Bee-Inspired Data Collection Methods
for P2P Streaming Systems

Tomoki Yoshihisa
Osaka University
5-1 Mihogaoka, Ibaraki
Osaka, Japan 567-0047

yoshihisa@osaka-u.ac.jp

Shun N. Watanabe

University of California, Irvine

3241 Donald Bren Hall
Irvine, CA 92697-3425
shunw@ics.uci.edu

ABSTRACT

Recently, P2P (Peer-to-Peer) streaming systems have at-
tracted great attention. In P2P streaming systems, stream-
ing data such as video and audio are divided into a number
of small pieces for efficient data distribution. This approach
allows peers to collect the pieces from each other while play-
ing the streaming data. Our investigation into ecological
systems suggests that the piece collection in P2P stream-
ing systems is similar to the bee’s nectar collection and that
their nectar collecting behavior can be used as a model in
designing piece collection methods for P2P streaming sys-
tems. In this paper, we propose data collection methods for
P2P streaming systems inspired by bee’s nectar collecting
behavior. There are several types of bees in the bee ecology,
which exhibit different behavior, and accordingly, we pro-
pose three different methods inspired by three typical bee
types; those are honey, bumble, and carpenter bees. Suit-
able environments for the three methods may differ and are
investigated in this paper.

Keywords

Biological inspiration, Peer-to-peer streaming, Bittorrent

1. INTRODUCTION

Recently, P2P (Peer-to-Peer) streaming systems have at-
tracted great attention. In general P2P streaming systems,
streaming data (e.g., movie data) are divided into several
parts and peers collect the divided parts from other peers.
Divided parts are called pieces in P2P streaming systems.
An advantage of this method is that a large data size stream-
ing data is divided into small size pieces, and it is therefore
easily transmitted and distributed over a number of peers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Bionetics *08, November 25-28, 2008, Hyogo, Japan

Copyright 2008 ICST 978-963-9799-35-6.

Tadashi Nakano

University of California, Irvine

3241 Donald Bren Hall
Irvine, CA 92697-3425
tnakano@ics.uci.edu

Tatsuya Suda

University of California, Irvine

3241 Donald Bren Hall
Irvine, CA 92697-3425
suda@ics.uci.edu

However, pieces have to be carefully transmitted and dis-
tributed in such a way that peers can continuously play the
movie data without experiencing an interruption during the
play. If a peer does not have a piece collected by the time
to play it, the peer has to stop playing the movie data; i.e.,
an interruption occurs. This means, for example, that a
peer needs to collect the piece to be played at 10 minutes,
within 10 minutes after the peer starts playing the movie
data. Otherwise, the peer experiences an interruption.

In order to reduce the number of interruptions for P2P
streaming systems, several methods and algorithms have
been proposed[2, 4, 7]. The existing approaches are vari-
ants of the rarest first algorithm|[1], in which pieces are dis-
tributed from the rarest one. The existing approaches may
not work well in P2P streaming systems for the following two
reasons. (1) In P2P streaming systems, peers tend to play
streaming data from the beginning to the end sequentially
and therefore former pieces are more valuable. However, the
rarest first algorithm does not consider the "value" of pieces
and instead distributes from the rarest piece. This is be-
cause the rarest first algorithm is originally designed for file
sharing systems, in which time insensitive data is exchanged.

(2) P2P streaming systems are often deployed in a highly
dynamic environment where peers join and leave the sys-
tem frequently. In such an environment, it is important to
distribute pieces as rapidly as possible. However, the rarest
first algorithm does not consider the time needed to dis-
tribute pieces and only distributes pieces according to rar-
ity (Note that the time needed to download rare pieces tends
to be larger than that of popular pieces).

In this paper, we propose an alternative approach, con-
sidering the value of pieces and time needed to distribute
pieces. In our approach, peers collect pieces from former
ones. Although the speed of distributing rare pieces over
peers is slower than the existing approaches, our proposed
approach can reduce the interruption time effectively since
peers collect the necessary data rapidly.

Our investigation into the bee ecology suggests that our
proposed approach is very similar to the bee’s foraging be-
havior (i.e., nectar collecting behavior). Since bees have
evolved to efficiently collect nectar, their foraging behavior is
potentiality applicable to piece collection in P2P streaming
systems. In this paper, we propose data collection meth-

ods for P2P streaming systems inspired by bee’s foraging
behavior (i.e., nectar collecting behavior). In the ecological
world, there are several different types of bees which exhibit
different foraging behavior. Accordingly, in this paper, we
propose three data collection methods inspired by three dif-
ferent bee types (i.e., honey, bumble, and carpenter bees.)
Suitable environments for these methods may differ and are
investigated in this paper.

The paper organized as follows. Section 2 introduces re-
lated work. Section 3 explains bee-inspired P2P streaming
systems. Our proposed methods are explained in Section 4
and evaluated in Section 5. Finally, we conclude the paper
in Section 6.

2. RELATED WORK

In general P2P systems, a data item (e.g., a movie file)
is divided into a number of small pieces for data distribu-
tion, and peers collect the pieces from each other. For the
piece collection, one of the most famous P2P systems, Bit-
Torrent[1], uses the rarest first algorithm. In the algorithm,
peers are divided to form some groups called swarms and
each peer collects pieces from the rarest one in its swarm.
This is to ensure that all pieces are distributed widely and
evenly over the peers and are always available to peers for
piece collection. However, the algorithm is not directly ap-
plicable to streaming data systems, in which peers are col-
lecting and playing the data pieces simultaneously. If a peer
does not have a piece by the time to play it, an interrup-
tion occurs. From this view point, it is better to collect
former pieces rather than the rarest piece in P2P streaming
systems.

To reduce the number of interruptions, Shah et al. adopt
the sliding window technique to the rarest first algorithm[4].
In the algorithm, peers collect pieces from the rarest one
within a window. A window contains n pieces starting from
the most former piece that a peer does not have, where n is
called the window size. Since the algorithm allows peers to
collect from former (and somehow rare) pieces, the number
of interruptions during play is reduced compared with the
original rarest first algorithm.

In this paper, we propose an alternative solution to P2P
streaming systems inspired by bee foraging behavior. In bee
foraging, bees choose flowers to maximize the energy gain
from the nectar, relative to the cost of obtaining the nectar
(e.g., distance to the flowers). In choosing flowers, bees con-
sider the quality of nectar from various factors (e.g., stimuli
of color and smell). This is analogous to P2P streaming
systems, where peers need to collect pieces in a resource
efficient manner (e.g., in terms of bandwidths), and in ad-
dition, peers need to consider the quality of pieces, (i.e.,
former pieces are more valuable) for streaming data.

Biological inspiration has been successfully applied in com-
puter networks (see [5] for a survey of biologically inspired
networking). For example, bee foraging behaviors have so
far been used to design ad hoc networks (called BeeAdHoc
[6]) and sensor networks (called BeeSensor[3]). In this pa-
per, we apply inspiration from bee foraging behavior to de-
velop data collection algorithms for P2P streaming systems.
In the next section, we explain bee-inspired P2P streaming
systems.

3. BEE-INSPIRED P2P STREAMING SYS-
TEMS

3.1 Bee’s Nectar Collecting Behavior

There are many flowers in a flower garden and a flower has
nectar. Bees fly to a nearby flower garden and collect nectar.
Nectar is carried little by little by bees. Flowers have their
best season. Nectar quality of flowers in their best season
is high and bees prefer best season flowers. There are dif-
ferent types of bees that show different foraging behaviors.
Some types of bees collect nectar as rapidly as possible re-
gardless of the quality of the nectar, and some other types
of bees collect high-quality nectar. Some types of bees form
bee groups, and some other types do not. Here, we intro-
duce three typical types of bees that are honey, bumble, and
carpenter bees[8].

3.1.1 Honey Bees

Honey bees form bee groups. They prosper in hazardous
environments where hostile bee groups coexist or there are
only a few flower gardens. Therefore, they collect nectar as
rapidly as possible.

3.1.2 Bumble Bees

Bumble bees form bee groups. They prosper in calm envi-
ronments where few hostile bee groups coexist or there are
many flower gardens. Therefore, they consider the quality
of nectar prior to the time and speed of collecting nectar.
They collect nectar from best season flowers.

3.1.3 Carpenter Bees

Carpenter bees do not form bee groups. They collect nec-
tar alone. When they find a flower, they collect the nectar.
Therefore, they collect nectar in their nearest flower.

3.2 P2P Streaming Systems and Bee Ecology

Collecting data pieces for P2P streaming systems is sim-
ilar to bee foraging behavior. First, streaming data is sim-
ilar to nectar. In P2P streaming systems, data is divided
into pieces. Peers need all pieces to play the whole data.
Also, former pieces are prior for peers because they play the
data from the beginning to the end sequentially. Nectar in
a flower is similarly divided into a little amount so that a
bee can carry it. Also, bees prefer nectar in best season
flowers. This corresponds to former pieces. Next, peers are
similar to flower gardens. Peers have pieces. Flower gardens
similarly have flowers including nectar. Lastly, communi-
cation between peers is similar to behaviors of bee groups.
Peers communicate with each other to receive pieces. The
speed to receive pieces is restricted by their bandwidths. Bee
groups similarly communicate to collect nectar. The speed
to collect nectar is restricted by the number of bees in a bee
group.

As described above, we believe that piece collection for
P2P streaming systems is similar to bee ecology. Table 1
summarizes the correspondence between P2P streaming sys-
tems and bee ecology.

Since bees collect nectar rapidly so that they can collect
more nectar, their collecting behavior is also effective for
P2P streaming systems.

4. PROPOSED METHODS

Table 1: Correspondence between P2P Streaming Systems
and Bee Ecology

P2P Streaming Systems | Bee Ecology

Peer Flower Garden

Piece Flower (including nectar)
Former Piece Best Season Flower
Communication Bee Behaviors

B

Super Seeder
Piece lisfAPAEREIGIA:RX0)

£

7 -*// Reacher
| |
|

{ 2\
R I
1234II7II0) SeederC %,\.;I

Seeder B TBRZNE b Seeder D
usE II I III 125.890

123 45|6(7890

Figure 1: System Environment

In this paper, we propose data collection methods for P2P
streaming systems inspired by bee’s foraging behavior.

4.1 Assumed System Environment

Our assumed system environment is based on an actual
P2P system, BitTorrent[1]. Its data collection method, rarest
first, is not suitable for P2P streaming systems. In Bit-
Torrent systems, peers requesting pieces are called reachers,
peers providing pieces are called seeders, and peers who have
all pieces are called super seeders. Figure 1 illustrates an
example system environment, where the streaming data is
divided into 10 pieces and the reacher is collecting the pieces
from the super seeder and seeders A-D. We briefly explain
the system below.

e Peers know all other peers’ IP addresses.

Peers collect pieces after requesting playing the data.

e There is only one type of streaming data in the system.

Peers leave the system when they finish playing the
data.

e Data is a streaming data. Shorter interruption time is
preferable.

e There is one super seeder that has all pieces.

We explain the appropriateness of the above environment.
In a general P2P streaming system, a special node called
tracker exists to manage the status of participating peers
in the system, including the information about which peers
are connected to and disconnected from the system. It is,
therefore, possible to get a list of existing peers and their
IP addresses from the tracker. Also, a super seeder exists,
making all pieces available in the system.

It is an on-demand streaming system, and peers do not
receive pieces beforehand. If peers collect pieces before the
request, peers need unlimited storage space to store a large
number of streaming data that may exist in the system.

When the peer P finishes receiving a piece:
output: target peer Q
for i € seeders do //for all seeders
b=GetBandwidth(P,i)//get bandwidth between P and i.
if maxb < b then
maxb=b
Q=i
end if
end for

Figure 2: Algorithm for Honey Bee Method

Also, there are many peers, and peers do not distribute
multiple streaming data simultaneously. That is, a peer
contributes distribution of one streaming data. To receive
multiple streaming data, peers receive its pieces from other
group of peers. This does not mean that our assumed sys-
tem cannot distribute multiple streaming data. Peers can-
not communicate with many peers simultaneously. However,
in practice, a peer achieves multiple streams by alternating
among the groups of peers.

4.2 Assumed Scenario

The following illustrates how a peer joins and leaves the
system described in Section 4.1. Assume that a peer P re-
quests playing a 60-minute movie file. P gets the tracker’s
address from a web page and it connects to the P2P stream-
ing system. The tracker adds P’s address to the existing
peer list. P gets the existing peer list from the tracker and
it sends a request of receiving a piece to existing peer. P
uses one of our proposed methods or an existing method to
determine from which peer to request a piece. @ denotes
the peer that P requests a piece. P gets the piece list for
Q. The piece list describes the pieces that) has. After re-
ceiving the piece, P requests the next piece to other peers.
When P has finished the reception of the first piece of the
streaming data, it starts playing the data. Peers repeat such
process until the final piece is collected. While P plays the
data, other peers can connect to P and receive the pieces
that P has. When P finishes playing the data, it leaves the
P2P system. Pieces that P has then become inaccessible.

4.3 Methods

In the following, we propose three bee-inspired data collec-
tion methods for P2P streaming systems. In each method,
a peer first selects the peer to receive a piece from, and then
receives the most former piece from the selected peer.

4.3.1 Honey Bee Method

Honey bees collect nectar as rapidly as possible. There-
fore, in the honey bee method, a peer selects the peer that
provides the fastest download speed. Download speeds are
calculated by communicating peers for getting the piece list
when the peer starts receiving the next piece. This algo-
rithm is shown in Figure 2.

4.3.2 Bumble Bee Method

Bumble bees collect nectar from best season flowers. There-
fore, in the bumble bee method, each peer selects the peer
that has the most former piece that the requesting peer does
not have. The peer can recognize the most former piece by
getting piece lists from all other peers. The algorithm is
shown in Figure 3.

When the peer P finishes receiving a piece:
output: target peer Q
for i € seeders do //for all seeders
p=GetFirstPiece(P,i)
//get the first piece that i has but P does not have.
if p < minp then
minp=p
Q=i
end if
end for

Figure 3: Algorithm for Bumble Bee Method

When the peer P finishes receiving a piece:
output: target peer Q
tp=GetRequestTime(p)
//get the time that p requests the first piece
for i € seeders do //for all seeders
ti=GetRequestTime(i)
if maxt < ti and ti < tp then
maxt=ti
Q—i
end if
end for

Figure 4: Algorithm for Carpenter Bee Method

4.3.3 Carpenter Bee Method

Carpenter bees collect nectar in their nearest flower. That
is, in the carpenter bee method, each peer selects the peer
that requests playing the data before the requesting peer.
This algorithm is shown in Figure 4.

S. EVALUATION

In this section, we show some evaluations for our proposed
methods. We evaluated our proposed methods by computer
simulation. In the simulation, we used parameters shown in
Table 2. The request arrival rate means the average interval
for peers to request playing the streaming data. For exam-
ple, peers request playing the streaming data every 30 sec.
on average according to Poisson distribution when the re-
quest arrival rate is 30 sec. Minimum and maximum out/in
bandwidths are parameters for the peer bandwidth. We set
a peer’s bandwidths value between the minimum and the
maximum according to Uniform distribution. To make the
simulation more practical, we set the minimum bandwidth.
We assume that peers disconnect from the network immedi-
ately after they finish playing the data.

We compare our proposed method with previously pro-
posed other methods for P2P streaming systems. One is
the rarest first algorithm explained in Section 2. This is a
basic algorithm for P2P systems. The other is the sliding
window algorithm. This is also explained in Section 2 and
is more suitable for P2P streaming systems than the rarest
first algorithm.

5.1 Interruption Time

The main purpose of our proposed method is reducing
the interruption time for peers while they are playing the
streaming data. In this subsection, we show the summation
of interruption time for each peer. The result is shown in
Figure 5. The vertical axis is the sum of the interruption
time and the horizontal axis is the request arrival time for
each peer. For example, a plot for the time 0 means the sum
of the interruption time for the peer that request playing the

Table 2: Simulation Parameters

Parameters | Values

Requst Arrival Rate Poisson Distribution
60 sec.

Bit Rate 512 Kbps

Duration 30.0 minutes

Data Size of a Piece 256 Kbytes

Simulation Time 6 hours

Minimum Out Bandwidth | 400 Kbps

Maximum Out Bandwidth | 800 Kbps

Min In Bandwidth 1 Mbps
Maximum In Bandwidth 1.5 Mbps
1000
“©=Honey
800 | —-Bumble
800 [—B~Carpenter|
~9-Sequential
700 [€ Window

600
500
400 \ff

300 € %4

200 [¥ ¥

Sum of Interruption Time (sec.)

100 -

0 500 1000 1500 2000 2500 3000 3500 4000
Request Arrival Time (sec.)

Figure 5: Interruption Time

data at time 0 in the simulation time. The figure does not
show the rarest first algorithm since the sum of the inter-
ruption time under the algorithm is very large and exceeds
the plot’s range. “sequential” means a method that peers se-
lect the peer that requests playing the data just before the
requesting peer.

From this figure, we can see that the honey bee method
gives shorter interruption time than other methods almost
all over the time. Even when the value under other methods
suddenly increases at times 709, 1065, 1491, and so on, the
value under the honey method does not increase. The rea-
son of the increase is disconnections of peers. When a peer
A disconnects from the network, the reception of the piece
from A interrupts. Therefore, peers that receive a piece from
A have to start the reception again and the interruption time
increases. However, in the honey bee method, since peers
select a peer that has the fastest download speeds, peers
can finish the reception before the disconnection. In the
early stage of the simulation, the bumble and the carpen-
ter bee methods gives better performance than the honey
bee method. This is because the honey bee method is not
effective when the number of peers is small.

For instance, the sum of the interruption time under honey
method for the peer that requests the data at time 3000 is 3.4
sec. This is the minimum in all methods. In this case when
the peer starts playing the data immediately after requesting
the data, the peer has to wait 3.4 sec. while playing the
data. If the peer waits 3.4 sec before starting playing the
data, it has no interruption time although it has to wait
after requesting the data.

1
~©-Honey
—-Bumble
~&-Carpenter|
—6-Sequential
¢ Window

Number of Interruption

1500 2000 2500 3000 3500 4000
Request Arrival Time (sec.)

Figure 6: Number of Interruption

a
3

IS
&

IS
S

©
&

@
3

~
a

N
S

=€-Honey
2 Bumble
=8-Carpenter
=6=Sequential
“Window
¥ Rarest

Number of Connecting Peers
=

°

o

0 500 1000 1500 2000 2500 3000 3500 4000
Simulation Time (sec.)

Figure 7: Number of Connecting Peers

Peers prefer smaller number of interruptions. We show
the number of interruption in Figure 6.

The vertical axis is the number of the interruption and
the horizontal axis is the request arrival time, same as the
previous figure. Also regarding the number of the interrup-
tion, the honey bee method gives better performance. Since
the sequential method does not consider any factors such
as download speeds and the piece number, the interruption
occurs frequently.

5.2 The Number of Connecting Peers

To show the situation for P2P streaming systems, we show
the number of connecting peers. We can confirm that how
many peers can contribute the distribution of pieces from
the result. The result is shown in Figure 7. The vertical
axis is the number of connecting peers and the horizontal
axis is the simulation time.

Although the value under the rarest fast method continues
to increase, that under other methods converges. That is,
some peers disconnect from the networks when they finish
playing the data. The number of connecting peers under
other methods looks almost similar.

5.3 The Number of Played Peers

The number of peers that finish playing the streaming
data is also the factor to evaluate our proposed methods.
Therefore, we simulate the number of played peers. The

~©-Honey

25 —2~Bumble
—8-Carpenter|
| =6=Sequentiall
Window

Number of Played Peers

0 500 1000 1500 2000 2500 3000 3500 4000
Simulation Time (sec.)

Figure 8: Number of Played Peers

result is shown in Figure 8. The vertical axis is the number
of played peers and the horizontal axis is the simulation
time.

All methods except for the window method suddenly in-
crease at the time approximately 1800. This is because the
duration of the data is 1800 sec. Although the sequential
and the carpenter bee methods give larger number of played
peers in the early stage, the honey bee method gets better
after that. The reason is the same as the case of interruption
time.

6. CONCLUSION

In this paper, we proposed data collection methods for
P2P streaming systems inspired by bee’s foraging behav-
ior. We proposed three methods inspired by typical bees;
namely, honey, bumble, and carpenter bees. Our simulation
results showed that the bumble and carpenter bee methods
give better performance in the early stage of the data piece
distribution. However, after the number of connecting peers
increases enough, the honey bee method gives better perfor-
mance than them. Future work includes a more extensive
simulation evaluation using different criteria such as load
balancing as well as mathematical analysis into the charac-
teristics of the proposed data collection methods.

7. ACKNOWLEDGMENTS

This research was supported in part by the Telecommuni-
cations Advancement Foundation, Japan , in part by Grant-
in-Aid for Scientific Research (A) numbered 20240007 from
the Japanese Ministry of Education, Culture, Sport, Sci-
ence and Technology of Japan, and in part by Research
and Development Program of ’Ubiquitous Service Platform’
(2008), The Ministry of Internal Affairs and Communica-
tions, Japan.

8. REFERENCES

[1] BitTorrent. http://www.bittorrent.com/.

[2] Dana, C., Li, D., Harrison, D., and Chuah, C.-N.
BASS: BitTorrent Assisted Streaming System for
Video-on-Demand. In Proc. of IEEE Workshop on
Multimedia Signal Processing, pp. 1-4, 2005.

[3] Saleem, M. and Farooq, M. BeeSensor: A
Bee-Inspired Power Aware Routing Protocol for

[4]

(5]

[6]

[7]

(8]

Wireless Sensor Networks . In Springer Lecture Notes
in Computer Science, Vol. 4448, pp. 81-90, 2007.
Shah, P. and Paris, J.-F. Peer-to-Peer Multimedia
Streaming Using BitTorrent. In Proc. of International
Performance of Computers and Communication
Conference (IPCCC’07), pp. 340-347, 2007.

Suda, T., Nakano, T., and Fujii, K. Applications of
Biological Concepts to Designs of Computer Networks
and Network Applications. The Handbook of
Computer Networks, John Wiley & Sons Inc, 2007.
Wedde, H. F., Farooq, M., Pannenbaecker, T., Vogel,
B., Mueller, C., Meth, J., and Jeruschkat, R.
BeeAdHoc: An Energy Efficient Routing Algorithm
for Mobile Ad Hoc Networks Inspired by Bee
Behavior. In Proc. of Genetic and Evolutionary
Computation, pp. 153-160, 2005.

Vlavianos, A., Iliofotou, M., and Faloutsos, M. BiToS:
Enhancing BitTorrent for Supporting Streaming
Applications. In Proc. of IEEE International
Conference on Computer Communications
(INFOCOM’06), pp. 1-6, 2006.

Wright, R., Mulder, P.; and Reed, H. Honey Bees,
Bumble Bees, Carpenter Bees, and Sweat Bees. In
Oklahoma Cooperative Extension Fact Sheets,
EPP-7317, 2007.

