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ABSTRACT 
The last few years have seen remarkable advances in the fields of 
body area networks and pervasive computing.  These technologies 
generate large volumes of data that need to be processed, 
reasoned about, and acted upon.  In this paper, we review the role 
that artificial intelligence plays in meeting this need and provide 
an overview of AI research projects that are making use or 
enhancing these technologies. 
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1. INTRODUCTION 
Sensors pervade our high-tech world – they link available 
computational power with physical applications.  Because of 
recent advancements in fields such as body area networks and 
smart environments, sensors are rapidly catching up with 
computing devices in popularity and widespread use.  As they

 become more varied and easy to use, the need to analyze and act 
upon sensor data grows. 

 
Figure 1.  Intelligent agent controlling a smart environment. 

Artificial Intelligence plays a key role in reasoning about sensor 
data.  Researchers are striving toward the goal of creating an 
intelligent agent [1]. An intelligent agent, such as the one 
illustrated in Figure 1, perceives the state of a body or 
environment using sensors, reasons about the data using 
techniques including data mining and machine learning, and acts 
upon the environment using controllers in such a way that the 
agent achieves its intended goal. 

In this paper, we will take a closer look at the AI technologies that 
are used to process, reason about, and act upon about sensor data.  
We will also describe these technologies in the context of our 
smart home research project. 

2. SENSING 
Because intelligent agents are designed for real-world, physical 
applications, effective use of sensors is vital. Without physical 
components that allow an intelligent agent to sense and act upon 
the environment, we end up with theoretical algorithms that have 
no practical use. 

Intelligent agents rely on sensory data from the real world. As 
Figure 1 shows, the software algorithm perceives the environment 
and uses this information to reason about the environment and the 
action that can be taken to change the state of the environment. 
Perception is accomplished using a variety of sensors. Sensors on 
the human body can provide information about physiological 
signals [1], body position [6], and body movement [5].  Sensors 
on assistive devices provide information about the device 
movement patterns [22] and the location of nearby objects [12].  
Sensors in a smart environment can track the location of residents 
[11] and movable objects [1] as well as provide information about 
the physical environment such as light levels, temperature, and 
humidity. 

Making sense of sensor data is a complex task. Sensor data comes 
with unique features that challenge conventional data analysis 
techniques. They generate large volumes of multidimensional 
data, defying attempts to manually analyze it. If the sensors are 
imprecise the data can be noisy, and if a sensor fails there may be 
missing values. Sensor data often needs to be handled on the fly 
or as streaming data [14], and the data may have a spatial or 
temporal component to it. 

When faced with large amounts of raw sensor data, AI techniques 
can assist by first searching for patterns in the data that will help 
characterize the nature of the data and identify underlying models.  
Hierarchical clustering partitions the data into sets of similar data 
points, self-organizing maps visualize the data by moving similar 
data points close together in the map, and association analysis 
finds repetitive sequences in time-ordered data. A common data 
analysis goal is to map data points to predefined class labels, 
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which in essence classifies the data.  For example, an individual 
in a smart home can be identified by mapping a sequence of 
sensor events onto potential resident names.  Many types of 
classification algorithms, or supervised learning algorithms, can 
be applied to sensor data, including decision trees, neural 
networks, Bayesian classifiers, instance-based learners, regression 
algorithms, and support vector machines. 

 
 

Figure 2.  An example of cyclic data (top) and the 
corresponding autocorrelation plot (bottom). 

Sensor data that has a time component can be further analyzed to 
determine trends.  Trend analysis techniques often use temporal 
autocorrelation plots as shown in Figure 2.  Such plots show the 
correlation between time-shifted values in a time series and show 
whether values along a particular dimension of the data are fairly 
stable (values are fairly constant), steadily increasing, decreasing, 
or exhibiting cyclic patterns.  A special class of trend analysis is 
anomaly detection or outlier detection, which can be performed 
using statistical tests such as the Grubbs test. 

3. REASONING 
Sensing and acting provide links between intelligent algorithms 
and the real world in which they operate.  In order to make such 
algorithms responsive, adaptive, and beneficial to users, a number 
of types of reasoning must take place.  For example, one feature 
that separates general computing algorithms from those that are 
responsive to the user is the ability to model user behavior.  If 
such a model can be built, it can be employed to customize the 
behavior of the software the user.  If the model results in an 
accurate enough baseline, it can provide a basis for detecting 
anomalies and changes in user behavior.  If the model has the 
ability to be automatically refined, the software can adapt itself to 
these changing patterns.  As an example, Loke [13] builds a 

device states, and pulls information from similar situations to 
provide a context-aware environment.  Doctor, et al. 

model from sensor data of smart environment resident actions and 
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4. ACTING 
e reasoning to the real world through sensing 

easoning, and acting is the hallmark of 

[7] model 
resident behavior by learning fuzzy rules that map sensor states to 
actuator readings representing resident actions. 

A second contribution that AI reasoning algor
ability to predict and recognize events and higher-level activities.  
The Neural Network House, the Intelligent Home, the House_n, 
and the MavHome smart environment projects adaptively control 
home environments by anticipating the location, routes, and 
activities of the residents.  Prediction algorithms have been 
developed for both the single [8] and the multiple resident [18] 
cases.  Predicting events allows the intelligent agent to anticipate 
a user’s needs and assist with (or possibly automate) the event.  If 
prelabeled user activity is available, then supervised learning 
approaches can be used to build a model of activities and these 
models can be employed to recognize current user tasks [16][21]. 

Very little work can be done on body area networks or on smart 
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environments without an explicit or implicit reference to where 
and when the data was collected and the meaningful events 
occurred.  For a system to make sensible decisions it has to be 
aware of where the users are and have been during some period of 
time.  Spatial and temporal reasoning are two well-established 
areas of AI.  Gottfried, et al. [9] has shown how traditional spatial 
and temporal reasoning frameworks can be enhanced to yield a 
better understanding of the activities in pervasive computing 
applications.  Jakkula, et al. [10] uses an existing temporal 
formalism to describe frequent temporal relationships between 
events in a smart home, while Augusto and Nugent [3] describe a 
new language which allows the specification of situations 
involving repetitions, sequences, frequencies, and durations of 
activities. 
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Intelligent agents ti
and acting.  Automated decision making and control techniques 
are useful in transitioning reasoning approaches to action 
selection and execution.  Simpson, et al. discuss how AI planning 
systems can be employed in a smart environment to remind 
individuals of their next daily activity.  Mozer’s Adaptive Home 
uses a neural network and a reinforcement learner to determine 
and control ideal light and fan settings for the house.  Another 
notable example in this area is the research of Amigoni, et al. who 
employs a Hierarchical Task Network planner to generate 
sequences of actions and contingency plans for a smart 
environment.  The planner will, for example, respond to a sensed 
health need by calling a medical specialist and sending health 
vitals collected by body sensors using any available device (cell 
phone, email, or fax).  If there is no response from the specialist, 
the planner would phone the nearest hospital and request 
ambulance assistance. 

5. CASE STUDY:  THE MAVHOME 
SMART HOME 
The cycle of sensing, r
intelligent agent applications.  We describe here how these 
components fit together in the designing of the MavHome smart 
home application. 



Since the beginning, people have lived in places that provide 
shelter and basic comfort and support.  As society and technology 
advance there is a growing interest in improving the intelligent of 
the environments in which we live and work.  The MavHome 
project is focused on providing such environments [23].  We take 
the viewpoint of treating an environment as an intelligent agent 
which perceives the state of the environment using sensors and 
acts upon the environment using device controllers in a way that 
can maximize the comfort and productivity of the residents, 
minimize the consumptions of resources, and maintain the safety 
and security of the environment and its residents. 

The MavHome architecture shown in consists of cooperating 
layers.  Perception is a bottom-up process.  Sensors Sensors 
monitor the environment using physical components (e.g., 
sensors) and make information available through the interface 
layers. The database stores this information while other 
information components process the raw information into more 
useful knowledge (e.g., patterns, predictions). New information is 
presented to the decision making applications (top layer) upon 
request or by prior arrangement. Action execution flows top-
down. The decision action is communicated to the services layer 
which records the action and communicates it to the physical 
components. The physical layer performs the action using 
powerline control, and other automated hardware, thus changing 
the state of the world and triggering a new perception. 

All of the MavHome components are implemented and are being 
tested in two physical environments, the MavLab workplace 
environment and an on-campus apartment. Powerline control 
automates all lights and appliances, as well as HVAC, fans, and 
miniblinds. Perception of light, humidity, temperature, smoke, 
gas, motion, and switch settings is performed through a sensor 
network developed in-house. Resident localization is performed 
using passive infrared sensors yielding a detection rate of 95% 
accuracy. 

Communication between high-level components is performed 
using CORBA, and each component registers its presence using 
zero configuration (ZeroConf) technologies. Implemented 
services include a PostgreSQL database that stores sensor 
readings, prediction components, data mining components, and 
logical proxy aggregators. Resource utilization services monitor 
current utility consumption rates and provide usage estimates and 
consumption queries. 

 
Figure 3.  The MavLab (left) and MavPad (right) 
environments. 

 

MavHome is designed to optimize a number of alternative 
functions, but for this case study we focus on minimization of 
manual interactions with devices. The MavHome components are 

fully implemented and have automated the environments shown 
in Figure 3. The MavLab environment contains work areas, 
cubicles, a break area, a lounge, and a conference room. MavLab 
is automated using 54 X-10 controllers and the current state is 
determined using light, temperature, humidity, motion, and 
door/seat status sensors. The MavPad is an on-campus apartment 
hosting a full-time student occupant. MavPad is automated using 
25 controllers and provides sensing for light, temperature, 
humidity, leak detection, vent position, smoke detection, CO 
detection, motion, and door/window/seat status sensors. Figure 4 
shows the MavPad sensor layout. 

 
Figure 4.  MavPad sensor layout. 

 

To automate our smart environment, we collect observations of 
sensor events and manual resident interactions with the 
environment.  We mine sequential patterns from this data using a 
sequence mining algorithm, ED.  Next, we predict the resident’s 
upcoming actions using our ALZ algorithm.  Finally, a 
hierarchical Markov model is created using low-level state 
information and high-level sequential patterns, and is used by our 
ProPHeT algorithm to learn an action policy for the environment.  

 



5.1. Episode Discovery 
A smart home resident typically interacts with various devices 
and triggers sensors while conducting routine activities.  These 
interactions may be considered as a sequence of events, with 
some inherent pattern of recurrence.  We represent each sensor 
event as a triple consisting of the sensor fire (or device 
manipulated), the value of the sensor reading (or the new state of 
the device), and the time of the event.  Our Episode Discovery 
(ED) algorithm [10] moves a window in a single pass through the 
history of events, looking for episodes (sequences) within the 
window that merit attention.  Candidate episodes above a 
minimum acceptable value are reported. 

When evaluating candidate episodes, ED looks for patterns that 
minimize the description length of the input stream, O, using the 
Minimum Description Length (MDL) principle.  The MDL 
principle targets patterns that can be used to minimize the 
description length of a database by replacing each instance of the 
pattern with a pointer to the pattern definition.  The description 
length (DL) of the input sequence using the set of patterns θ is 
thus defined as DL(O, θ) = DL(O| θ) + DL(θ), or the description 
length of the input sequence compressed using θ plus the 
description length of the patterns θ.  ED reports episodes, or 
sequences, that yield the largest compression ratio (ratio of the 
original DL to the DL of the compressed sequence). 

Our MDL-based evaluation measure identifies patterns that 
balance frequency and length.  Periodicity (daily, every other day, 
weekly occurrence) of episodes is detected using autocorrelation 
and included in the episode description.  In this way, ED 
identifies patterns of events that enable understand of resident 
activities.  Once the data is compressed using discovered patterns, 
ED can be run again on the compressed data to generate a 
hierarchy of patterns within the event data. 

5.2. Event Prediction 
To predict events (sensor readings or resident interactions with 
the environment), we borrow ideas from LZ78 text compression 
[24].  By predicting events, a smart environment can automate or 
improve upon anticipated events in the environment.  Well-
investigated text compression methods have established that good 
compression algorithms also make good predictors. 

LZ78 incrementally processes an input string of characters and 
stores them in a tree.  In our case the string represents the history 
of sensor events and device interactions.  The algorithm parses the 
string x1, x2, …, xi into substrings ω1, ω2, .., ωc(i) such that for all 
j>0, the prefix of the substring ωj is equal to some ωi for 1<i<j.  
Thus each newly-encountered substring is stored in the tree as an 
extension of a substring already in the tree.  

Our Active Lezi (ALZ) algorithm [8] enhances LZ78 by 
recapturing information lost across phrase boundaries.  Frequency 
of symbols is stored along with phrase information in the tree, and 
information from multiple context sizes is combined to provide 
the probability for each potential symbol (sensor event or manual 
interaction) as being the next one to occur.  In effect, ALZ 
gradually changes the order of the corresponding model that is 
used to predict the next symbol in the sequence.  As a result, we 
gain a better convergence rate to optimal predictability as well as 
achieve greater predictive accuracy. 

To perform prediction, ALZ calculates the probability of each 
symbol occurring, and predicts the event with the highest 
probability.  To achieve optimal predictability, we use a mixture 
of all possible higher-order models (phrase sizes) when 
determining the probability estimate. 

We initially evaluated the ability of ALZ to perform resident 
action prediction on synthetic data based on six embedded tasks 
with 20% noise.  In this case the predictive accuracy converges to 
86%. 

5.3. Decision Making 
In our final learning step, we employ reinforcement learning to 
generate an automation strategy for the intelligent environment.  
To apply reinforcement learning, the underlying system (i.e., the 
house and its residents) could be modeled as a Markov Decision 
Process (MDP). This can be described by a four-tuple <S, A, Pr, 
R>, where S is a set of system states, A is the set of available 
actions, and R: S→[0,1] is the reward that the learning agent 
receives for being in a given state. The behavior of the MDP is 
described by the transition function, Pr:S×A×S→[0,1], 
representing the probability with which action at executed in state 
st leads to state st+1. 

With the increasing complexity of tasks being addressed, recent 
work in decision making under uncertainty has popularized the 
use of Hierarchical MDPs.  While they are appropriate for an 
intelligent environment domain, current approaches generally 
require a priori construction of the hierarchical model. Unlike 
other approaches to creating a hierarchical model, our decision 
learner, ProPHeT [24], actually automates model creation by 
using the ED-mined sequences to represent the nodes in the 
higher levels of the model hierarchy. 

The lowest-level nodes in our model represent a single event 
observed by ED. Next, ED is run multiple iterations on this data 
until no more patterns can be identified, and the corresponding 
abstract patterns comprise the higher-level nodes in the Markov 
model. The higher-level task nodes point to the first event node 
for each permutation of the sequence that is found in the 
environment history. Vertical transition values are labeled with 
the fraction of occurrences for the corresponding pattern 
permutation, and horizontal transitions are seeded using the 
relative frequency of transitions from one event to the next in the 
observed history. As a result, the n-tier hierarchical model is thus 
learned from collected data. An example hierarchical model 
constructed from MavHome data is shown in Figure 5. 

Given the current event state and recent history, ED supplies 
membership probabilities of the state for each of the identified 
aptterns.  Using this information along with the ALZ-predicted 
next action, ProPHeT maintains a belief state and selects the 
highest-utility action to perform. 

To learn an automation strategy, ProPHeT employs a temporal-
difference reinforcement learning strategy to form control policies 
which optimize the expected future reward.  In particular, 
MavHome receives negative reinforcement when the resident 
immediately reverses an automation decision (e.g., turns the light 
back off) or an automation decision contracts safety or user-
specified comfort constraints. 
 



 
Figure 5.  Hierarchical model constructed from MavLab data. 

 

5.4. Evaluation 
As a validation of the performance of the MavHome core 
algorithms, we evaluated a week in a resident’s life with the goal 
of reducing the number of manual interactions with the MavLab 
environment.  The data was restricted to just motion sensor data 
and lighting interactions which account for an average of 1400 
events per day. 

 
 

Figure 6.  Interaction reduction in the MavLab. 
 

When automation decisions were made using ALZ alone, 
interactions were reduced by 9.7% on average.  ED next 
processed the data and ProPHeT used these results to 
automatically construct a model with eight interesting episodes 
and two meta-tasks.  Automation using a flat model with no 
abstract nodes reduced interactions by 38.3%, and the hierarchical 
model was used to reduce interactions by 76%, as shown in 
Figure 6. 

 
Figure 7. Interaction reduction in the MavPad. 
 
Experimentation in the MavPad using real resident data (with an 
average of 18 manual interactions per day) yielded similar results.  
In this case, ALZ alone reduced interactions by 1 event, the flat 
model reduced interactions by 33.3%, and the hierarchical model 
reduced interactions by 72.2% to 5 events.  The results are shown 
in Figure 7. 

6. CONCLUSIONS 
Both body area networks and smart environments are establishing 
fast as areas where a confluence of topics can converge to help 
society through technology.  In this paper we summarized the 
beneficial role that Artificial Intelligence can play in making 
these algorithms robust and adaptive to the user.  We have also 
illustrated the benefits of AI algorithms in the MavHome smart 
environment project. 
There are still many challenges to face in the development of 
Artificial Intelligence algorithms for use in these fields.  For 
example, attributing events to individuals in a multi-resident 
setting is an ongoing challenge.  We would also like to see the 
notion of “environment” extend from a single setting to 
encompass all of an individual’s spheres of influence by fusing 
information from these multiple settings.  Similarly, researchers 
can share data between multiple body area networks and between 
multiple environments to benefit the group of individuals as a 
whole, and in the case of smart environments, actually create 
“smart communities”.  Finally, the concerns about creating 
intelligent and adaptive algorithms while maintaining privacy 
needs to be addressed in ongoing research efforts. 
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