
Test-bed Platform for Bio-inspired Distributed Systems

Ichiro Satoh
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
ichiro@nii.ac.jp

ABSTRACT
This paper presents a general-purpose test-bed platform for im-
plementing and evaluating bio-inspired approaches over real dis-
tributed systems. It enables each software agent to be dynami-
cally organized with other agents and deployed at computers ac-
cording to its own organization and deployment policies. We de-
veloped several bio-inspired approaches with the platform to evalu-
ate them over real distributed systems instead of using simulation-
based evaluations. In fact, our experiment on an ant-based rout-
ing mechanism, which is one of the most typical bio-inspired ap-
proaches for distributed systems obtained different results from the
results of existing simulation-based experiments. We believe that
our platform is useful for bridging the gap between simulation-
based approaches and real systems.

1. INTRODUCTION
The scale and complexity of modern distributed systems is beyond
our ability to manage these using traditional approaches, such as
those that are centralized and top-down. Furthermore, the struc-
ture of a distributed system may also be changed frequently by
software agents (or components) being added or removed and the
network topology being changed. To solve this problem, many
researchers have explored bio-inspired approaches for distributed
systems. However, most existing approaches are still at the concept
level or have been evaluated based on simulations. Real distributed
systems, on the other hand, are complex and varied. Nevertheless,
most existing simulation-based results seem to have been based on
arbitrary hypotheses in the sense that various parameters in their
simulations have lacked any technical grounds. Unfortunately, such
unrealistic simulations have often only provided non-sensing or im-
practical results. We still lack a great deal of data that are essential
to simulating the approaches accurately. Therefore, real experi-
ments in distributed systems must have priority over simulation-
based experiments for us to be able to accumulate actual meaning-
ful experience.
To solve this problem in bio-inspired approaches, we constructed

a middleware system for dynamically federating and deploying soft-
ware agents, which are autonomous and programmable entities,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Bionetics ’08, November 25-28, 2008, Hyogo, Japan
Copyright 2008 ICST 978-963-9799-35-6.

at distributed computers as a general-purpose test-bed for existing
bio-inspired approaches over real distributed systems. The system
deploys and federates multiple agents in a self-organizing manner
in the sense that it enables all agents to define their own individ-
ual deployment and coordination policies. In fact, it implemented
several bio-inspired approaches for distributed systems and yielded
various results, which were different from those obtained from ex-
isting simulation-based work.
In this paper, we describe the design goals (Section 2), the design

of our agents (Section 3), and a prototype implementation (Section
4). We present a basic evaluation of the platform (Section 5) and
also describe our experience with the framework (Section 6). We
briefly review related work (Section 7), provide a summary, and
discuss some future issues (Section 8)

2. BASIC APPROACH
Most bio-inspired approaches for distributed systems can support
non-centralized management. This paper presents a general test-
bed platform that enables agents to define its own individual dy-
namic deployment and organization policies and to be executed
over real distributed systems.
To support the dynamic deployment of agents, the proposed plat-

form introduces two metaphors, i.e., gravitational and repulsive
forces between agents (Fig. 1). The former deploys agents that
coordinate with one another at the same computers or those nearby
even when they move to other locations. The latter prevents spec-
ified agents from being at the same or nearby computers. These
agent-deployment approaches are specified and managed as a relo-
cation relationship between two agents. That is, the platform en-
ables each agent to explicitly specify a deployment policy for its
own migration as a relocation between its current location and an-
other agent’s location. An aggregation of agents, each with its own
individual deployment policies, can change its structure and move
over a distributed system in response to changes in the underlying
system and the requirements of the system’s applications. All the
deployment policies presented in this paper are managed in a non-
centralized manner to maintain scalability and reliability.
To support the self-organization of agents, the proposed plat-

form enables agents to discover other agents and interact with co-
agents. Most interactions between agents in object-oriented sys-
tems within a computer can be covered by three primitives: event
passing, method invocation, and stream communication. Our plat-
form enables these primitives to be available in partitioned systems
on different computers. Achieving syntactic and (partial) seman-
tic transparency for remote interactions requires the use of proxy
objects that have the same interfaces as the remote agents. The
platform introduces such objects, called references, to track possi-
bly moving targets and to interact with the these through the three

Agent migration

Computer 2Computer 1

Agent BAgent A

Agent migration

Computer 2Computer 1

Computer 2Computer 1

Gravitational force

Step 1

Step 3

Step 2

Agent migration

Computer 3Computer 2

Agent BAgent A

Agent migration

Computer 3Computer 2

Computer 3Computer 2

Repulsive force

Computer 1

Computer 1

Computer 1

Step 1

Step 3

Step 2

Gravitational force Repulsive force

Figure 1: Gravitational and repulsive policies

primitives.

3. AGENT PROGRAMMINGMODEL
To support a test-bed platform for bio-inspired approaches over dis-
tributed systems, the platform was designed and implemented as
a general-purpose runtime system for agents, which are running
for self-organizing or bio-inspired approaches. Figure 2 outlines
the basic structure of the platform. Agents are autonomous and
self-contained programmable entities, which can be dynamically
deployed at different computers and organized with agents, which
may run on different computers, according to their own deployment
and organization policies.

Agent

A

Core Runtime System

OS/Hardware

Agent host 1 Agent host 2

Transport Protocol

TCP session

Agent Runtime Service

Discovery

Management

Service

Migration-
transparent

Coordination
Service

Agent

Migration

Service

Java Virtual Machine

Agent

B

Agent

C

Core Runtime System

OS/Hardware

Transport Protocol

Agent Runtime Service

Discovery

Management

Service

Migration-
transparent

Coordination
Service

Agent

Migration

Service

Java Virtual Machine

Agent

D
Agent

E

Inter-Agent communication

Agent migrationD

Figure 2: Agent runtime system.

Each agent in the current implementation is a collection of Java
objects in the standard JAR file format and can migrate from com-
puter to computer and duplicate itself by using mobile agent tech-
nology.1 Each agent must be an instance of a subclass of the MAgent
class.

class MAgent extends MobileAgent implements
Serializable {
void go(URL url) throws
NoSuchHostException { ... }

void duplicate() throws
IllegalAccessException { ... }

setPolicy(ComponnetProfile cref,
MigrationPolicy mpolicy) { ... }

setTTL(int lifespan) { ... }
void setAgentProfile(
AgentProfile cpf) { ... }

boolean isConformableHost(
HostProfile hfs) { ... }

1JavaBeans can easily be translated into agents in this platform.

void send(URL url, AgentID id, Message msg)
throws NoSuchHostException,
NoSuchAgentException, ... { }

Object call(URL url, AgentID id,
Message msg) throws NoSuchHostException,
NoSuchAgentException, ... { }

....
}

Each agent can execute go(URL url) to move to the destination
host specified as a url by its current platform, and duplicate()
creates a copy of the agent, including its code and instance vari-
ables. The setTTL() specifies the life span, called the time-to-
live (TTL), of the agent. The lifespan decrements TTL over time.
When the TTL of an agent reaches zero, the agent automatically
removes itself.
Each agent platform governs all the agents inside it and main-

tains their life-cycle states. When the life-cycle state of a agent
changes, e.g., when it is created, terminates, or migrates to another
computer, the platform issues specific events to the agent. This
is because the agent may have to acquire various resources, e.g.,
files, windows, or sockets, or release ones it had previously ac-
quired. The current implementation uses Java’s object-serialization
package for marshaling agents. This package can save the content
of instance variables in an agent program but does not enable the
stack frames of threads to be captured. Consequently, the platform
cannot serialize the execution states of any thread objects. Instead,
when an agent is marshaled or unmarshaled, the platform propa-
gates certain events to its agents instructing them to stop their ac-
tive threads and it then automatically stops and marshals them after
a given period of time. To capture such events, each agent can have
more than one listener object that implements a specific listener
interface to hook certain events issued before or after changes are
made in its life-cycle state. That is, each agent host invokes the
specified callback methods of its agents when the agents are cre-
ated, destroyed, or migrate to another host.

3.1 Agent deployment policy
Let us explain deployment policies of agents. The current imple-
mentation has the following four gravitational policies (Fig. 3).

• If one agent declares a follow policy for another, when the
latter exists or migrates to a host, the former migrates to the
latter’s current or destination host.

• If an agent declares a dispatch policy for another, when the
latter migrates to another host, a copy of the former is created
and deployed at the latter’s destination host.

Agent migration

Computer 2Computer 1

Agent BAgent A
Agent migration

Computer 2Computer 1

Follow policy

Agent BAgent A

Computer 3Computer 2

Computer 3Computer 2

Computer 1

Computer 1

Agent migration

Agent migration

Shift policy

Follow policy Shift policy

Agent BAgent AAgent BAgent A

Agent migration

Computer 2Computer 1

Agent BAgent A
Agent migration

Computer 2Computer 1

Dispatch policy

Agent BAgent A

Computer 3Computer 2

Computer 3Computer 2

Computer 1

Computer 1

Agent migration

Agent migration

Fill policy

Dispatch policy Fill policy

Agent B
Agent A

clone
Agent B

Agent A

clone Agent AAgent A

Step 1

Step 2

Step 1

Step 2

Step 1

Step 2

Step 1

Step 2

Figure 3: Gravitational policies

• If an agent declares a shift policy for another, when the latter
migrates to another host, the former migrates to the latter’s
source host.

• If an agent declares a fill policy for another, when the latter
migrates to another host, a copy of the former is created and
deployed at the latter’s source host.

The platform system allows each agent to have at most one gravita-
tional policy for at most one agent to reduce conflicts in individual
or multiple policies. These deployment policies can be related to
phenomena in biological processes. For example, a follow policy
enables one agent to approach another. For example, when multiple
agents declare a policy for a leader agent, they can swarm around it.
A shift policy enables an agent to follow the movement of another
agent. The former agent can track the latter as it moves. The policy
thus corresponds to the phenomenon of cytoplasmic streaming. A
dispatch policy enables an agent to stay in the current location and
then deploy its clone at the destination of another that is moving.
It can model the footprint of a motile cell. We have assumed that
one agent can declare the policy for another and specify the TTLs
of its clones as their lifespans. As the latter agent moves, cloned
former agents are deployed at its footprint and these clones are au-
tomatically volatilized after their lifespans are over. Therefore, the
cloned agents can be viewed as a pheromone that is left behind af-
ter the latter agent has moved on. A fill policy corresponds to the
phenomenon of cell division. The platform is open to define poli-
cies as long as they are subclasses of the MigrationPolicy so
that we can easily define new policies, including bio-inspired ones.
We will next describe two repulsive policies. Each agent can

have more than one repulsive policy in addition to either the shift
or fill policy.

• If an agent declares an exclusive policy for one or more agents,
when the former and one of the latter are running on the same
host, the former migrates to another host on which the latter
agents are not running.

• If an agent declares an extinct policy for one or more agents,
when the former and one of the latter are running on the same

host, the former terminates.

Figure 4 illustrates these policies. If an agent declares two or more
polices, these policies must have different targets. The first corre-
sponds to repulsive force and the second is used to eliminate agents.
Agents duplicated by the dispatch or fill policy have this policy

for their original agents. Each agent can specify a requirement that
its destination host must satisfy by invoking setAgentProfile(),
with the requirement specified as cpf, where it is defined in com-
posite capability/preference profiles (CC/PP) form [14], which de-
scribes the capabilities of the agent host and the agents’ require-
ments. The class has a service method called isConformable-
Host(), which the agent uses to determine whether the capabili-
ties of the agent host specified as an instance of the HostProfile
class satisfy it requirements.

3.2 Inter-agent communication
The current implementation offers two communication policies for
inter-agent interactions as follows:

• If an agent declares a forward policy for another, when spec-
ified messages are sent to other agents, the messages are for-
warded to the latter as well as the former.

• If an agent declares a delegate policy for another, when spec-
ified messages are sent to the former, the messages are for-
warded to the latter but not to the former.

The former policy is useful when two agents share the same in-
formation and the latter policy provides a master-slave relation be-
tween them. The platform provides three interactions: publish/ sub-
scribe for asynchronous event passing, remote method invocation,
and stream-based communication as well as message forward and
delegate policies.

4. AGENT PLATFORM
This section presents an implementation of our agent platform. The
platform was constructed as a general-purpose middleware for exe-
cuting and organizing software agents, which may run on different
computers.

Agent migration

Computer 3Computer 2

Agent BAgent A
Agent migration

Computer 3Computer 2

Exclusive policy

Computer 1

Computer 1

Exclusive policy

Agent B

terminated

Computer 2

Agent BAgent A
Agent migration

Computer 2

Extinct policy

Computer 1

Computer 1

Extinct policyExclusive policy

Step 1

Step 2

Step 1

Step 2

Figure 4: Repulsive policies

Each platform is running on a computer and is responsible for
executing and migrating agents to other computers. It establishes
at most one TCP connection with each of its neighboring comput-
ers and exchanges control messages, agents, and inter-agent com-
munications with these through the connection. When an agent
is transferred over the network, the agent platform on the sending
side marshals the code of the agent and its state, e.g., instance vari-
ables in Java objects, into a bit-stream and then transfers them to
the destination. The agent platform on the receiving side receives
and unmarshals the bit-stream so that the agent can continue to be
executed at the destination.

4.1 Agent deployment management
The policy-based deployment of agents is managed by each agent
host without a centralized management server. Each agent host
periodically advertises its address to the others through UDP mul-
ticasting, and these hosts then return their addresses and capabili-
ties to the host through a TCP channel.2 The procedure involves
four steps. 1) When an agent migrates to another agent host, each
agent automatically registers its deployment policy with the des-
tination host. 2) The destination host sends a query message to
the source host of the visiting agent. There are two possible sce-
narios: the visiting agent has a policy for another agent or it is
specified in another agent’s policies. 3-a) Since the source host in
the first scenario knows the host running the target agent specified
in the visiting agent’s policy , it asks the host to send the desti-
nation host information about itself and about neighboring hosts
that it knows, e.g., network addresses and capabilities. If the tar-
get host has retained the proxy of a target agent that has migrated
to another location, it forwards the message to the destination of
the agent via the proxy. 3-b) In the second scenario, the source
host multicasts a query message within current or neighboring sub-
networks. If a host has an agent whose policy specifies the visiting
agent, it sends the destination host information about itself and its
neighboring hosts. 4) The destination host next instructs the visit-
ing agent or its clone to migrate to one of the candidate destinations
recommended by the target host, because this platform treats every
agent as an autonomous entity. Moreover, when the capabilities of
a candidate destination do not satisfy all the requirements of the
agent, the agent itself decides, on the basis of its own configuration
policy, whether it will migrate itself to the destination and adapt
itself to the destination’s capabilities. The destination of the agent
may go into divergence or vibration mode due to conflicts between
some of an agent’s policies, when it has multiple deployment poli-
cies. However, the current implementation does not exclude such

2We assumed that the agents comprising an application would ini-
tially be deployed at hosts within a localized space smaller than the
domain of a sub-network.

divergence or vibration.3

Migration-
transparent

Coordination
Service

Step 5

resumption message

Agent Host

Migration-
transparent

Coordination
Service

Agent Host

Migration-
transparent

Coordination
Service

Migration-
transparent

Coordination
Service

Step 6

reference update

Step 4

arrival

message

Step 1

suspend message

Step 1

suspend message

Step 3

Agent migration
Step 2

proxy creation
Step 5

resumption message

Step 6

reference update

Agent A and C have references to

Agent B that is moving to another location.

reference

Agent A

B

A Agent Host

reference

Agent C

Agent B

B

A
Agent

B

Computer 1

Computer 2

Computer 4

Computer 3

Step 5

resumption message

Figure 5: Forwarding messages to migrated agent

4.2 Resource management
Our agent platform enables agents to define the computational re-
sources they require, which their destination must/should satisfy in
CC/PP form. The platform systems transform the forms into corre-
sponding LISP-like expressions and then evaluate them by using a
LISP-based interpreter. When an agent migrates to the destination
according to its policy, if the destination cannot satisfy the require-
ments of the agent, the platform system recommends candidates
that are hosts in the same network domain to the agent. If an agent
declares repulsive policies in addition to a gravitational policy, the
platform system detects the candidates using the latter’s policy and
then recommends final candidates to the agent using the former pol-
icy, assuming that the agent is in each of the detected candidates.

4.3 Inter-agent communication management
Each platform system offers a remote method invocation (RMI)
mechanism through a TCP connection. It is implemented indepen-
dent of Java’s RMI because this has no mechanisms for updating
references for migrating agents. Each platform system can main-
tain a database that stores pairs of identifiers of its connected agents
and the network addresses of their current platform systems. It also
provides agents with references to the other agents of the appli-
cation federation to which it belongs. Each reference enables the

3From our experience with several applications, most agents in a
system have at most a gravitational or a repulsive policy. Therefore,
we do not always feel the needs to resolve such conflicts.

agent to interact with the agent that it specifies, even if the agents
are on different hosts or move to other hosts.
Figure 5 shows an approach enabling communication between

an agent moving from computer 2 to 3 and two agents at computers
1 and 3. When an agent, i.e., agent-B, requests the current plat-
form system to migrate to another computer, the system searches
its database for the network addresses of platform systems with
agents, i.e., computers 1 and 4. 1) It sends suspend messages to
these systems to block any new uplinks from them to the migrating
agent with the destination’s address. If the moving agent contains
references, the current platform system sends the destination’s ad-
dress to the platform systems that are running the agents specified
in the references so that they can update their databases. 2) It cre-
ates its own proxy at its current location and It migrates to its des-
tination. 3) After the agent arrives at its destination, it sends an
arrival message with the network address of the destination to the
departure platform system and then sends update messages to the
systems. 4) When the departure system receives the arrival mes-
sage, it sends resumption messages with the address of the desti-
nation to platform systems that may hold references to the moved
agent and then removes the proxy.
When an agent begins to interact with another that is moving, the

former can send messages to the source of the one that is moving
before the basic algorithm above is completed. To solve this, a
migrating agent creates and leaves a proxy at the departure platform
system for the duration it takes the algorithm to finish. The proxy
agent receives uplinks from other platform systems and forwards
them to the moved agent. Since not all agents have to be tracked
for other agents to communicate with them, agents can leave proxy
agents along that are not just traces under their own control. Proxy
agents are also programmable entities, like agents, so they can be
modified based on application requirements.

4.4 Security management
The current implementation is a prototype system to dynamically
deploy the agents presented in this paper. Nevertheless, it has sev-
eral security mechanisms. For example, it can encrypt agents be-
fore migrating them over the network and it can then decrypt them
after they arrive at their destinations. Moreover, since each agent
is simply a programmable entity, it can explicitly encrypt its indi-
vidual fields and migrate itself with these and its own cryptographic
procedure. The Java virtual machine could explicitly restrict agents
so that they could only access specified resources to protect com-
puters frommalicious agents. Although the current implementation
cannot protect agents from malicious computers, the platform sys-
tem supports authentication mechanisms to migrate agents so that
all platform systems can only send agents to, and only receive from,
trusted platform systems.

4.5 Remarks
The proposed framework itself does not support clock synchro-
nization between the runtime systems running on different com-
puters, because it is designed as just an infrastructure for imple-
menting distributed algorithms, including bio-inspired approaches
and a synchronization mechanism. The framework enables multi-
ple runtime systems to run and interact with one another in a single
computer by using existing virtual machine (VM) technologies.

5. EARLY EVALUATION
A prototype implementation of this framework was constructed
with Sun’s Java Developer Kit version 1.5 or later version. Al-
though the current implementation was not constructed for perfor-
mance, we evaluated the migration of two agents based on deploy-

ment policies. This experiment was done with three computers
(Pentium M-1.8 GHz processor with Windows XP and JDK ver.5)
connected through a Fast Ethernet network. The cost of agent mi-
gration included the costs of opening a TCP-transmission, marshal-
ing agents, migrating them from their source computers to their
destination computers, unmarshaling them, and verifying security.
To evaluate the cost of migrating agents organized as a motile cell,
we defined two types of agents, a head agent and a body agent,
where their individual sizes were about 8 KB. One head agent and
more than one body agent were organized in a sequence, where the
head agent traveled at the head and each body agent declared a de-
ployment policy for the head agent or another body agent. Agents
that declared a follow or dispatch policy were deployed at the same
agents and the agents declared a shift or fill policy at different com-
puters. We measured the time that the tails of the body agents ar-
rived at their final destinations after the head agent had started to
migrate to the next destination and then divided the time by the
number of tail-agent’s hops. This can be viewed as a cytoplasmic
streaming in a cell. The costs presented in this paper are the aver-
ages for ten evaluations for each of the experiments.

0

100

200

300

400

500

600

1 2 3 4 5

follow
dispatch
shift
fill
T

im
e

 t
h

a
t

ta
il

b
o

d
y
 a

g
e

n
t

is
 d

e
p

lo
y
e

d
 a

ft
e

r
th

e
 h

e
a

d
 m

ig
ra

te
s
 (

m
s
)

Number of body agents

Figure 6: Costs of deploying more than one sequentially con-
nected agent.

Figure 6 lists the costs of the follow, dispatch, shift, or fill pol-
icy where the horizontal axis is the number of body agents. The
cost of agent deployment included the costs of opening a TCP-
transmission, marshaling the agents, migrating the agents from their
source computers to their destination computers, creating class load-
ers, and unmarshaling the agents in addition to the cost of managing
the deployment policy. Figure 7 lists the costs of deploying more
than one body agent that declares a follow, dispatch, shift, or fill
policy for the head agent. That is, all the body agents have the head
agent as their target.
As we can see from Fig. 6, the cost of deploying agents does

not depend on the number of body agents. This is because the
current implementation supports a synchronous approach, in the
sense that the deployment of each agent that declares another agent
is executed after the latter agent has arrived at its next destination.
If the framework supported an asynchronous approach in the sense

that agents were deployed in parallel, there may be the possibility
of reducing the cost of deploying agents. However, this approach
often results in congestion at some computers so that it does not
always reduce the cost of deploying agents.

0

100

200

300

400

500

600

1 2 3 4 5

follow
dispatch
shift
fill

T
im

e
 t

h
a

t
ta

il
b

o
d

y
 a

g
e

n
t

is
 d

e
p

lo
y
e

d
 a

ft
e

r
th

e
 h

e
a

d
 m

ig
ra

te
s
 (

m
s
)

Number of body agents

Figure 7: Cost of deploying more than one agent connected to
head agent.

The cost of deploying agents in Fig. 7, on the other hand, tended
to depend on the numbers of body agents, because one or more
body agents were simultaneously deployed on the same computers.
In fact, several body agents were often bunched at several comput-
ers, because the deployments of body agents were independent of
one another after the head agent had arrived at the destination. The
timing for the arrival of deploying agents tended to diverge. Since
the head agent was designed to travel along its itinerary without
waiting for body agents to be deployed, the head agent tended to
advance separately from the body agents. Note that there are more
efficient approaches, but these assume that the migrations of multi-
ple agents are synchronized. However, such synchronization itself
is a onerous task so that they are not always more efficient. We
believe that the framework is highly scalable because it is executed
without any centralized servers.4

These measured costs are more reasonable than the cost of mi-
grating an agent between two computers. The time cost of the fol-
low policy was less than that of the shift policy and the time cost
of the dispatch policy was more than that of the fill policy. This
was because the head agent and the body agents with the follow or
dispatch policy were deployed at the same computers so that the
cost of detecting agents that declared moving agents was small.
The platform enables us to implement dependable systems as

well as bio-inspired approaches. For example, we constructed a
fault-tolerant HTTP-based server to illustrate the use of these poli-
cies by combining deployment and communication policies. Each
agent supports an HTTP server. Each is clonable, where the agent
and its clones declare forward policies for each other and its clone
declares an exclusive policy for it. When an agent is duplicated at
4We could not evaluate the framework on a large number of com-
puters, unfortunately, due to limitations in our experiment environ-
ments.

a host, a clone is created at the host, but its exclusive policy de-
ploys the clone at another host to distribute the original and cloned
agents at different computers to ensure against faults. When one
of these receives messages from external systems, their forward
policies send the messages to the other so that they share the same
states. After the agent duplicates itself, the cost of deploying its
clone at another host is about 280 ms in the distribution system pre-
sented in the previous section.5 This does not include the cost of
terminating and restarting the HTTP server. The cost of forwarding
a message is about 28 ms, where it is measured as the round-trip
time and the message is of no value. If the agents declare dele-
gate policies, they can support a master-slave model instead of a
duplication model.

6. EXPERIENCE
To illustrate the effectiveness of the proposed platform, we im-
plemented and evaluated an ant-based routing mechanism, which
was one of the most typical bio-inspired approaches for distributed
computing, with the platform. The mechanism assumes that ants
are able to locate a path to a food source using trails of chemical
substances called pheromones that are deposited by other ants. Sev-
eral researchers have attempted to use the notion of ant pheromones
for network-routing mechanisms [1, 2].

Agent AAgent B

Computer 4Computer 3Computer 2Computer 1

Fill policy

Agent duplication and migration

Step 1

Computer 4Computer 3Computer 2Computer 1

Agent migration

Fill policy

Step 2

Computer 4Computer 3Computer 2Computer 1

Step 3

Fill policy

Computer 4Computer 3Computer 2Computer 1

Step 4

Fill policy

Agent migration

Computer 4Computer 3Computer 2Computer 1

Step 5

Agent duplication and migration

Fill policy

B

B

B B'

B B'

B' B''

A

A

A

A

A

AAA

Figure 8: Agent diffusion for moving entity

The platform allows moving agents to actually leave themselves
and not traces of themselves on their trails and to become automat-
ically volatile after their lifespans are over. Agent-A corresponds
to an ant and agent-B corresponding to a pheromone is attached to
agent-A with the fill policy. As shown in Fig. 8, when agent-A
randomly selects one of the current computer’s neighboring com-
puters as its destination and migrates to the selected destination,
agent-B creates a clone and migrates to the source host of the lat-
ter. Since each of the cloned agents defines its lifespan by invoking
setTTL(), they are active for a specified duration after being cre-
ated. If there are other agents corresponding to pheromones in the
computer, the visiting agent adds their lifespans to its own lifes-
pan. When another agent corresponding to another ant migrates
5This experiment assumes that the destination of the clone is stati-
cally given.

A
v
e

ra
g

e
 H

o
p

s
 o

f
p

a
th

s

5
1
0

1
5

2
0

2
5

0

Time (s)

5 10 15 20

5 agents

10 agents

15 agents

20 agents

hops of

shortest

path

Figure 10: Convengent path with agents

Source
node

Destination
node

Node

Figure 9: Experiment for ant-based routing

over the network, it can select a computer that has the agent-B with
the longest lifespan from neighboring hosts. We experimented with
ant-based routing for agents using this platform with more than
twenty-five computers, where each had a Pentium M-1.8 GHz pro-
cessor with Windows XP and JDK ver.5. These computers were
connected with one another via a switching-hub for Giga-Ethernet
network, but their platform systems were organized in five-by-five
lattice structure and were connected to at most four of their neigh-
boring computers (Fig. 9).
However, we knew that it would be difficult to converge a short

path to the destination in real distributed systems, although exist-
ing simulation-based experiments had positive results. Figure 10
shows the convergence rate of the ant-based routing mechanism
with five, ten, fifteen, and twenty A-agents. Existing simulation-
based experiments have concluded that the convergence speed of
the paths of ant agents to the shortest path have became faster as the
number of ant agents increased. However, our experiment showed
that as the number of ant agents increased, the convergence speed

of the paths of ant agents were fast but the paths of ant agents
were far from the shortest path. This is because the nodes that
was on or closes to the shortest path tend to be congest. That is,
many agents pass through such nodes. Therefore, the migration
of agents were often blocked at their current nodes until the agents
that previously arrived had left the nodes. The pheromones remain-
ing at such nodes were volatilized because the number of agents
that had passed through these nodes had decreased. This is an es-
sential problem with ant-based routing mechanisms, but existing
simulation-based approaches have unfortunately ignored the prob-
lem of congestion at nodes on or close to the shortest path.

7. RELATEDWORK
This section discusses several bio-inspired approaches to distributed
and multi-agents systems. A few attempts have provided infras-
tructures for real distributed systems, like ours. The Anthill project
[1] by the University of Bologna developed a bio-inspired middle-
ware for peer-to-peer systems, which is composed of a collection
of interconnected nests. Autonomous agents, called ants can travel
across the network trying to satisfy user requests, like ours. The
project provided bio-inspired frameworks, called Messor [7] and
Bison [8]. Messor is a load-balancing application of Anthill and
Bison is a conceptual bio-inspired platform based on Anthill. The
main difference between Anthill, including its applications, and our
platform is that it introduces agents as independent entities and ours
permits agents to be organized in a self-organized manner. The
Co-Field project [5] by the University di Modena e Reggio Emilia
proposed the notion of a computational force-field model for co-
ordinating the movements of a group of agents, including mobile
devices, mobile robots, and sensors. However, the model only
seems to be usable within the limits of simulation and not within
a real distributed system. Our deployment policies may be simi-
lar to the dynamic layout of distributed applications in the FarGo
system [3]. However, FarGo’s policies aim at allowing an agent
to control others, whereas our policies aim at allowing an agent to
describe its own individual migration, because our platform always
treats agents as autonomous entities that travel from computer to
computer under their own control. FarGo’s policies may conflict

when two agents can declare different relocation policies for a sin-
gle agent. However, our platform is free of any conflict because
each agent can only declare a policy to relocate itself instead of
other agents.
This platform was inspired by our earlier versions presented in

previous papers [12, 13]. The previous papers aimed at present-
ing the middleware for building and operating a large-scale sys-
tem as a federation of one or more mobile agents like the plat-
form presented here, but they addressed ubiquitous computing en-
vironments whose computers were heterogenous rather than large-
scale distributed systems. The previous versions offered some of
the gravitational relocation policies supported by this platform, but
lacked any of the repulsive policies, which are essential in support-
ing load-balancing and fault-tolerant mechanisms. In fact, when
many agents are organized and deployed over a distributed system
by only using gravitational relocation policies, they tend to gather
at several computers. We believe that our platform can work in a
large-scale infrastructure for overlay networking, e.g., PlanetLab.
Nevertheless, the platform is designed for a large-scale infrastruc-
ture for distributed computing, i.e., grid computing and cloud com-
puting, so that it can dynamically deploy and organize software
components for computing rather than networking.

8. CONCLUSION
This paper presented a general-purpose test-bed platform for bio-
inspired or self-organizing approaches to distributed systems. It
was constructed as a real middleware system for dynamically de-
ploying agents at different computers, instead of using simulation-
based systems. We designed and implemented a prototype system
for the middleware and demonstrated its effectiveness in several ap-
plications. Since the middleware enabled each agent to specify its
own policy as a relocation between the agent and another, it could
not only move individual agents but also a federation of agents
over a distributed system in a self-organized manner. We evalu-
ated one of the most typical bio-inspired approaches for distributed
systems, i.e., an ant-based routing mechanism. The results from
our experiment on a real distributed system were different from the
result from existing simulation-based experiments, because the lat-
ter ignored many properties of real distributed systems. We believe
that our platform is useful for bridging the gap between simulation-
based approaches and real distributed systems.
In concluding, we would like to identify further issues that need

to be resolved. We plan to evaluate existing bio-inspired approaches
to distributed systems with the platform. We also proposed a spec-
ification language for the itinerary of mobile software [12]. The
language enables more flexible and varied policies for deploying
the agents to be defined. We plan to apply the platform to a mobile
agent-based network-management system [9].

9. REFERENCES
[1] O. Babaoglu and H. Meling and A. Montresor, Anthill: A

Framework for the Development of Agent-Based
Peer-to-Peer Systems, Proceeding of 22th IEEE International
Conference on Distributed Computing Systems, July 2002.

[2] G. Di Caro and M. Dorigo, AntNet: A Mobile Agents
Approach to Adaptive Routing, Proceedings of Hawaii
International Conference on Systems, pp.74-83, Computer
Society Press, January, 1998.

[3] O. Holder, I. Ben-Shaul, and H. Gazit, System Support for
Dynamic Layout of Distributed Applications, Proceedings of
International Conference on Distributed Computing Systems
(ICDCS’99), pp 403-411, IEEE Computer Soceity, 1999.

[4] B. Horling, and V. Lesser, and R. Vincent, Multi-Agent
System Simulation Framework Proceeding of IMACS World
Congress 2000 on Scientific Computation, Applied
Mathematics and Simulation, August 2000.

[5] M. Mamei, L. Leonardi, F. Zambonelli, Co-Fields: A
Unifying Approach to Swarm Intelligence, International
Workshop on Engineering Societies in the Agents World
(ESAW 2002), Lecture Notes in Computer Science, vol.
2577, Springer Verlag 2003.

[6] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The
Swarm Simulation System, A Toolkit for Building
Multi-Agent Simulations, Technical report, Swarm
Development Group, June 1996.

[7] A. Montresor, H. Meling, and O. Babaoglu, Messor:
Load-Balancing through a Swarm of Autonomous Agents,
Proceedings of International Workshop on Agents and
Peer-to-Peer Computing, July 2002.

[8] A. Montresor and O. Babaoglu, Biology-Inspired
Approaches to Peer-to-Peer Computing in BISON
Proceedings of International Conference on Intelligent
System Design and Applications, August 2003.

[9] I. Satoh, Building Reusable Mobile Agents for Network
Management, IEEE Transactions on Systems, Man and
Cybernetics, vol.33, no. 3, part-C, pp.350-357, August 2003.

[10] I. Satoh, Configurable Network Processing for Mobile
Agents on the Internet, Cluster Computing, vol. 7, no.1,
pp.73-83, Kluwer, January 2004.

[11] I. Satoh, Bio-inspired Organization for Multi-agents on
Distributed Systems, Proceedings of 2nd Workshop on
Biologically Inspired Approaches to Advanced Information
Technology (BioADIT’2006), Lecture Notes in Computer
Science (LNCS), vol.3853, pp.355-362, Springer, January
2006.

[12] I. Satoh, Building and Selecting Mobile Agents for Network
Management, Journal of Network and Systems Management,
vol.14, no.1, pp.147-169, Springer, 2006.

[13] I. Satoh, Cell-locomotin-based Agent Migration over
Distributed Systems, Proceedings of 1st International
Conference on Complex, Intelligent and Software Intensive
Systems (CISIS’2007), pp.74-81, IEEE Computer Society,
April 2007.

[14] World Wide Web Consortium (W3C), Composite
Capability/Preference Profiles (CC/PP),
http://www.w3.org/TR/NOTE-CCPP, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

