
Signed and Weighted Trust Credentials in Fraglets

Fabio Martinelli
IIT-CNR

Pisa, Italy
fabio.martinelli@iit.cnr.it

Marinella Petrocchi
IIT-CNR

Pisa, Italy
marinella.petrocchi@iit.cnr.it

ABSTRACT
We continue our line of research by extending the Fraglets
computation model with digital signature and security cre-
dentials dealing with a quantitative notion of trust. We also
give a modeling example where trust credentials are man-
aged at fraglets level.

1. INTRODUCTION
The fraglets communication and computational model has

been introduced, and extended, in [14, 15, 17, 18]. This
model resembles the chemical reactions in living organisms
and it has been shown to be pretty suitable for applications
of protocol resilience and genetic programming experiments.

In past work [11, 9], we started introducing security mech-
anisms to fraglets. In particular, we dealt with data en-
cryption, by giving rules for symmetric cryptography, and
with access control, by defining a threat model constraining
communication and preventing misuse by malicious fraglets.
The main intent has been to enrich the set of communica-
tion protocols that fraglets were originally able to model, by
giving, contextually, a basement for a formal reasoning.

Along with basic security guarantees like confidentiality
and access control, in this paper we contribute by defining
digital signatures for fraglets, providing integrity and au-
thentication of origin.

Also, it is worth noticing that the fraglets model natively
deals with distributed and autonomic communication. From
a security point of view, the management of distributed sys-
tems bring to consider trust aspects. A distributed archi-
tecture quests the need for an upgrade of standard informa-
tion security mechanisms to the concept of adaptive security,
that involves adaptation to changing environments. Exam-
ples of adaptation may be coming to better decisions when
determining what kind of secure mechanisms should be used.
Within this context, trust, in its notion of a subjective belief
by which an entity expects that another entity performs a
given action on which its welfare depends [4], plays a fun-
damental role, since security and resilience of networks and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Bionetics ’08, November 25-28, 2008, Hyogo, Japan
Copyright 2008 ICST 978-963-9799-35-6.

systems can be improved by exploiting trust information.
As an example, a certain access control policy could state
that data can be entered by user U not only if a behavioral
sequence of actions have been executed by U (e.g., after that
critical files have been opened) but also only if the trust level
of U is greater than a given value [2]. Also, trust models have
been investigating within a social context. Recent propos-
als exploit trust management for setting up recommender
systems, see, e.g., [5, 6, 12].

This paper contributes to enrich the fraglets computa-
tional model by: 1) defining rules for digital signature; 2)
presenting a trust management framework dealing with a
quantitative notion of trust and defining operators able to
combine trust credentials, both along and across opinion’s
paths.

The structure of the paper is as follows. Upon recall-
ing basic operations for processing fraglets, the next sec-
tion presents the work that has been done in the near past
for securing communication between fraglets. In particu-
lar, symmetric encryption and access control mechanisms
are presented. Also, the section contributes in introduc-
ing asymmetric cryptography for fraglets. In section 3, we
present a fraglets trust management framework, based on
the language RTML [8, 16], defining simple and composed
credentials, highlighting the presence of trust levels, and the
way through which combining them. Section 4 gives an ex-
ample. Finally, we conclude with final remarks in section 5.

2. FRAGLETS AND SECURITY
A fraglet is denoted as [s1 s2 . . . tail], where si is a

symbol and tail is a (possibly empty) sequence of symbols.
Nodes of a communication network may process fraglets

as follows. Each node maintains a fraglet store to which in-
coming fraglets are added. Fraglets may be processed within
a store, except for the rule that transfers a fraglet from a
source store to a destination store.

Fraglets processing is through a simple prefix program-
ming language. Each rule may involve a single fraglet, or
two fraglets.

Here, we recall the instructions that are used through-
out the paper. In particular, we illustrate rules Send and
Match, coming from the original set of instructions defined
in [15]. Also, we remind the rules for symmetric encryption
and decryption, presented in [9].

It is worth noticing that, originally, the fraglet processing
engine has been thought to continuously execute tag match-
ing operations on the fraglets in a store, in order to deter-
mine the actions that should be applied to them. Within a

computing security context, tag matching operations may be
dangerous, since, when executed with no guards, they may
cause security flaws, such as decryption of sensitive infor-
mation without directly knowing the decryption key. This
is the reason why we have introduced a specific threat model
for fraglets, contextually to mechanisms for controlling the
access to the stores (see [9] for details).

The interested reader can find the original set of rules (no
security rules) in the tutorial available online on the fraglets
website [3].

Rule Send is responsible for transferring a fraglet from
a store A to another context (store) B. The rule takes as
input the fraglet A[send B tail], located at store A, and
returns the fraglet B [tail], located at store B. The name
of the second store is given by the second symbol in the
original fraglet. The Send operation is unreliable, i.e., it is
not certain the tail reaches the destination store.

Rule Match concatenates two fraglets with matching tags.
With the following two fraglets, [match s . . . tail1] and
[s tail2], the rule match returns the fraglet: [tail1 tail2],
and the matching tag is s.

Symmetric encryption. Enc and Dec are the rules for
symmetric encryption and decryption, that use the same key
K. With two fraglets A[enc s K] and A[s tail], respectively
representing the symmetric key and the tail to be encrypted,
the rule Enc returns the fraglet A[s : tailK]. Similarly, fra-
glet B [t tail] is the result of the application of rule Dec to
the fraglets inputs: B [dec t tailK] and B [t K].

Access control. The introduction of guarded opera-
tions prevents the occurrence of security flaws. In the threat
model proposed for fraglets in [9], assumptions are that:

• Stores are of two kinds: trustworthy, untrustworthy.
An untrustworthy store is a store where fraglets can
be maliciously processed.

• The adversary can:

– eavesdrop during transmission;

– process fraglets into untrustworthy stores by means
of all usual transformation and reaction rules

– maliciously deviate fraglets into untrustworthy stores
where she can operate on those.

• As usual in computer security, the adversary should
not:

– guess private information that are not in her origi-
nal knowledge, nor eavesdropped, nor known dur-
ing processing (e.g., private keys, secret keys);

– have capability of processing fraglets within trust-
worthy stores, e.g., by not entering trustworthy
stores.

Concerning encrypted fraglets, trustworthy stores contain
right secret keys K. Preventing malicious fraglets to enter
trustworthy stores, means: 1) not to automatically reveal se-
cret keys; 2) not to have sensitive information decrypted by
unintended recipients, by simply (and even not voluntarily!)
operating a tag matching reaction.

In order to avoid security flaws of that kind, we have in-
troduced access control mechanisms for fraglets.

In the original syntax, instruction A[send B tail] is ex-
ecuted with no guards, i.e., unless unreliability, tail may en-
ter B with no control by B itself. In [9], We have introduced
so called guarded synchronizations for entering the store.

Guarded synchronizations. The idea is to let trust-
worthy stores allow a fraglet to enter if and only if a guarded
synchronization occurs.

Broadly speaking, a synchronization occurs when two com-
plementary instructions are executed, e.g., send/ receive in-
structions. Then, a guarded synchronization occurs when
two complementary actions are executed, depending on the
outcome of some operation.

Within the fraglets world, one may think to allow the re-
ception of tail from A iff tail satisfies some kind of policy
P , for some fraglet populating store B. At conceptual level
we have:

A[send B tail], B [receive A P(tail)] → B [tail]

An example policy is the following: access may be granted
iff, on receiving from A something encrypted, B has the right
decryption key K, e.g., :

A[send B dec t tailK], B [receive A K] → B [dec t tailK]

where the outcome B [dec : t : tailK] is subject to an im-
plicit capability of performing decryption with a certain key.

Note that the intuition behind this is similar to the one
of coactions, whose introduction leads to the theory of Safe
Ambients SA [7], starting from the theory of Mobile Ambi-
ents MA [1]. Born with the intent of reasoning about prop-
erties of mobile processes, including security, MA defines an
ambient as n[P], with n name of the ambient, and P a pro-
cess running inside. Processes within the same ambient may
exchange messages. There are 3 primitives for movement:
IN, an ambient enters another ambient; OUT, an ambient
exits another ambient; OPEN, that dissolves an ambient
boundary, giving access to its contents. SA were proposed
for fighting some form of interferences in MA, leading pos-
sibly to write incorrect programs. Indeed, programs could
not behave in the expected way in all contexts, e.g., an am-
bient n may be opened, but may also jump into ambient
m. The introduction of coactions made any movement IN,
OUT, OPEN possible only if both participants agree.

Digital signature. A digital signature, the crypto-
graphic construct aiming at assuring authentication of ori-
gin and integrity to a message, notoriously exploits math-
ematical properties of a pair of keys, a public key pk that
is publicly available, and the corresponding private key sk,
that is supposed to be a secret of its owner.

Within fraglets, we associate to each store a private key,
resident in the store, e.g., at store A, we will have fraglet

A[sign s skA], with skA representing the private key. The
corresponding public key is spread to the other stores. Send-
ing of the public key is subject to a guarded synchronisation,
to avoid the reception of any unexpected data but the right
public key:

A[send B t pkA], B [receive A P(t pkA)] → B [t pkA],

The rules Sign and Ver, respectively for applying and ver-
ifying a digital signature, are as follows:

With two fraglets, A[sign s skA] and A[s tail], respec-

tively representing the signing private key and the tail to be
signed, rule Sign returns the signature A[s tailskA

]. Simi-
larly, B [t tail] is the result of verifying the signature

B [s tailskA
] by applying B [t pkA].

With a little abuse of notation, we assume that each tail
encrypted by a private key, like tailsk, is understandable
as tail by the recipient. Indeed, being the digital signature
a cryptographic mechanism intended to authentication of
origin and integrity, but not confidentiality, it is common to
send both the plaintext tail and the signature tailsk.

Note that, within this framework, the capability of signing
some piece of data is associated to the store, and not to
a specific fraglet inside the store. The non disclosure of
the store’s private key to malicious fraglets, as well as the
capability to forge signatures, is prevented by exploiting the
access control mechanism and the guarded synchronization
recalled above. Thus, leakage of private keys is prevented
by let untrusted fraglets entering trusted stores.

3. FRAGLETS AND TRUST
We consider the Role-based Trust Management Language

RTML [16, 8], that defines credentials through roles and
attributes, possibly parameterised. As a basic example for
credentials, A.r(p)← D means that A assigns to D the role
(or attribute) r with parameter p.

In this paper, we concentrate on credentials expressing
trust towards the capability of performing a functionality f ,
or that give a recommendation rf regarding a third party
able to perform f . Credentials of this kind can also be
weighted, i.e., they can specify the degree, called also level,
or weight, of the trust assignment.

In [10, 2], we proposed an extension of RTML with trust
weights, that we partly recall here:

• (functional trust) A.f(v)← D. A trusts D for per-
forming functionality f with degree v.

• (recommendation) A.rf(v) ← D. A trusts D as a
recommender with degree v. The recommender is able
to suggest someone else for performing f .

• (indirect functional trust) A.f ← A.rf.f . This
statement says that: 1) if A.rf(v1) ← D, i.e., D is a
recommender for A with weight v1, and 2) D.f(v2)←
C, i.e., according to D, C is able to do f with weight
v2, then A.f(v) ← C, where v = v1 ⊗ v2, i.e., C is
indirectly trusted by A to perform f with a new weight
v = v1 ⊗ v2.

• (intersection) A.f ← A1.f1 ∩ A2.f2. This statement
defines that if D is trusted both by A1 to perform f1

with weight v1 and by A2 to perform f2 with weight
v2, then D is trusted by A to perform f with a new
weight v = v1 ⊙ v2.

We do not explicitly express weights in the indirect func-
tional trust and linking intersection statements. Indeed,
these statements combine basic credentials (the simple mem-
ber ones) and they determine how weights presented in the
basic credentials must be combined too.

Operators ⊗ and ⊙ are introduced to combine the trust
weights. Generally speaking, ⊗ combines opinions along a
path, i.e., A’s opinion for B is combined with B’s opinion for
C into one indirect opinion that A should have for C, based

on what B thinks about C. The latter, ⊙, combines opinions
across paths, i.e., A’s indirect opinion for X through path
p1 is combined with A’s indirect opinion for X through path
p2 into one aggregate opinion that reconciles both. To work
properly, these operators must form an algebraic structure
called a c-semiring, [13].

The above credentials can be instantiated at fraglets level:

Functional:

[credf (A, f(v), D) tail]
Recommendation:

[credrf (A, rf(v), D) tail]
Indirect Functional:

[credif (A, f(v), A, rf(v1), f(v2)) tail]
Intersection:

[credi (A, f(v), A1, f1(v1), A2, f2(v2)) tail]

The first two credentials are direct ones.
The Indirect Functional credential contains the rule through

which combining two direct credentials, one of functional
trust and one of recommendation, to give as output a third
credential of functional trust. Thus, input premises are two
direct credentials fraglets and the output is the fraglet con-
sisting of the inferred credential.

Indirect Functional

In Out

[credrf (A, rf(v1), D) tail]
[credf (D, f(v2), B) tail]

[credf (A, f(v), B) tail]

Weight v is obtained combining v1 and v2 by ⊗.

Similarly, by deconstructing the Intersection credentials
as input and output fraglets, we have:

Intersection

In Out

[credf (A1, f(v1), D) tail]
[credf (A2, f(v2), D) tail]

[credf (A, f(v), D) tail]

Weight v is obtained combining v1 and v2 by ⊙.

4. APPLICATION EXAMPLE
Recommender systems play an important role in dynamic

environments when interacting entities are often unknown
one to each other. In this case, the reputation level of the
unknown entity, built up by direct experience, and reinforced
by (trusted) third parties, is significant in strengthening so-
cial relationships. Rummble (http://www.rummble.com) is
an example of a successful recommender system on the web,
based on trust.

We use fraglets to formalize a simple example describ-
ing how one can exploit recommendations from (trusted)
third parties, to strengthen personal beliefs. Consider the
following scenario. An employer E starts the interviews
for engaging a new clerk. The criterion for the evaluation
is as follows. A candidate C must pass through an inter-
view through which the employer evaluates C’s capabilities
in doing the work f . Thus, at the end of the interview,
E will trust C for performing f with a certain weight vE .
This direct opinion of E is expressed by the following cre-
dential: E [credf (E, f(vE), C)]. Also, E requires a letter
of reference coming from a previous employer PE. The

letter could be sent by e-mail directly from PE, digitally
signed, in order to prove its authenticity, and expressed
by PE [(credf (PE, f(vPE), C))skP E

]. The credential says
that PE trusts C for doing f with weight vPE . By ac-
cepting a letter of reference from PE, E is making the fol-
lowing assertion: E [credrf (E, f(1), PE) tail], i.e., E com-
pletely trusts PE for recommending someone able to per-
form f . Conclusion to premises E [credrf (E, f(1), PE) tail]
and PE [credf (PE, f(vPE), C) tail] is, according to indirect
functional, the new credential E [credf (E, f(vPE), C) tail],
i.e., E has an indirect opinion about trusting C for doing f

via PE. In particular, here ⊗ is the product operator, and
1 is the neutral element, thus vPE ⊗ 1 is vPE . Currently, E

has two possible weights of trust towards C, i.e., vPE and
vE . The intersection credential contains the rule that allows
E to compare the two measures by obtaining a final level
of trust vPE ⊙ vE . Here, the criterion for the comparison is
not explicitly defined, since it is up to E’s belief instantiat-
ing some particular operator for ⊙. As an example, ⊙ could
be the operator that takes the maximum between vPE and
vE . Also, E may decide to engage C if vPE ⊙ vE is greater
(or equal) than a certain threshold vt.

We show fragments of the procedure by using fraglets, to
give a flavor of the formalization. Throughout the formaliza-
tion, we assume that guarded synchronizations occur when
Send operations are up to be consumed. For the sake of
readability, we omit to explicitly represent the guards. Tags
t and s are used as convenient matching tags.

Native fraglets at store E:

E [credrf (E, rf(1), PE)]

E [credf (E, f(vE), C)]

Bootstrapping phase.
Sending the public key from PE to E.

PE [send E t pkPE] E [t pkPE]

At store PE:
Signing functional trust credential. Inputs:

PE [sign s skPE]

PE [s credf (PE, f(vPE), C)]
Output:

PE [s (credf (PE, f(vPE), C))skP E
]

Match operation to create a send operation. Inputs:

PE [match s send E ver t]

PE [s (credf (PE, f(vPE), C))skP E
]

Output:

PE [send E ver t (credf (PE, f(vPE), C))skP E
]

Send credential to E:

E [ver t (credf (PE, f(vPE), C))skP E
]

At store E:
Verification of signature. Inputs:

E [ver t (credf (PE, f(vPE), C))skP E
]

E [t pkPE]
Output:

E [credf (PE, f(vPE), C)]

Indirect functional rule. Inputs:

E [credf (PE, f(vPE), C)]

E [credrf (E, rf(1), PE)]
Output:

E [credf (E, f(vPE), C)]

Intersection rule. Inputs:

E [credf (E, f(vPE), C)]

E [credf (E, f(vE), C)]
Output:

E [credf (E, f(vPE ⊙ vE), C)]

5. CONCLUSIONS
In this paper, we have further enriched our security frame-

work for the fraglets computational model (adopted in the
BIONETS project), by adding digital signatures, trust and
reputation credentials, and a way of managing them. We are
able to deal with a quantitative notions of trust by using
parametric algebraic operators. We are currently working
on the implementation of the security and trust primitives.

6. ACKNOWLEDGMENT
Work partially supported by the EU project FP6-027748

Bionets (BIOlogically inspired NETwork and Services).

7. REFERENCES
[1] L. Cardelli and A. D. Gordon. Mobile ambients. In

FoSSaCS, pages 140–155, 1998.

[2] M. Colombo, F. Martinelli, P. Mori, M. Petrocchi, and
A. Vaccarelli. Fine grained access control with trust
and reputation management for globus. In OTM
Conferences (2), pages 1505–1515, 2007.

[3] FRAGLETS website. http://www.fraglets.net.

[4] Audun Jøsang. Trust and reputation systems. In
FOSAD, pages 209–245, 2007.

[5] N. Lathia, S. Hailes, and L. Capra. Trust-based
collaborative filtering. In IFIPTM, 2008.

[6] G. Lenzini, N. Sahli, and H. Eertink. Trust model for
high-quality recommendation. In Secrypt, 2008.

[7] F. Levi and D. Sangiorgi. Mobile safe ambients. ACM
Trans. Program. Lang. Syst., 25(1):1–69, 2003.

[8] N. Li, J.C. Mitchell, and W. H. Winsborough. Design
of a role-based trust management framework. In S&P,
pages 114–130. IEEE, 2002.

[9] F. Martinelli and M. Petrocchi. Access control
mechanisms for fraglets. In BIONETICS, 2007.

[10] F. Martinelli and M. Petrocchi. On relating and
integrating two trust management frameworks. In
VODCA, ENTCS 168. Elsevier, 2007.

[11] M. Petrocchi. Crypto-fraglets. In BIONETICS, 2006.

[12] D. Quercia, L. Capra, and V. Zanardi. Selecting
trustworthy content using tags. In Secrypt, 2008.

[13] G. Rote. Path problems in graphs. Computing
Supplementum, 7:155–189, 1990.

[14] C. Tschudin. Fraglets - a metabolistic execution model
for communication protocols. In Proc. AINS’03, 2003.

[15] C. Tschudin and L. Yamamoto. A metabolic approach
to protocol resilience. In WAC, LNCS 3457, 2004.

[16] W. H. Winsborough and J.C. Mitchell. Distributed
credential chain discovery in trust management. JCS,
11(1):35–86, 2003.

[17] L. Yamamoto and C. Tschudin. Experiments on the
automatic evolution of protocols using genetic
programming. In WAC, LNCS 3854. Springer, 2005.

[18] L. Yamamoto and C. Tschudin. Genetic evolution of
protocol implementations and configurations. In
SelfMan’05, 2005.

