
Body Posture Identification using Hidden Markov Model 

with a Wearable Sensor Network  
Muhannad Quwaider        Subir Biswas 
   NeEWS Laboratory       NeEWS Laboratory  

Electrical and Computer Engineering      Electrical and Computer Engineering 
Michigan State University  Michigan State University 
    East Lansing, USA       East Lansing, USA 

          quwaider@msu.edu          sbiswas@egr.msu.edu
 

 

ABSTRACT 
 

   This paper presents a networked proximity sensing and Hidden 

Markov Model (HMM) based mechanism that can be applied for 

stochastic identification of body postures using a wearable sensor 

network. The idea is to collect relative proximity information 

between wireless sensors that are strategically placed over a 

subject’s body to monitor the relative movements of the body 

segments, and then to process that using HMM in order to identify 

the subject’s body postures. The key novelty of this approach is a 

departure from the traditional accelerometry based approaches in 

which the individual body segment movements, rather than their 

relative proximity, is used for activity monitoring and posture 

detection. Through experiments with body mounted sensors we 

demonstrate that while the accelerometry based approaches can be 

used for differentiating activity intensive postures such as walking 

and running, they are not very effective for identification and 

differentiation between low activity postures such as sitting and 

standing. We develop a wearable sensor network that monitors 

relative proximity using Radio Signal Strength indication (RSSI), 

and then construct a HMM system for posture identification in the 

presence of sensing errors. Controlled experiments using human 

subjects were carried out for evaluating the accuracy of the HMM 

identified postures compared to a naïve threshold based 

mechanism, and its variations over different human subjects.  
 

Keywords: Body Sensor Network, Posture Identification, 

Hidden Markov Model. 
 

1. INTRODUCTION 
 

 Human health monitoring using both in-body and out-of-body 

sensors [1][2][3][4] is increasingly emerging as a dominant 

application framework for the evolving sensor network 

technology [5][6]. A number of tiny wireless sensors, strategically 

placed on a patient’s body, can create a Wireless Body Area 

Network (WBAN) [7][8], that can monitor various vital signs, 

providing real-time feedback to the patient, his or her doctors, and 

other medical service provider personnel. Many patients 

diagnostic procures can benefit from such continuous monitoring 

to be as a part of optimal maintenance of a chronic condition or 

during supervised recovery from an acute event or surgical 

procedure.  

 

Recent technological advances in wireless networking promise a 

new generation of wireless sensor networks suitable for many of 

the health related applications as outlined above. 

   In this paper we deal with a body posture identification problem 

in which a wireless network of body-mounted sensors is used for 

monitoring and identifying the posture of a human subject. The 

spectrum of postures to be identified may include sitting, lying 

down, standing, walking, jogging and other physical activities that 

relate to lifestyle and behavioral factors and play a role in the 

etiology and prevention of many chronic diseases such as 

cancer and coronary heart disease. Once developed, such a 

wearable sensor network for posture identification can be used 

for patients’ physical activity assessment for both surveillance 

and epidemiologic/clinical research purposes. Such automated 

instrumentation for physical activity and body posture detection 

has recently been actively promoted by various health oriented 

research organizations including the National Institute of Health 

(NIH) [9].  

   In a number of existing works [10][11] multi-axes 

accelerometers are used for the identification of body postures 

by analyzing the level of acceleration in different body 

segments, which is a direct indication of physical activity. 

These mechanisms are shown to work very well for identifying 

postures such as walking, jogging, and sprinting. However, for 

applications those require context identification at finer 

granularities, it is often necessary to differentiate between low-

activity postures such as standing, sitting, lying down, and 

sometimes with even finer granularity such as sitting upright or 

reclined. For these non activity-intensive postures the 

traditional accelerometer based solutions do not work well.  

   For detecting non activity-intensive body postures, we 

propose a proximity-based sensing solution, in which the 

instantaneous physical proximity between different body 

segments is sensed by measuring the relative radio frequency 

signal strength between body mounted sensors. Information 

from multiple sensors is then temporally correlated to estimate 

the orientation of the body segments and the resulting postures. 

We have also developed a Hidden Markov Model (HMM) based 

stochastic posture identification system that can compensate for 

sensing errors that are found to have been caused by subject’s 

clothing, body structure, and the variability in the sensor 

mounting.     

   While the proposed framework is general enough to execute 

the posture detection computation both on and off line as well 

as on-body and out-of-body, the laboratory system described in 

this paper performs out-of-body and off-line posture 
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identification. Extension of the system for on-line and on-body 

detection is currently being worked on.         
    

2. WEARABLE SENSOR NETWORK 
 

   A sensor network, as shown in Figure 1, is constructed by 

mounting multiple sensors in different parts of the body, so that 

the individual sensors movement can reflect the displacement of 

the corresponding body segment. Mica2Dot mote radio nodes, 

operating with 433MHz radio, and its sensor card MTS510 from 

the Crossbow Inc. [12] are used as the wearable sensor nodes. The 

Mica2Dot nodes run from a 570mAH button cell with a total node 

weight of 5.9 grams. In our experiments, each sensor is worn with 

an elastic band so that the sensor mount orientation does not 

change during experiments involving heavy activities including 

walking and running.  
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Figure 1: Wearable wireless sensor network  
 

   As shown in the diagram, the wearable sensor nodes form an ad 

hoc sensor network with a topology that is dynamically 

determined based not only on the relative locations of the 

subject’s limbs but also on the wireless link qualities determined 

by the transmission power and instantaneous link attenuation. 

Wireless links are also available to transport raw data or processed 

events from the body network to an external processing server. A 

MICA2 radio node with custom-built serial interface to run 

RS232 protocol has been used for collecting data and events from 

the body network and send it to a Windows based PC used as the 

processing server.   
    

2.1 Sensor Modalities 
 

   Two sensor modalities, namely, acceleration and relative 

proximity are used for the developed system. A two-axes [10] 

piezoelectric accelerometer in the Mica2Dot sensor card is used 

for detecting the changes in body movements. Since acceleration 

is proportional to the net external force, it provides a very direct 

indication of the energy expenditure [10] due to the involving 

physical activities.  
   The proximity between the sensor nodes in Figure 1 is the 

second sensor modality that is measured using received signal 

strength indication (RSSI) of the radio signal. Each sensor is set 

to periodically send a Hello message to all its neighbors with a 

preset transmission power that is enough to reach all sensors on 

the body. Based on those Hello packets, each node creates and 

maintains a local neighbor table consisting of the RSSI values for 

all its individual radio neighbors. In addition to constructing the 

local topology information, this way each node maintains a 

measure of the relative proximity for its neighbor nodes.  It was 

experimentally found that a Hello interval of 2.5 sec, and 

transmissions at 10% of the maximum power was sufficient for 

the proposed proximity detection mechanism to work.    

2.2 Sensor Placement 
 

   Considering the practical ease of wearing and to capture high 

level of acceleration it was decided that the sensors will be 

mounted at the body extremities including the ankles, wrists and 

head (on a cap). To capture the limb movements using the 

proximity information, additional sensors are placed on the thighs, 

waist and upper arms. Note that while more sensors provide richer 

set of data to work with, it also makes the overall sensor wearing 

process cumbersome and impractical. Therefore, a key objective 

of the system design is to achieve high posture identification 

success rate with as few sensor nodes as possible. 

   With the general sensor placement guideline as outlined above, 

the following specific placement issues were needed to be 

resolved [11]. First, the number of mounted sensors should be 

minimized while capturing sufficient diversities for both the 

chosen modalities. Through extensive experimentation with 

different subject individuals it was found that two sensors on both 

the upper arms and two sensors on the thighs provide enough 

information diversity (for both acceleration and proximity) for 

them to be applicable to our proposed posture identification 

techniques.       

   Second, it was found that due to the variability of the inter-node 

link quality, caused primarily by body movements, antenna mis-

orientation, and signal blockage by clothing material, not only the 

network topology becomes unpredictably dynamic, but the 

proximity information indicated by the RSSI values can also vary 

over a very large range. This has the potential for introducing 

serious inaccuracies in the posture identification unless specific 

measures are taken to suppress the effects of such measurement 

errors. We use a Hidden Markov Model to specifically address 

these measurement errors and variability. Choosing the 

appropriate transmission power for the sensors is also a design 

issue that needs to be dealt with.  
 

3. POSTURE IDENTIFICATION USING 

ACCELEROMETRY 
 

   In this paper, we attempt to identify four body postures, namely, 

SIT, STAND, WALK and RUN, which represent both activity 

intensive and non-intensive scenarios. We develop controlled 

experiments in which human subjects are given pre-determined 

sequence of those four postures to follow, and the wearable sensor 

network is used for collecting both accelerometer and proximity 

data for out-of-body and off-line post processing. Postures, 

identified using our proposed detection algorithms, are then 

temporally correlated with the actual sequence given to the 

subjects for evaluating the identification accuracy.     

   Figure 2 shows the accelerometer readings (normalized by the 

gravitational acceleration g, which is 9.81 m/s2) corresponding to 



a subject’s activity from a single sensor, while the subject was 

following a controlled posture sequence of {SIT, STAND, 

WALK, RUN, STAND, SIT, STAND, WALK, RUN, STAND, 

SIT}, each lasting for 60 seconds. A sampling rate of 20 Hz has 

been used for obtaining reading from the accelerometers. The 

numbers in the figure correspond to the average of the 

acceleration recorded in both the axes of the used sensor.  

   The figure shows as to how the acceleration reading increases 

from the non activity intensive postures such as SIT and STAND 

to the activity intensive postures such as WALK and RUN. The 

readings for SIT and STAND, however, are almost the same due 

to the absence of any major physical activity in both the postures. 
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Figure 2: Accelerometer readings in different postures 

 

   The frequency domain representation of the collected 

accelerometer data is presented in Figure 3 for all four postures 

individually. The graph for WALK, for example, is plotted by 

applying Fourier Transform to the cumulative acceleration data 

from all the WALK states as shown in Figure 2. Same applies to 

the other postures as well.   

   Observe that while the graphs for WALK and RUN demonstrate 

a noticeable presence of frequency components in the range 0 to 

0.1, the ones for SIT and STAND are almost flat over the entire 

frequency spectrum. The difference in the peak values for WALK 

and RUN indicate the difference of activity levels in these two 

postures. These peak values, coupled with suitably chosen 

thresholds, can be used for identification and differentiation 

between the WALK and RUN postures.  
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Figure 3: Frequency domain view of the acceleration reading 

 

   The frequency domain data can be also used for identification of 

a low activity state, but as shown in Figure 3, it is likely to fail to 

differentiate between SIT and STAND due to the lack of any 

noticeable difference in their respective frequency domain 

behavior. This clearly demonstrates the inability of the 

accelerometer based approaches for low activity posture 

identification. 

   Figure 4 summarizes the sensing scope for the four targeted 

postures in this paper. It is shown that while accelerometry is 

capable of identifying WALK and RUN, it is not sufficient for the 

low activity postures. The key idea in this paper is to add a second 

sensing modality, namely, physical proximity, and its associated 

analysis techniques for enabling a wearable sensor network to 

identify all four targeted postures.    

Figure 4: Posture identification using multi-modality sensing 
 

4. USING PROXIMITY INFORMATION 
 

    As described in Section 2.1, the radio signal strength (RSSI) 

extracted from the mutual Hello messages among the sensor nodes 

are used as indications of relative sensor proximity in our 

developed network. Since this proximity information reflects the 

relative positions of different body parts, it can be used for 

differentiating postures which are not differentiable using activity 

information from the accelerometer sensors. In the SIT posture, 

for instance, the average distance between all body mounted 

sensors is expected to be smaller than that when a subject is in 

STAND posture. This idea is particularly implementable since the 

required proximity information for low activity posture 

differentiation is needed only in a relative sense without requiring 

its absolute values.    

   In this section we provide experimental details for a simple 

threshold based mechanism for identifying the SIT and STAND 

postures using proximity as a sensor modality. As shown in 

Figures 2, 3, and 4, since the acceleration information by itself is 

sufficient for detecting the WALK and RUN, we propose that the 

proximity information be used to differentiate between SIT and 

STAND when a low activity situation is detected from the 

acceleration data. In the rest of the paper we present experiments 

and methods to identify SIT and STAND using the sensed 

proximity data.  
 

4.1 Posture Modeling and Generation  
 

   The sit-stand behavior of a subject in our experiments is 

modeled as a Markov process in which the subject’s posture 

transitions assume to follow a memory less process [13]. The 

transition probabilities across the postures (see Figure 5) represent 

the subject’s behavior that remains stationary for certain time 

intervals. The transition matrix A remains fixed during a 

stationary interval and can vary across such intervals based on 

specific subject individual and his or her nature and place of 

work. 

  In the following experiments we generate a sequence of 50 states 

of SIT and STAND using the probability transition matrix: 

RUN STAND 

Target Postures 

Activity Level Low Moderate High 

Accelerometry is 

applicable for posture 

detection 

Accelerometry is not applicable 

(Proposed Proximity Sensor 

          based solution) 

SIT WALK 
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
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3.07.0
ijaA , 

where state-1 is SIT and state-2 is STAND. A subject is handed 

out the resulting posture sequence (S, S, S, S, T, T, S, S, T, T, T, 

S, T, T, T, S, S, S, S, S, S, T, S, S, S, S, S, S, S, S, S, S, S, S,  S, 

S, S, S, T, T, S, T, T, T, T, T, S, S, S, T), where S represents SIT 

and T represents STAND, and is instructed to follow the sequence 

with 10sec being spend in each posture, thus the entire experiment 

lasting for 500 sec.  
 

 
Figure 5: Markov process modeling of SIT-STAND behavior 

 

   Four RSSI based proximity sensors are mounted on the subject's 

body – two on the two upper arms and two on the two front 

thighs.  By interpreting the Hello messages, each sensor maintains 

its current connectivity and RSSI values with all other sensors. 

The resulting RSSI values are then collected on an out-of-body 

compute server and averaged to represent the mean instantaneous 

relative distance between the subject’s body segments those are 

mounted with the sensors. 
  

4.2 Threshold based Identification  
 

   The average RSSI values (in dB) are plotted in Figure 6 for the 

entire 500 sec duration of the experiment. The figure also shows 

the actual posture state that the subject was in during each 10 sec. 

slot. In these reading, high RSSI dB values indicate low received 

radio signal strength, and a low RSSI value indicates high 

received radio signal strength. The following observations should 

be made. First, the average RSSI has an overall trend to be high 

for the SIT postures and low for the STAND posture. This is 

consistent since the body parts are generally closely situated 

during sitting, and further apart while standing.  

   Second, while generally maintaining this trend, there are lots of 

anomalies observed. These anomalies are found to be caused by 

several factors including radio blockage by the clothing material, 

unintentional change of sensor and antenna orientations, and other 

imperfections in sensor mounting. 
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Figure 6: Posture estimation using RSSI (in dB) thresholds 

 

   In spite of these anomalies in the average RSSI data, it is 

possible to identify the SIT and STAND postures by using a 

carefully chosen RSSI threshold somewhere between the 

minimum and the maximum values of the observed data. In Figure 

7, we report the effectiveness of such posture identification using 

different threshold values. The identified posture for a given RSSI 

threshold is compared with the subject’s actual state for 

computing the success rate as reported in the Figure. Such success 

or match rates are presented for different threshold values and for 

different individuals participated as experimental subjects. All 

three individuals in these experiments were asked to follow the 

same controlled posture sequence used in Figure 6 for several 

rounds, before the identification performance were computed. 
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Figure 7: Posture detection success with varying RSSI thresholds 

  

   Observe that in spite of the errors contributed by sensor and 

antenna mis-orientation, and radio signal blockage by clothing 

material, this simple threshold based mechanism can detect the 

SIT and STAND postures with up to approximately 90% 

accuracy. However, since the identification success rate is heavily 

sensitive to the RSSI threshold, choosing the right threshold is an 

important design step for this mechanism to work.  

   A potentially more restricting aspect is that the optimal 

threshold is also sensitive to the individual subjects’ physical and 

motor aspects during his or her postures. For example, while an 

RSSI threshold of 70 yields the best identification accuracy for 

subject-1, the performance for subject-3 maximizes at 86% for a 

threshold 90. In fact, at the RSSI threshold of 70, for subject-3 the 

system delivers a poor posture identification rate of only 75%. 

   These results allude to a practical limitation of the threshold 

based posture identification in terms of the need for person 

specific threshold dimensioning. Other experiments further 

indicated that the optimal threshold value can change even for an 

individual based on his or her behavioral changes over time. In 

the next section we develop a Hidden Markov Model (HMM) 

based mechanism for adaptive and person-independent posture 

detection.   
  

5. CAPTURING STATIONARY 

BEHAVIOR USING HIDDEN MARKOV 

MODEL  
 

   The inability of the simple threshold based mechanism to handle 

the degraded quality of proximity sensor data stems from the fact 

that the identification process does not leverage the stationary 

nature of human behavior over certain time intervals.  

   To address this limitation, we adopt a stochastic posture 

identification solution that attempts to leverage the stationary 
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a22 a11 

STAND SIT 



nature of the human behavior by modeling the posture state 

machine as a Hidden Markov Model (HMM) [14].  

   The key concept of the HMM [14] are as follows. A stochastic 

process is represented by a discrete time Markov Chain consisting 

of multiple states which are hidden from an observer in the sense 

that an observer cannot directly determine which state the system 

is in at any given point in time. However, a number of observable 

parameters that stochastically represent the states are visible to the 

observer. The idea of HMM formulation is that if the state 

transition probability matrix and the observation generation 

probabilities are known (or measurable) to the observer, the latter 

can estimate the current state of the Markov Chain. Using HMM 

it is also possible to compute the probability of occurrence of a 

specific state sequence [15][16][17][18]. 
 

5.1 HMM Mapping  
 

   The posture identification problem with our novel proximity 

sensing framework is mapped as an HMM formulation as follows.  

Posture State Space: As shown in Figure 8, N postures are 

modeled as N hidden states with the entire state space represented 

by S = {S1, S2, ….. SN}. In this specific case N = 2 for postures SIT 

and STAND.  
 

 

Figure 8: Posture state machine with hidden states  
 

Observation: At each state there are M distinct observable 

parameters that are represented by a vector O = {v1, v2, ….. vM}.  

Each vm (m=1,2, …,M) can take one of multiple possible values. 

Observation made at time instant t is represented as Ot.  

   At ant given time, the radio RSSI values from the sensor are 

used to construct the Ot vector, in which each vm is a binary 

variable which can be either ‘0’ or ‘1’. The peak-to-peak RSSI 

range (see Figure 6) is divided into M equal windows, and then 

depending on which window the current RSSI value falls in, the 

corresponding vm is set to ‘1’. The rest of the vm‘s are set to ’0’.  

   Note that the value of M determines the granularity of 

observation, which in turn, is expected to influence the quality of 

the hidden state identification. We have experimented with M 

ranging from a small value of 2 (very coarse granularity) to a large 

value of 10 (very fine granularity observation).  

   As indicated in Figure 8, the parameter Ot represents the 

observation vector at time slot t, with T as the final observations 

in an experiment. In all our experiments the value of T is 50. In 

other words, 50 observations, each corresponds a state lasting for 

10 seconds, are generated to feed into the HMM estimation 

system.  

Transition Probability Matrix: The posture transition probability 

matrix is represented as A = [aij], where  

)1(,1),|( 1 NjiSqSqpa itjtij ≤≤=== −
 

A is an N x N matrix, and qt denotes the actual posture at time t. 

The parameter aij represents the probability that the next posture is 

j, given the current posture of the subject is i.  

Observation Probability Matrix: This is represented by B = [bjm], 

in which  

)2(1),|]0,....1,....,0[( 1 MmSqvvvOpb jtMmtjm ≤≤======

 

B is an N x M matrix, and Ot represents the observation vector at 

time slot t. The parameter bjm represents the probability that in 

posture state j, the element vm in the observation vector Ot is ‘1’ 

and the rest of the elements are all zero. 

Initial State Distribution: This is represented by a vector π = [πi] 

of length N, so that: 

)3(1),( 0 NiSqp ii ≤≤==π  

The quantity
iπ represents the probability that the posture Markov 

chain is initialized at state i., by definition, 1
1

=∑
=

N

i

iπ . 

   Based on the above definitions, a system, modeled using HMM, 

can be fully specified by the parameters A, B and π which are 

represented together as a tuple:  

)4(),,( πλ BA=  

   Using the HMM derivations shown in Appendix A.1, we first 

compute the individual probabilities of the system being in each 

possible posture state at a given time. As shown in the derivation, 

these probabilities depend on the system’sλ , and the observation 

sequence {O1 O2 O3 … OT}. After the probabilities are computed, 

the posture state identification is accomplished by finding the 

most likely state, which is the one with the highest current 

probability. 
 

5.2 Experimental Results 
 

   In this section we describe the performance of HMM based 

posture identification and its performance comparison with the 

threshold based approach. The same transition probability 

matrix { } 







==

5.05.0

3.07.0
ijaA , as used for the previous 

experiments, is used for generating a posture sequence to be 

followed by the subjects. Like in the previous experiments, only 

two posture states SIT and STAND are used. Note that for the 

results in this Section, the A matrix used for posture sequence 

generation is also used for the HMM model formulation. In other 

words, it is assumed that the A matrix used for HMM is already 

trained.  

   The observation probability matrix B is constructed by 

computing the bjm probabilities (see Equation 2) from observed 

RSSI values for known posture states. During an initial set of 

known states, the B matrix is first computed, and then the actual 

posture identification process was initiated. This initial period is 

referred to as an observation calibration phase.  

O: [v1, v2… vM] 

O1 O2 O3 … OT   Observed output symbol 

sequence 

v2 v1 

a21 

a12 

a22 a11 

STAND SIT 

vM 
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   As for the Initial State Distribution matrix π, we have used [1, 

0] for all the results presented here. This means that all the 

experiments are initiated with the SIT state. These A, B and π 

matrices constitute the HMM system parameterλ .  

   The observation sequence {O1 O2 O3 … OT} is constructed by 

first collecting the RSSI values from on-body proximity sensors, 

and then quantizing them into one of M  windows to form the vm 

(m = 1, 2, .., M) elements within each observation vector. We 

have experimented with different observation granularity vector M 

ranging from 2 to 10.    
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Fig. 9: Posture detection performance using HMM    
 

   After the observation sequence is constructed, the HMM 

derivations, shown in Appendix A.1, are used to identify posture 

states using the system parameterλ and the observation sequence 

{O1 O2 O3 … OT}.    

   State identification performance with HMM in comparison with 

the threshold based mechanism is presented in Figure 9. As done 

before, the success rates are measured by comparing the detected 

states with the actual states from the generated posture sequence 

using transition probability matrix A.  

   The success rate for posture identification using HMM is 

reported with three different observation granularities 

corresponding to M = 2, 8 and 10. The following observations are 

to be made from Figure 9. First, the HMM approach delivers 

better state match rates (e.g. 92% to 94% identification success for 

subject-2) compared to the best case performance (88% 

identification success for subject-2) using the threshold based 

mechanism, that is with an optimal RSSI threshold of 90 dB. 

Second, higher observation granularity (larger M) for HMM 

provides better posture detection rate, with performance saturation 

occurring beyond around M = 8. Third, once a sufficiently large 

observation granularity (e.g. M = 10) is chosen for HMM, unlike 

in the threshold based scheme, there is no optimal parameter 

dimensioning is needed. This is a significant advantage in terms 

of implementation feasibility. Finally, with similarly large 

observation granularities, the HMM continues to provide superior 

posture identification performance in a subject-independent 

manner. This further reinforces the practicality of the mechanism 

in not having to dimension any individual specific parameter 

which may cause significant performance variation as observed 

for the threshold based mechanism.  
  

5.3 Automatic Observation Calibration 
 

   For the results presented in Section 5.2, the observation 

probability matrix B has been constructed during an observation 

calibration phase before experimenting with each individual 

subject. This calibration process (construction of matrix B based 

on observations) somewhat compensates for the inconsistencies in 

the radio RSSI values due to variations in clothing, personal 

posture specialties and other ambient differences. In fact this 

calibration process accounts a great deal for the consistently 

superior performance of HMM compared to the threshold based 

strategy, as presented in Figure 9.             

   In this section we implement a self-calibration process of the B 

matrix, so that the proposed posture identification mechanism can 

more practically implemented without having to manually 

calibrate the B matrix for each individual subject.  

   We use the Baum-Welch iterative algorithm [14], for which the 

key idea is to start with an arbitrarily set initial B matrix, and then 

iteratively adjust it based on the stochastic difference between the 

identified (using HMM) posture state sequence and the expected 

sequence based on the notion of the state transition matrix A. 

Details of the Baum-Welch derivation and the algorithm is 

included in Appendix A.2. 
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Figure 10: Automatic self-calibration of the B matrix  

 

   Figure 10 demonstrates the performance of this self-calibration 

process in terms of the posture identification accuracy over 

multiple iterations. Here we used the observation sequence of 

subject-2 of the last experiments, with observation granularity M 

= 4. Observe that with all three different initial B matrices, the 

identification accuracy gradually increases over time with Baum-

Welch iterations. For all three cases, the posture identification 

process started delivering the best performance within 13 

iterations. In a deployment sense, this means that after wearing the 

sensors, the subject should continue with his or her regular 

behavior for a while for allowing the network to self-calibrate the 



HMM B matrix. After that, the identified posture recording should 

start. 
 

6. SUMMARY AND ONGOING WORK 
 

   In this paper we present an experimental framework for a 

wearable sensor network used for human posture detection. A 

novel radio frequency based proximity sensing, couple with 

Hidden Markov Model (HMM) based detection techniques, has 

been used for detecting low-activity postures that are shown to be 

not differentiable using the traditional accelerometry based 

approaches. It was first demonstrated that although a naïve 

threshold (radio signal) based mechanism can be used for 

reasonable detection performance, the variation in the proximity 

information caused by clothing and person-specific behavioral 

differences require a delicate dimensioning of the used threshold 

values for consistent posture detection performance across various 

individuals. To avoid this, an HMM based detection process is 

applied with observation self-calibration using the Baum-Welch 

algorithm. It was shown that the HMM method with our novel 

proximity sensing modality is able to consistently deliver 

significantly better detection performance than the threshold 

based mechanism in a more individual-independent manner. 

   Ongoing work on this topic includes: 1) development of a real-

time and on-body posture detection system, 2) integrating 

proximity and acceleration data for detecting a wider range of 

both high-activity and low-activity postures, 3) adjusting the 

HMM and processing mechanism to adapt for different base 

behavior (the A matrix).  This should scale the proposed 

mechanism to scenarios in which the A matrix used for HMM 

formulation is not already trained. 
 

7. REFERENCES  
 

[1] S. Bao,Y. Zhang, and L. Shen, "Physiological Signal 

Based Entity Authentication for Body Area Sensor 

Networks and Mobile Healthcare Systems," 27th IEEE 

Conference on Engineering in Medicine and Biology, 

Shanghai, China, pp. 2455–2458, 2005. 
 

[2] B. Lo, S. Thiemjarus, R. King and G. Yang, “Body Sensor 

Network – A Wireless Sensor Platform for Pervasive 

Healthcare Monitoring," Proceddings of the 3rd 

International Conference on Pervasive Computing 

(PERVASIVE 2005), pp.77-80, May2005. 
 

[3] C. Otto, A. Milenkovic, C. Sanders, E. Jovanov, "System 

Architecture of a Wireless Body Area Sensor Network for 

Ubiquitous Health Monitoring," Journal of Mobile 

Multimedia, Vol. 1, No. 4, pp. 307-326, 2006. 
 

[4] A. Milenkovic, C. Otto, E. Jovanov, "Wireless Sensor 

Networks for Personal Health Monitoring: Issues and an 

Implementation," to appear in Computer Communications 

(Special issue: Wireless Sensor Networks: Performance, 

Reliability, Security, and Beyond), Elsevier, 2006. 
 

[5] M. Moh, B. Culpepper, L. Dung, T.-S. Moh, T. Hamada, 

and C.-F. Su, “On Data Gathering Protocols for In-body 

Biomedical Sensor Networks,” Proceedings of 48th IEEE 

Global Telecommunications (GlobeCom), St. Louis, MO, 

Nov 2005. 
 

[6] S.-W. Lee and K. Mase, “Activity and Location 

Recognition using Wearable Sensors,” Pervasive 

Computing, vol. 1, no. 3, pp. 24–32, Jul.–Sep. 2002. 
 

[7] E. Jovanov, A. Milenković, C. Otto, P. De Groen, B. 

Johnson, S. Warren, and G. Taibi, “A WBAN System for 

Ambulatory Monitoring of Physical Activity and Health 

Status: Applications and Challenges,” Proceedings IEEE 

Eng Med Biol Soc 4: 3810-3. 2005. 
 

[8] E. Jovanov, A. Milenkovic, C. Otto and P. C de Groen, “A 

Wireless Body Area Network of Intelligent Motion 

Sensors for Computer Assisted Physical Rehabilitation,” 

Journal NeuroEng. and Rehab., vol. 2, no. 11, p. 6, Mar. 

2005. 
 

[9] http://grants2.nih.gov/grants/guide/pa-files/PA-07-

354.html 
 

[10] KY. Chen, DR. Bassett Jr, "The Technology of 

Accelerometry-based Activity Monitors: Current and 

Future," Med Sci Sports Exerc;37:S490–500. doi: 

10.1249/01.mss.0000185571.49104.82, 2005.  
 

[11] A. Ylisaukko-oja, E. Vildjiounaite, J. Mäntyjärvi, "Five-

Point Acceleration Sensing Wireless Body Area Network - 

Design and Practical Experiences," 184-185, ISWC 2004. 
 

[12]      Crossbow Technology, Inc. http://www.xbow.com 
 

[13] B. Juang, ”Maximum Likelihood Estimation for Mixture 

Multivariate Stochastic Observations of Markov Chains,” 

AT&T Tech. I., vol. 64, no. 6, pp. 1235-1249, July-Aug. 

1985. 
 

 [14] L. Rabiner, "A Tutorial on Hidden Markov Models and 

Selected Applications in Speech Recognition," 

Proceedings of the IEEE, vol. 77, no. 2, pgs 257 - 285, 

Feb. 1989. 
 

[15] J. Allanach, H. Tu, S. Singh, K. Pattipati and P. Willet, 

“Detecting, Tracking and Counteracting Terrorist 

Networks via Hidden Markov Models,” IEEE Aerospace, 

March 2004. 
 

[16] O. Brdiczka, J. Maisonnasse and P. Reignier, " Automatic 

Detection of Interaction Groups," ICMI: 32-36,  2005. 
 

[17] V. Nair and J. Clark, “Automated Visual Surveillance 

using Hidden Markov Models,” International Conference 

on Vision Interface, pp. 88 – 93, 2002. 
 

[18] L. Wang, M. Mehrabi, and E. Kannatey-Asibu, Jr. " 

Hidden Markov Model-based Tool Wear Monitoring in 

Turning," Journal of Manufacturing Science and 

Engineering, Volume 124, Issue 3, pp. 651-658, August 

2002. 

 
 

A.    APPENDIX 
 

A.1 Posture Detection using HMM 
 

   The probability of observing a given sequence O = 

{O1,O2,…OT} of length T time steps is represented as P(O|λ), and 

can be evaluated using the forward-backward procedure [16], as 

follows: 
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where )(iTα is referred to as forward variable, and defined as: 

)2.(1).|,,...,()( 21 ANisqOOOPi ittt ≤≤=≡ λα  

It represents the probability that the partial sequence O1, O2, …, 

Ot, until time step t, has been observed and the current posture 

state at time t is Si, given the HMM model λ. )(itα  is a vector of 

dimension N  (which is the total number of possible states).     

Another variable )(itβ , referred to as backward variable, is 

defined as: 

)3.(1).,|,...,()( 1 ANisqOOPi itTtt ≤≤=≡ + λβ  

This represents the probability that the partial sequence from time 

step (t+1) to the end has been observed and the current posture 

state at time t is Si, given the model λ. )(itβ  is also a vector of 

dimension N. Now another variable )(itγ  is defined such that: 

)4.(),,|()( AOSqpi itt λγ ==  

where )(itγ  represents the probability of being in state Si at time 

t, given an observation sequence O, and the model λ.  Equation 

(A.4) can be expressed in terms of the forward-backward variables 

as: 
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which is a vector of dimension N at time t. Using )(itγ  we can 

solve for the individually most likely posture state qt at time t 

[14], as  
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= γ  

This qt represents the detected posture state at time t. The results 

presented in Section 5.2 are computed based on the derivations 

from Equations A.1 to A.6. 
    

A.2 Iterative HMM with Automatic 

Observation Calibration 
 

    As proposed in [14][17], it is possible to calibrate the HMM 

parameters in λ such that the quantity P(O|λ), representing the 

conditional probability of an observation sequence (of  length T) 

is maximized. In our specific application of self-calibration as 

discussed in Section 5.3, it is required to adjust the observation 

probability matrix B while keeping the other two parameters A 

and π in λ constant. The Baum-Welch algorithm [14] is used in 

our implementation to iteratively obtain an estimate of B that 

results in a λ which is guaranteed to locally maximize P(O|λ). 

   As defined in Section 5.1, the element bim in the matrix B 

represents the probability that in posture state i, the element vm in 

the observation vector O is ‘1’ and the rest of the elements are all 

zero. The quantity bim can be computed as: 
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where the denominator represents the probability that the system 

is always in state i with all possible observations. The numerator 

represents the probability that the system is in state i with a 

specific observation such that the element vm in the observation 

vector O is ‘1’ and the rest of the elements are all zero.   

   Using Equation A.7 as the iterative step for changing the B 

matrix, we have implemented the following algorithm for 

implementing self-calibration as explained in Section 5.3.  

1. Collect  observations O = O1O2…OT   

2. Initialize λ using a starting B matrix with constant A and 

π 

3. Given observation sequence O = O1O2…OT  and λ, 

compute: 

NiTtit ≤≤≤≤∀ 1,1),(γ  

4. Compute new B matrix by updating the elements bim 

based on Equation A.7 

5. Set new λnew using the new B matrix  

6. Compute a new quantity MAXLIKELIHOOD as: 
 [ ])|...(),|...(max 11 newTT OOPOOPLIKELIHOODMAX λλ=  

7. λ = λnew  

8. Go to step-3 and repeat till the quantity 

MAXLIKELIHOOD converges 

   The fact that the newly estimated B matrix in Step 4 is computed 

based on the actual observation sequence, ensures that the 

estimation would improve the quantity P(O|λ). This accounts for 

the monotonically increasing nature of the MAXLIKELIHOOD, 

as evidenced in Figure 11. 
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Figure 11: Performance of Baum-Welch iterative algorithm 

  

   Figure 11 demonstrates the convergence performance of the 

Baum-Welch algorithm in terms of the evolution of the log of the 

quantity MAXLIKELIHOOD. Observe that with all three 

different initial B matrices, the MAXLIKELIHOOD 

monotonically increases over the algorithm iterations, and 

converges approximately after 13 iterations, which is consistent 

with what has been reported in Figure 10. 




