
In this study we used our modular research platform for a
first investigation of algorithm performance and complexity.
However our end-goal is to integrate sensing and processing
into a single miniature sensor node which can run for several
days. Therefore limiting the complexity of the algorithm is
important.
Our analysis of the algorithm complexity has shown that
the whole computation can be done with 353 multiplications,
449 addition, 2 comparisons and some bit shifts every 0.5 sec.
These numbers are compose of:

•
NF F T

2
· log2(NFFT ) complex multiplies and NFFT ·

log2(NFFT ) complex additions (for NFFT a power of
2) to compute the FFT using the radix-2 Cooley-Tukey
FFT algorithm. One complex multiplication are 3 real
multiplications and one bit shift (multiplication by 2).
One complex addition are 2 real additions. Because
our input data are purely real, the outputs satisfy the
symmetry XN−k = X∗

k and roughly a factor of two in
time and memory can be saved by removing the redun-
dant parts of the computation. Minimal fSR needed
is 16 Hz, therefore minimal NFFT = 64.

• 2 · (xLB+xFB) real multiplications and xLB+xFB real
additions to compute the power spectrum of the rele-
vant frequency bands with xLB = (3 Hz−0.5 Hz)/fres+
1 number of operations in the ’Loco band’ and xFB =
(3 Hz − 0.5 Hz)/fres + 1 number of operations in the
’Freeze band’.

• xLB+xFB +1 additions to sum up the power spectrum
of the ’Loco band’, ’Freeze band’ and ’Overall sum’.

• One division, whereas a division by a number is a mul-
tiplication by its reciprocal.

• Two comparisons with the thresholds.

5.3 Characterization of parameter influence
We have analyzed the influence of the two threshold param-
eters PowerTH and FreezeTH on the algorithm detection
performance. All analysis in this subsection are done on the
sensor data of the ankle position, vertical axis, which seems
on a first guess to be the best position. Figure 7 depicts
the performance evaluation for different parameter settings
for patient 01. In figure 7a) the sensitivity of the algorithm
for the different parameter combinations is plotted, respec-
tively figure 7b) depicts the specificity. As expected there is

a trade-off between sensitivity and specificity - highest sen-
sitivity is achieved with minimal threshold at the expense of
a lower specificity. On the other hand highest specificity is
achieved for high thresholds at the expense of lower sensi-
tivity. There are different possibilities to decide for the best
combination of sensitivity and specificity. For our work we
have chosen to take the minimum between sensitivity and
specificity plotted as min(Sens,Spec) in figure 7c).
The maximum in the min(Sens,Spec)-plain corresponds to
the minimum equal error rate (EER) and is the ’optimal’
point. In figure 7 one can see that by adapting properly the
two threshold parameter of the algorithm, results of 95.9%
sensitivtiy with 92.7% specificity could be achieved for pa-
tient 01. The performance of the algorithm on the data of
patient 01 is relative insensitive to small variations of the
FreezeTH and the PowerTH.
In figure 8 the min(Sens,Spec)-plain for patient 02 is de-
picted. One can see that the performance on this data is
much more sensitive on the FreezeTH, however almost in-
sensitive over a very broad range of the PowerTH (27

−215).
Figure 9 depicts the distribution of the optimal parameter
for each individual patient (patient 04 and 10 are excluded
because they did not have FOG). The black dots mark the
optimal parameter combination. The gray areas mark all pa-
rameter combinations where the detection accuracy is less
than 5% lower than the maximum possible. One can see
the link between the distribution of the optimal parameter
shown in figure 9 and the min(Sens,Spec)-plain when com-
paring the ’max 5% distribution’ of patient 01 in figure 9
with figure 7c) or the ’max 5% distribution’ of patient 02 in
figure 9 with figure 8.
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Figure 8: Min(Sens,Spec)-plot for patient 02.
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We are interested in comparing a global optimization of the
threshold parameters against a user-specific optimization of
the parameters. By optimizing the parameters for each user
individually, we can compute the theoretical maximum per-
formance, achievable with the given algorithm, assuming op-
timal individual training of the algorithm parameter. The
optimal sensitivity and specificity we can expect with an op-
timal user specific parameter set is depicted in figure 11a).
This is a theoretical result we use as reference to compare
how much we can gain by a user specific training. Potential
improvement of user specific training is reported by measur-
ing the difference between Sensopt - Senscurrent and Specopt

- Speccurrent.
Performance with global parameters is always computed us-
ing a leave-one-out cross-validation, meaning that the global
parameter is trained on N − 1 subjects and performance is
tested on the remaining subject. The results with global
parameters is plotted in figure 11b). The algorithm per-
formance with global parameters is in average 11.1% (STD
±5.3%) away from the optimal user specific performance.
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Figure 9: Distribution of optimal parameter. The
black dots mark the optimal parameter combination.
The gray areas mark the parameter combinations for
the optimal 5% performance. Upward and down-
ward pointing triangles mark the group parameter
sets for smooth and saccadic walking styles.

In the plots of figure 8 we identified two main groups:

i) patients with an optimal FreezeTH around 1.5;
ii) patients with an optimal FreezeTH around 3.

Based on these findings we analyzed the detection perfor-
mance when grouping the 10 patients into the two groups.
The FreezeTH and PowerTH for the two groups are chosen
manually as visual average of the observation (no special al-
gorithmic training on the data). The first group consists of
patients with a more smooth walking style (FreezeTH low =
1.5) and the second group consisting of patients with a more
saccadic walking style (FreezeTH high = 2·FreezeTH low).
The two parameter sets are marked in the plots of figure 9 by
an upward and a downward pointing triangle. Group mem-
bership is done according to the smaller distance between
the optimal user specific parameter to the group parameter.

Figure 11c) presents the sensitivity/specificity with param-
eters optimized for the smooth and saccadic walkers. The
performance is in average 3.7% (STD ±2.8%) away from the
optimal user specific performance.

In the plots of figure 8 we also see that the algorithm per-
formance for patient 08 is very PowerTH sensitive. This is
not the case for the other patients. Patient 08 is the patient
most effected by the PD (H&Y of 4) and with the most diffi-
culties to walk. Most of the time she had akinesic (’without
motion’) FOG, not distinguishable from voluntary standing
with acceleration (motion) sensors. This is an explanation
for the PowerTH sensitivity. Patient 08 is also the patient
with the lowest sensitivity of 76.1% and specificity of 78.1%
for the optimal user specific parameter set.

5.4 Sensor placement characterization
We investigate the performance of the system using other
sensor placement and measurement axis to understand which
is the best location in terms of the trade-off between wear-
ability and performance.
Figure 10 depicts a 4min signal extract of patient 02 of the

sensor at the hip and at the ankle. Clearly there is a dif-
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Figure 10: A 4min signal extract from patient 02
of the sensor data at the hip (upper plot) and at
the ankle (lower plot) together with the freeze index
(FI) and the FOG detected parts.
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(a) Sens-Spec for optimal patient de-
pendent parameter.
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(b) Sens-Spec for leave-one-out cross
validation.
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(c) Sens-Spec for smooth and saccadic
walking parameter set.

Figure 11: Sensitivity and specificity plots for different parameter sets evaluated on data of the vertical axis
of the ankle sensor.

ference between both signals - the signal at the hip is much
smaller (damped), but the motion is still very well visible.
In the FI plot we see that the attenuation has no big influ-
ence on the power spectrum and therefore on the algorithm
performance. In some cases, as in this example, the FI de-
rived from the sensor data at the hip is even better than the
FI derived from the sensor data at the ankle. Short FOG
events however are more likely to be missed.
Table 1 lists the performance of the algorithm using the
leave-one-out cross-validation for the 12 possible combina-
tions of the three sensor positions (ankle, knee, hip) and the
three possible axis (x = horizontal forward, y = vertical,
z = horizontal lateral) plus the magnitude of all three axis

(n =
√

x2 + y2 + z2).
Best results are achieved using the vertical axis of the sen-
sor at the knee. But placing the sensor on the thigh just
above the knee is the most inconvenient position to wear [1].
However the detection accuracy at the other positions is still
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Figure 12: Sensitivity and specificity distribution for
a global threshold set when placing the sensor at
different positions.

quite good. These results are very promising, because the
sensors can be placed at a more convenient body position
without loosing much on the accuracy.
The STD results in table 1 indicate for which location a
parameter training based on data of other patients is more
difficult. A high STD is an indication for being more sen-
sitive on the correct parameter set than a low STD. The
variation can also be seen when plotting the results as de-
picted in figure 12 for the three sensor locations alway using
the vertical axis.

6. CONCLUSION
To our knowledge, this is the first time that FOG has been
automatically detected online by a wearable device. The
system detected the FOG events with a sensitivity of 73.1%
and a specifity of 81.6%.
Given the large inter patient variation in the gait perfor-
mance of the PD patients, we have shown that at least a
rough segmentation of smooth and saccadic walking together
with specific sensitivity adjustment can improve the detec-
tion performance to 85.9% sensitivity and 90.9% specificity.
With a global threshold (the leave-one-out cross validation)
a detection accuracy of 87.1% sensitivity and 86.9% speci-
ficity was achieved.
The analysis of three different sensor locations has shown
that all three locations could be use for FOG detection with
minor differences in detection performance. The ankle posi-
tion is especially interesting for the integration of the sensor
into a shoe. At the hip position the sensor could be inte-
grated into a belt. However the sensor location at the hip is
much more parameter sensitive and therefore less preferable
for real world application. Performance may be further in-
creased by sensor fusion, especially for those patients where
freezing does not translate in tremors in both legs.
For our first investigations we have used our flexible but
bulky general purpose wearable computing platform. The
algorithmic complexity however allows for a specialized sys-
tem designed for this task that is miniaturized to a size of a
button with the FOG algorithms included in the sensor node
itself. Roggen et al. have shown that computations similar
in complexity to those carried out in this work are suited for
online implementation in miniature sensor nodes of the size
of a button [11]. Such a system could be entirely integrated
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horizontal forward [x] vertical [y] horizontal lateral [z] magnitude [n]

Sensor at ankle

Sensitivity 87.15% ± 16.11% 81.46% ± 13.72% 80.20% ± 13.24% 79.23% ± 14.67%

Specificity 86.60% ± 14.49% 86.90% ± 11.37% 80.79% ± 19.33% 86.33% ± 8.92%

Sensor at knee

Sensitivity 75.81% ± 20.21% 85.33% ± 12.96% 81.85% ± 18.22% 82.43% ± 15.40%

Specificity 84.75% ± 15.91% 87.84% ± 13.42% 84.06% ± 19.77% 83.30% ± 13.29%

Sensor at hip

Sensitivity 81.15% ± 19.00% 70.59% ± 25.33% 77.76% ± 31.75% 77.55% ± 18.94%

Specificity 83.57% ± 28.13% 79.37% ± 20.12% 79.32% ± 21.97% 80.38% ± 23.69%

Table 1: Sensor position evaluation: Sensitivity and specificity (± std) for each combination of sensor position
(ankle, knee, hip) and axis orientation.

into (or attached to) normal shoes of the patient, and only
the trigger for the external cueing signal is transmitted to
the feedback device. The external cueing signal can be given
by a hearing aid like device or even the hearing aid itself.
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