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ABSTRACT 
Microorganisms have multi-hierarchical networks such as gene, 
protein and metabolites in the cells. In silico genome-scale 
metabolic models allow us to analyze characteristics of metabolic 
systems of organisms. In this study, we newly reconstructed a 
genome-scale metabolic model of an industrially useful 
microorganism, Corynebacterium glutamicum, based on genome 
sequence annotation and physiological data. The metabolic 
characteristics were analyzed using flux balance analysis (FBA). 
We simulated the metabolic fluxes both under aerobic and oxygen 
deprivation conditions. The predicted growth rates and production 
rates of organic acids as lactate and succinate exhibited good 
agreement with experimental data reported in the literatures. The 
genome-scale metabolic model provides a better understanding 
for evaluating metabolic capabilities and predicting metabolic 
characteristics of C. glutamicum. This can be a basis for in silico 
analyses of metabolic network.  
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1. INTRODUCTION 
Recently, based on whole-genome information, the 

reconstruction of the genome-scale metabolic networks of a cell 
and application of it for metabolic flux balance analysis (FBA) [1, 
2] has been conducted for many organisms, including each of the 
three major domains of the organisms, i.e., archaea [3], bacteria 
[4-7], and eukarya [8-10]. Flux balance analysis (FBA) is simple 
analysis of metabolic flux profiles by using a linear programming 
problem(LP) and the genome-scale models. Although the 
genome-scale metabolic models does not include kinetic 
information and cannot compute the detailed kinetic dynamics of 
metabolic reactions in a cell, these models enable us to describe 
the range of possible metabolic state based on constraints defined 
by the stoichiometry of metabolic reactions and transport steps at 
a steady state. Furthermore, we can obtain a solution, i.e, a set of 
all metabolic fluxes, which maximize an objective function using 
a linear programming. As an objective function, biomass 
production rate is generally adopted. It has been shown that the 
metabolic profiles calculated by maximization of biomass 
production can well describe those obtained experimentally in a 
number of organisms and environmental conditions, suggesting 
capability of organisms to maximize their growth rate by 
adaptation and evolution [11, 12]. Using the appropriate genome-
scale metabolic network and the objective function to be 
maximized, FBA can be used to predict the relationship among 
genotype, environmental conditions and the product yields at the 
steady states, which can be utilized for improvement of microbial 
productions [13, 14]. 



A coryneform bacterium, Corynebacterium glutamicum is a 
facultative aerobic, Gram-positive bacterium capable of growing 
on a variety of sugars or organic acids [15]. This organism can 
produce various amino acids, such as glutamate [16] and lysine 
[17] with high efficiency, thus it is widely used for the large-scale 

production of amino acids by fermentation [18]. Furthermore, 
production of ethanol and organic acids such as lactate and 
succinate using C. glutamicum under oxygen deprivation 
condition has recently proposed [19].  Due to its importance for 
bioproduction, C. glutamicum has been chosen as one of the 
target microorganisms for metabolic engineering purposes [20]. 
Construction and exploration of appropriate in silico metabolic 
models were highly desired for discussion of cellular behavior to 
adapt different conditions.  

In this paper, we presented the reconstruction of genome-scale 
metabolic model of C. glutamicum. Metabolic reactions and other 
parameters for biomass were collected using databases and 
literatures. After reconstruction of the model, we performed FBA 
simulations to verify the results of simulations using experimental 
data, under aerobic and oxygen deprivation conditions.  This 
suggests C. glutamicum change the metabolic fluxes under 
different environmental conditions so that the biomass production 
rate is maximized under given environmental conditions. 
 

2. GENOME-SCALE MODEL 
2.1  Metabolic Pathways Reconstruction 

All known reactions in C. glutamicum metabolic network were 
collected by a search of public databases and scientific 
publications. The basis of the genome-scale metabolic network 
was pathways in the Biocyc database collection [21] 
(www.biocyc.org) for C. glutamicum. The information on the 
genomic catalogue at the Kyoto Encyclopedia of Genes and 
Genomes database (KEGG; www.kegg.jp) for C. glutamicum was 
also referred. As for the reactions missing from these database but 
required for biomass production, we added them based on 
literatures [22].   

 

2.2  Biomass Composition 
To simulate the metabolic fluxes, the biomass composition was 

necessary information. It was estimated to account for the 
consumption of precursors and building blocks for cellular growth 
[22-26]. Biomass synthesis was represented by a linear 
combination of 43 components including amino acids, DNA, 
RNA, lipids, and cell envelope components. The energy 
requirement for cellular growth was also considered by taking 
into account ATP consumption in the biomass composition [27]. 
From the biomass composition, an elemental biomass 
composition was calculated as, C37.8 H61.5O18.5N8.1P0.30S 0.23.  
 

2.2  Computational Method 
Metabolic fluxes of C. glutamicum metabolic network were 

calculated by using flux balance analysis (FBA). All calculations 
including linear programming problem were performed using 

commercially available software Lindo (Lindo Systems Inc.) and 
Matlab (Mathworks Inc.).  

For a metabolic network consisting M metabolites and N 
metabolic reactions, assuming pseudosteady state of metabolites 
concentrations, the stoichiometric balance of metabolic fluxes 
was represented by the following equation: 
 

where S represents M×N stoichiometric matrix and v indicates a 
flux vector with length N. We set the upper and lower bounds, iα  
and iβ  for i-th flux, to define constraint for maximal enzymatic 
rate, irreversibility of reaction, or constant uptake from the 
environment. To achieve a single solution of fluxes, we 
maximized or minimized a suitable objective function under 
above constraints. For FBA, we adopt the biomass production rate 
mentioned above as the objective function to be maximized.  

For all the simulations in this manuscript, glucose was chosen 
as a sole carbon source, and the following external metabolites 
were allowed to freely transport through the cell membrane: CO2, 
H2O, SO3, NH3, and PO4. 

 

3. RESULTS AND DISCSSION 
3.1 Development of the Genome-Scale Model 

We developed a genome-scale metabolic network for C. 
glutamicum ATCC 13032, whose genome DNA sequence was 
determined by two independent research groups [28, 29], 
including of 277 genes, 499 metabolic reactions and 438 
metabolites. The entire reaction data was provided as a 
supplemental material of this report. A total of 406 reactions on 
the BioCyc database collection were included into the model, 
while the remaining 65 reactions were added to fill the gap in 
metabolic pathways for biomass production, based on 
physiological considerations. The basic characteristics of the 
reconstructed metabolic network were presented in Table 1. From 
the entire set of reactions, 471 correspond to intracellular 
reactions while 34 were the fluxes for transport through the 
membrane. The model includes 438 intracellular metabolites and 
18 extracellular metabolites. Transport processes were added to 
the model based on the BioCyc database collection, transport 
classification database (TCDB; www.dcdb.org), and the inference 
from physiological considerations and genome annotations [22].  

The reconstructed metabolic network of C. glutamicum has 
several distinguishing characteristics from other microorganisms. 
The cell envelope of Corynebacteria and Mycobacteria has a 
unique structure consisting of a covalently linked mycolic acid, 
arabinogalactan, and peptidoglycan complex (MAPc) [30]. 
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Table 1. Basic Features of the Developed Model 

Feature Property 

Genome characteristics  
 Genome length(bp) 3282708 bp 
 G+C content (%) 53.80% 
 No. of ORFs 3432 
 Coding sequences(CDS) total 3002(100%) 
 CDS encoding annotated proteins 2489(83%) 

In silico metabolic networks  
 No. of genes included 277 
 No. of associateted reactions 406 
 No. of other reactions 93 
 No. of metabolites 438 
 No. of internal fluxes 499 
 No. of exchange fluxes 34 
 Dimensions of S (metabolites by reactions) 438 by 533 

 
To represent the characteristics of cell envelop biosynthesis, we 

introduced metabolic reactions for MAPc biosynthesis into the 
model. The MAPc was considered as the biomass component, 
whose coefficient was calculated based on the experimental 
results of previous studies [31, 32]. Also in the central metabolic 
pathway, the reconstructed model of C. glutamicum lacks some 
metabolic reactions which are commonly utilized in metabolic 
networks of other bacteria, such as NAD dependent malate 
dehydrogenase and pyruvate-formate lyase. In amino acids 
biosynthesis pathways, C. glutamicum lacks threonine aladolase 
and glycine C-acetyltransferase, both of which are involved in the 
conversion of threonine into glycine. These distinguishing 
characteristics of the metabolic pathways are responsible to 
represent the flux profile of C. glutamicum. 
 

3.2 Analysis of Metabolic Flux Profiles under 
Aerobic and Oxygen Deprivation Conditions  

We compared growth and metabolic profiles obtained by 
simulation results of FBA with those of experimental data under 
aerobic and oxygen deprivation conditions. In the case of aerobic 
condition, we compared the FBA calculation of fluxes and the 
growth rate with the experimental results shown in previous 
report [33]. The glucose uptake rate in the simulation was set to 
15.03 mmol/g cell dry weight (DW)/h, which was the 
experimentally observed value, while the uptakes of other 
metabolites, including oxygen, allowed to freely be transported 
through the cell envelope. As results, we found that the FBA 
result showed good agreement with experimental data. For 
example, when glucose uptake rate was set to 15.03 mmol/DW/h, 
the FBA calculation resulted that the specific growth rate is 0.4 
1/h, while the experimentally obtained specific growth rate is 0.38 
1/h. Also, the simulation showed that oxygen uptake rate is 30.3 
mmol/DW/h in this maximal growth condition, and the 
experimental result of oxygen uptake rate is 29.01. 

In the case of oxygen deprivation condition, we set glucose 
uptake rate in FBA as 3.03 mmol/gDW/h, to compare with the 
experimental results in the previous report [18] for the reference, 
while oxygen uptake rate was set to zero to represent the oxygen 
deprivation condition. Also, we found that the FBA results 
showed good agreements with the experimentally observed 
metabolic fluxes. For example, lactate and succinate production 
rates under optimal growth assumption were calculated as 3.70 
and 0.99  mmol/gDW/h, respectively, while the experimentally 
observed production rates were 5.68 and 0.55 mmol/gDW/h. Here, 
an important point was that the production rate of organic acids to 
the glucose uptake can be predicted with high precision only by 
optimizing biomass production rate.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Metabolic flux profiles calculated by FBA. Flux profiles 
of  C. glutamicum under aerobic condition. Solid arrows 
indicate active metabolic fluxes. Gray arrows indicate inactive 
metabolic fluxes.  
 

The FBA results of flux profiles under both aerobic and oxygen 
deprivation conditions are schematically shown in Fig. 1 and 
Fig.2. In the figures, active metabolic pathways were represented 
by solid arrows. As expected, under aerobic condition, glucose is 
metabolized into pyruvate via the glycolytic pathway, which is 
mainly converted to acetyl-CoA and enters the tricarboxylic acid 
(TCA) cycle. In contrast, under oxygen deprivation condition, 
large portion of pyruvate converted from glucose via glycolysis is 
utilized for lactate production, while some fraction is converted 
into oxaloacetate (OAA) by anaplerotic pathway. OAA is 
subsequently metabolized to succinate by the reductive TCA 
cycle. The use of the reductive TCA cycle to produce succinate is 
consistent with experimental results reported [18].  

Next, we investigated the FBA simulation results of the 
production rates of organic acids and carbon dioxide as the 
function of oxygen uptake rate. In this simulation, the production 
rates were calculated under the fixed glucose uptake rate (15 



mmol/gDW/h). As a result, the changes in production rates can be 
classified into three phases, named phase I, II, and III. In the 
phase I, cells produce lactate and succinate under relatively low 
oxygen uptake rate condition. In this phase, the production of 
these organic acids is necessary to oxidize NADH which is 
produced in the glycolytic pathway. In the phase II, with the 
increase in oxygen uptake rate, lactate production rate decreases, 
while acetate production rate increases. Here, the increase in 
NADH oxidization activity in the electron transport chain results 
in acetate production rather than lactate production. Here, the 
acetate production is preferred since the ATP production 
coincidentally occurs with acetate production and the ATP 
production is one limiting factor for biomass production. In this 
phase, metabolic fluxes of both oxidative and reductive TCA 
cycle are relatively small. In the aerobic condition (phase III), the 
oxidative TCA cycle becomes active, while a large portion of 
carbon derived from glucose is converted into carbon dioxide.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Metabolic flux profiles calculated by FBA. Flux profiles 
of  C. glutamicum under oxygen deprivation condition. Solid 
arrows indicate active metabolic fluxes. Gray arrows indicate 
inactive metabolic fluxes.  

 

3.3 Comparison of Metabolic Flux Profiles 
between C. glutamicum and Eschirichia coli 

To investigate how FBA results and experimentally observed 
metabolic fluxes depend on the characteristics of metabolic 
network, we compared FBA results of two species with different 
metabolic networks, i.e., C. glutamicum and E. coli. As for 
genome-scale metabolic model of E. coli, we used iJR904 
reported  [34]. The FBA result of E. coli in aerobic condition, i.e. 
unconstrained oxygen uptake, was similar to that of C. 
glutamicum. In Fig.3, the FBA result of E. coli in oxygen 
deprivation condition is shown. The parameters in this FBA were 
set to be identical to those in the FBA of C. glutamicum in oxygen 

deprivation condition, i.e., glucose and oxygen uptake rates are 
set to 3.03 and 0 mmol/gDW/h, respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Metabolic flux profiles calculated by FBA. Flux profiles 
of  E.coli under oxygen deprivation condition. Solid arrows 
indicate active metabolic fluxes. Gray arrows indicate inactive 
metabolic fluxes.  

 
As shown, there were two major differences between flux 

profiles of C. glutamicum and E. coli. One was difference in 
products secreted into the outside of the cells. As discussed above, 
according to the FBA calculation in the oxygen deprivation 
condition, C. glutamicum cells secrete lactate and succinate into 
the outside of the cells, which was consistent with experimental 
results. In contrast, the result of FBA of E. coli exhibits that the 
cells secrete formate and ethanol under the same condition.  

Another difference in the metabolic profiles between C. 
glutamicum and E. coli was the fluxes of pentose phosphate 
pathway (PPP). In the case of C. glutamicum, the FBA result 
indicates that oxidative PPP is active under the oxygen 
deprivation condition. In contrast, non-oxidative PPP is utilized in 
the case of E. coli.  

It is worth noting that using flux analysis based on the 13C 
labelling, the activation of non-oxidative PPP in E. coli metabolic 
pathways was experimentally demonstrated [35], as expected 
from FBA calculation. 

In this study, we developed a genome-scale metabolic model of 
C. glutamicum, which is industrially important for production of 
amino acids and useful chemicals. Using the genome-scale model, 
we performed the FBA to understand the characteristics of 
metabolic network. As results, we found that the results of FBA 
showed good agreements with experimental results as shown in 
Tables 3 and 4, especially production rates of organic acids under 
oxygen deprivation condition. We also investigated the difference 
in FBA results between C. glutamicum and E. coli. As shown in 



Figs.2 and 4, the differences in metabolic flux profiles between C. 
glutamicum and E. coli reflect the difference in metabolic 
networks of them. It should also be noted that, these differences in 
FBA results are consistent with experimental data. We expect that 
such comparative analysis of genome-scale models and 
experimental data enable us to capture the characteristics of 
metabolic networks.  
   Genome-wide simulation exhibited in this paper is based on the 
stoichiometry information of genome wide metabolic reactions. 
Instead of collection of kinetic information of metabolic reactions 
the principle to solve metaolic fluxes at the steady state is based 
on that metabolic fluxes should be organized for maximizing the 
cell growth rate under given environmental conditions. The good 
agreement of the simulation results with experiments suggests that 
this principle can represent the direction of the change of 
metabolic network.  

Recently, Almaas et al. showed that the metabolic fluxes of 
E.coli derived by FBA follows the power-law distribution [36]. 
Even though the FBA does not involve the driving force for 
representing the dynamics of metabolic networks, the simulated 
results obtained by genome scale model shows power-law 
distribution, which are widely found in biological networks. 
Fursawa and Kaneko independently explained that the origin of 
the power-law distribution in biological networks is the results of 
the autonomous organization of the metabolic networks to a 
critical states maximizing the cell growth based o the simulation 
based on the cell model with random metabolic reactions [37]. It 
is interesting that the results of the different types of the models 
reached the same conclusions concerned with explanation of 
general characteristic of metabolic network. Further investigations 
should be performed to unveil characteristic of metabolic network.   
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