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ABSTRACT 
The performance in Simultaneous Multi-Threading (SMT) 
processors is mainly determined by the distribution of the 
common resources among the threads. However, the threads 
exhibit dynamically complicated behavior while they compete for 
resources at runtime. It is a challenge to meet the changing 
resource requirements of the threads. This work proposes a 
Swarm-inspired Resource Distribution (SRD) policy to address 
the dynamic optimization problem of resource distribution for 
SMT processors, which uses the runtime performance to guide the 
generating of trial distributions. A computational model is 
established by adaptation of swarm intelligence to direct the 
social exploitation and self exploration activities of the trial 
distributions in the dynamic optimization environment. Results 
from simulation show that, benefiting from the good cooperation 
between SRD’s social exploitation on historical experience and 
self exploration of new solutions, SRD obtains satisfying 
improvements of both throughput and fairness performance, 
especially in complicated SMT environment. 

Keywords 
Simultaneous multithreading, resource distribution, bio-inspired 
model, optimization method, swarm intelligence. 

1. INTRODUCTION 
Simultaneous Multi-Threading (SMT) is one paradigm of 
processor design exploiting Thread Level Parallelism (TLP). SMT 
processors can run instructions from different threads 
concurrently, reducing the wastage of instruction slots in the 
pipeline due to insufficient Instruction Level Parallelism (ILP); 
the combined ILP from all threads therefore provides high 
performance gains [1, 2]. In an SMT model, each thread owns 
private program counter, rename table, load/store queues, branch 
predictor, etc., while shares some critical data-path resources such 
as the physical registers, the issue queues, and the execution units. 
However, the threads change their resource requirement as their 
program behavior changes, and they compete for the common 

resources more than share them. So how reasonably the common 
resources are distributed among the threads mainly determines the 
throughput and fairness performance of SMT processors. 

Most of the existing resource distribution methods, such as 
ICOUNT [2], STALL [3], Data Gating (DG) [4], rely mainly on 
the fetch policy at the front-end, which select threads to fetch 
according to some monitored information in the pipeline such as 
the cache miss count or the occupancy of issue queues. The 
common resources are implicitly distributed among the threads by 
controlling the number of instructions that flow into the pipeline. 
Unfortunately, the fetching selection that is made from this 
limited information is somewhat uncertain. It is difficult for this 
implicit way to reflect the real resource requirement of threads. 

As another type of resource distribution methods, explicit policies 
allocate resource to the threads in a direct way. For example, the 
STATIC [5, 6] method partitions common resources among all 
threads statically with each thread monopolizing equal shares of 
resources, pitifully suffering resource wastage because some 
thread may not take full advantage of the allocated resources. 
Other explicit policies makes dynamic allocation decision based 
on information such as the limited pipeline information monitored 
in Dynamically Controlled Resource Allocation (DCRA) [7] and 
the program phase information in Adaptive Reorder Buffers 
(AROB) [8]. These dynamic distribution policies—though 
generally attaining good effect—are guided by the supervised 
indirect information instead of the real performance, and unaware 
of the impact of their distribution solutions on the real 
performance, it is not easy to figure out the optimal distribution 
solution efficiently. In addition, their more focus on alleviating 
specific bottlenecks in SMT processors decreases their generality 
for complicated SMT environments with changing program 
behavior. 

Taking advantage of swarm intelligence, this work proposes a 
Swarm-inspired Resource Distribution (SRD) policy to solve the 
nonlinear optimization problem of resource distribution for SMT 
processors. In SRD, there is a resource distribution colony 
consisting of several trial resource distributions on behalf of 
different resource distribution solutions. The runtime performance 
produced by applying each of the trial distributions for a period 
helps to judge how well the trial distributions are, and it is used to 
guide the generating of new colony of trial distributions. A 
computational model for generating the colony is adapted from 
swarm intelligence to direct the social exploitation and self 
exploration activities of the trial distributions in the dynamic 
optimization environment. Results from simulation show that 
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SRD obtains potential increments of fairness performance as well 
as good increments of throughput performance by just using the 
real-time throughput performance as the feedback information. 
This can be attributed to the good cooperation between SRD’s 
social exploitation part and self exploration part. Some important 
parameters of SRD are discussed also. 

In the remaining sections of this paper, we introduce our SRD 
policy for SMT processors in Section 2 and present the 
experimental methodology in Section 3. Then after the simulation 
results and some related discussions in Section 4, we conclude 
this paper in Section 5. 

2. SWARM-INSPIRED RESOURCE 
DISTRIBUTION 
2.1 Adoption of Swarm Intelligence 
The main idea of our policy is derived from Particle Swarm 
Optimization (PSO) [9, 10], which is one of the swarm 
intelligence methods and developed from researches on the 
behavior of bird colony in prey. In PSO, each individual particle 
is treated as a point in a D-dimension space, representing a 
potential solution to the problem. The ith particle is represented 
by Xi = (xil, xi2, …, xiD), its flying velocity is represented by Vi = 
(vil, vi2, …, viD), and its best historical position is recorded as Pi = 
(pi1, pi2, … , piD). The index of the best particle among the whole 
colony is represented by symbol g. At the end of every generation 
t, particles evolve their velocity and position into the next 
generation t+1 according to the following iterative velocity and 
position equations [9]: 
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where c1, c2 are two positive constants, r1 and r2 are two random 
numbers in range [0,1]. The first part of Eq.(1) represents the 
former velocity of particle. The second part of Eq.(1) is the 
“cognition” part, representing particle’s self exploration of the 
solution space. The third part is the “social” part, representing the 
information sharing (exploitation on historical experience) or 
collaboration among particles [10]. Compared with other 
algorithms in the evolutionary computation field, PSO can both 
avoid high gene flow via implicit weak selection mechanism in 
early iterations, and converge quickly at reasonable solution. 

When PSO is introduced into the optimization problem of 
resource distribution, each particle represents a trial resource 
distribution among the threads. Each trial distribution is applied to 
the threads for a period of time (named Allocation Period, AP). At 
the end of every AP, the processor performance in that AP is 
evaluated. When all of the trial distributions are applied one after 
the other, a new generation of colony is figured out according to 
the velocity and position equations. And then a new iteration 
begins. The period between two adjacent generations is called a 
generation period. 

In the SMT environment, however, threads’ resource requirement 
changes with their program behavior. All the three parts in Eq.(1) 
need adaptation for the dynamic optimization of resource 
distribution for SMT processors. 

1. In dynamic SMT environment, the optimal resource 
distribution often changes with program behavior. According to 
the program locality principle, the local optimal distribution plays 
a more significant role than the global one does in generating a 
new distribution colony. Therefore, the best local historical 
position Pl, instead of the best global historical position Pg, should 
be used to direct the social exploitation part in Eq.(1). 

2. For the self part in Eq.(1), the individual global experience Pi is 
of less significance in the same sense as Pg does. Instead, the trial 
distributions are designed to take random explorations in the 
resource distribution space as their self activities (see Section 2.2). 

3. The first part in Eq.(1) originally means particle’s memory of 
former velocity, representing the global exploration ability. For 
optimization problem that features a large solution space, the 
velocity part can keep large exploration scope in early iteration 
stages, preventing individual particle from being excessively 
influenced by local optimal solutions. While in SMT environment, 
the limited quantity of common resources provides a small 
discrete solution space of resource distribution. It is not difficult 
for particles to cover the entire resource distribution space even 
without the velocity part. So the first part has no more obvious 
meaning and can be omitted. 

2.2 SRD Policy 
Our policy involves the distribution of three kinds of important 
common resources: the reorder buffers (ROB), the physical 
register files (RF) and the issue queues (IQ). For simplicity, only 
the distribution of ROB among threads is taken into account, and 
the distribution of RF and IQ are just kept in proportion to that of 
ROB in every allocation period, since a given thread often utilizes 
roughly similar fractions of the three common resources. 
Moreover, we only care about the distribution of the integer 
register files because it can indirectly control the distribution of 
the float point register files. The trial distribution that produces 
the best IPC (Instructions Per Cycle, a throughput metric) 
performance in a previous generation period is chosen to direct 
the resource distribution optimization in the succeeding 
generation period. 

Let Colony_size denote the colony scale, N denote the number of 
threads, the ith trial distribution Xi = (xi1, xi2, ···, xid, ···, xiN) 
represent the distribution of ROB among threads from 1 to N. The 
best local historical distribution is represented by Pl = (pl1, pl2, ···, 
pld, ···, plN), the self exploration variation Δi＝ (δi1, δi2, ···, δid, ···, 
δiN) represents the variation of ROB distribution that is made by 
the self exploration activity of the ith trial distribution, it is 
generated by borrowing Delta (named exploration step) entries of 
ROB for a random thread m from each of the rest N-1 threads, 
defined as Eq.(3): 
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According to the main idea described above, the computational 
model for SRD to update trial distributions can be simply 
established as Eq.(4): 
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where self is self exploration factor, indicating the capability of 
exploration of new distribution solutions; social is social 
exploitation factor, indicating the capability of exploitation on 
historical experience. r1 and r2 are random numbers in range [0,1]. 
The introduced randomicity is supposed to avoid excessive 
influence by the historical experience, and also it brings chance to 
low ILP threads to obtain extra resources for fairness. 

Finally, SRD works as follows. In the initialization stage, the trial 
distributions are set with even distribution of ROB resources. The 
IPC performances of all trial distributions are set to zero. Let the 
system begin to apply the trial distributions from the first trial 
distribution X0. At the outset of every allocation period (finish 
applying the previous trial distribution Xi-1 and begin to apply the 
next trial distribution Xi), the IPC performance produced by Xi-1 is 
evaluated. If Xi-1 is the last trial distribution XColony_size-1 (namely, 
a generation period also comes at the outset of the current 
allocation period), then Pl is updated with the trial distribution 
that yields the best IPC performance, and the self exploration 
variation is calculated for every trial distribution by Eq.(3), and 
then a new generation of trial distributions are figured out 
according to Eq.(4). If Xi-1 is not XColony_size-1, then apply Xi to the 
threads; else let the system start another applying round from the 
first trial distribution X0. The RF and the IQ resources are always 
allocated proportionately to the ROB distribution in every 
allocation period. 

2.3 Implementation 
For a possible implementation of the SRD policy, additional 
hardware is needed by SMT processors for supporting SRD. 

First, a set of allocation registers is needed to store the 
distributions of the three kinds of common resources among 
threads, which are updated by SRD algorithm in every allocation 
period. 

Secondly, a committed instruction counter is demanded to 
evaluate the runtime IPC performance. When an allocation period 
starts, the committed instruction counter is reset to zero, and then 
increases automatically by 1 as soon as any instruction is 
committed from the ROB. Occupancy counters of the ROB, RF 
and IQ resource are also demanded by each thread for comparing 
with the resource quotas stored in the allocation registers. 
Whenever an instruction obtains a resource item, its 
corresponding occupancy counter increases by 1 automatically. 
The ROB and RF occupancy counters will decrease by 1 
automatically when an instruction is committed. The IQ 
occupancy counter will decrease by 1 automatically when an 
instruction is issued. 

And in the front end, a comparing logic should be implemented to 
perform the comparison between the occupancy counters and the 
allocation registers. The output of the comparing logic is fed to 
the fetch logic, which will stall fetching from a thread if any of its 
occupancy counters exceeds its corresponding allocation register. 

Finally, hardware that implements SRD algorithm is required. At 
each allocation period, it evaluates the runtime IPC of the prior 
allocation period via dividing the committed instruction counter 
by AP, and applies the current trial distribution to threads by 
writing it into the allocation registers. At each generation period, 
it generates new trial distributions. 

In consideration of efficiency, hardware that performs SRD 
algorithm may work asynchronously with the critical pipeline in 
the new SRD-supported SMT processor, there is no block or wait 
operation between them except two kinds of mutex between: the 
read operation on the allocation registers by the comparing logic 
and the write operation on them by the SRD hardware; the write 
operation on the committed instruction counter by the instruction 
committing logic and the read operation on them by the SRD 
hardware. Since the two mutexes happen only once for every 
allocation period, the SRD hardware will entail a little expense on 
SMT processor. 

3. SIMULATION METHOD 
To evaluate the performance of our policy, we used M-Sim [11], 
which is a modified version of Simplescalar 3.0 [12] and supports 
both the SMT model and the superscalar model. Details in 
simulator configuration are shown in Table 1. 
 

Table 1. SMT simulator configuration 

Parameters Configuration 
Bandwidth 8-wide fetch, issue and commit 

Queue size 256 entry ROB, 128 entry LSQ, 160 
entry IQ 

Phys. registers 160 integer and 160 float-point 
Fetch policy ICOUNT 

Function unit and 
Lat. (total/issue)

6 Int Add (1/1), 3 Int Mult (3/1) / Div 
(20/19), 4 Mem Port (1/1), 3 FP Add 
(2/1), 3 FP Mult (4/1) / Div (12/12) / 
Sqrt (24/24) 

Branch predictor 2K-entry gshare, 2K-entry 4-way set-
associative BTB 

L1 I-cache 64KB, 2-way set-associative, 32 byte 
line, 1 cycle hit time 

L1 D-cache 64KB, 4-way set-associative, 32 byte 
line, 1 cycle hit time 

Unified L2 cache 2MB, 8-way set-associative, 64 byte 
line, 10 cycles hit time 

Memory 64-bit width, 200 cycle access latency 
 
The workloads of SPEC CPU2000 benchmarks [13] simulated in 
our experiment were composed of the precompiled Alpha binaries 
available at the Simplescalar website [12]. The reference input 
sets of those benchmarks were used. For each thread, the 
simulator fast skipped to the earliest simulation point among the 
single simulation point, the early single simulation point and the 
initialization end point [14, 15], and then simulated the sub-
sequent 100M instructions. In the SMT mode, we stopped the 
simulation as soon as any thread committed 100M instructions. 

In creating the multithreaded workloads, we first classified all 
benchmarks into two types according to the results obtained in a 
single-threaded superscalar environment. One type features high 
instruction level parallelism, and the other is of memory-intensive, 
labeled “ILP” and “MEM” respectively. Then we totally 
organized 36 multithreaded workloads: six 2-threaded and six 4-
threaded for each of the ILP, MEM and MIX (mixture of ILP and 
MEM) type (see Table 2 for details). In the following expression, 
“WL2” and “WL4” denote all the 2-threaded and 4-threaded 
workloads respectively, “ILP2” and “ILP4” denote the 2-threaded 



and 4-threaded workloads of ILP type, and so on for the MEM 
and MIX type workloads. 

 

Table 2. Simulated multithreaded workloads 

Type 2-threaded 4-threaded 
wupwise, gzip wupwise, gzip, mesa, gcc 

mesa, gcc apsi, perlbmk, galgel, vortex
apsi, perlbmk fma3d, apsi, bzip2, crafty 
galgel, vortex mesa, apsi, wupwise, perlbmk
apsi, fma3d galgel, vortex, crafty, gcc 

ILP 

bzip2, crafty fma3d, eon, gcc, crafty 
art, gzip art, mcf, wupwise, gzip 

wupwise, mcf swim, twolf, mesa, gcc 
swim, vortex lucas, vpr, apsi, perlbmk 
mesa, twolf equake, twolf, galgel, vortex

lucas, perlbmk art, swim, equake, crafty 

MIX 

apsi, vpr mgrid, applu, fma3d, gcc 
art, mcf art, mcf, swim, twolf 

swim, twolf lucas, vpr, equake, twolf 
lucas, vpr art, swim, mcf, vpr 

equake, twolf mgrid, applu, lucas, twolf 
art, swim lucas, equake, applu, vpr 

MEM 

mcf, vpr art, parser, twolf, mcf 
 

We used two metrics for performance evaluation in these 
multithreaded workloads, the first one is the total throughput in 
terms of commit IPC rate (IPC), and the second one is the 
harmonic mean of individual speedups (Hmean) [16], taking 
account of fairness among threads in case of favoring a thread 
with high IPC at the expense of restraining a thread with low IPC. 

4. RESULTS AND DISCUSSIONS 
We compared SRD with three other methods: AROB (a better one 
among existing methods), the common method ICOUNT and 
STATIC. The optimal parameter settings for AROB are referred 
to in work [8]. From our experimental experience, SRD’s 
Colony_size is set to 6; both social and self are set to 1.6. The 
decision or allocation period of AROB and SRD are set to 32K 
machine cycles. Also, the settings and meaning of SRD’s 
important parameters are discussed in this section. 

4.1 IPC and Hmean Performance 
Figure 1 shows the IPC and Hmean improvements of SRD over 
ICOUNT, STATIC and AROB. It is observed that, under the IPC 
metric (Figure 1(a)), SRD outperforms ICOUNT, STATIC and 
AROB by 29.1%, 24.1% and 16% on average respectively, and 
under the Hmean metric (Figure 1(b)), SRD outperforms the three 
methods by 18.2%, 14.1% and 9.6% on average respectively. 
Comparing the gains in the ILP, MIX, MEM type workloads, both 
the IPC and the Hmean gains in the MIX and MEM type 
workloads contribute most to the whole average gains, whereas 
the gains in ILP workloads are not so outstanding or sometimes 
slightly poor. And regarding the gains in the WL2 and WL4 
workloads, SRD provides more IPC and Hmean gains in the WL4 
workloads than in the WL2 workloads. 

Since the programs in the ILP type workloads own similarly high 
ILP level, those resource distribution policies that are biased to 

high ILP thread seem to favor each of the threads to the same 
extent. Therefore, the ILP-favored policies can produce good 
fairness as well as take full advantage of the high ILP of fast 
threads to obtain considerable throughput performance. The 
mechanism of ICOUNT and AROB does more favor to high ILP 
thread, and so does STATIC—a static resource distribution 
version of ICOUNT. Thus the three methods have desirable 
performance in ILP type workloads, leaving little potential gain 
space to SRD. 

However, in the MEM workloads where cache miss happens 
frequently and the MIX workloads that are composed of ILP and 
MEM workloads, threads have distinct ILP levels and exhibit 
complicated behavior when competing for resource. The ILP-
favored policies are prone to favor high ILP threads with more 
resources, with little consideration of the resource requirement of 
low ILP threads. This may result in degradation of both the whole 
throughput and the fairness performance. SRD however keeps 
good balance among fast threads and slow threads through its 
well-cooperated social exploitation part and self exploration part, 
providing outstanding gains in more complicated SMT 
environment. 
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Figure 1. Increments of SRD over ICOUNT, STATIC and 
AROB. 

 

As to the contrast between the gains in WL2 and WL4 workloads, 
the common resources in 2-threaded environment are 
comparatively sufficient. The ILP-favored policies help to exert 
the potential performance of the fast thread and do not 
excessively restrain the slow one, consequently producing good 
IPC and Hmean performance and leaving little gain space to SRD. 
While in the WL4 workloads where resources are comparatively 
scarce, such favor to high ILP threads will ignore the resource 
requirement of low ILP threads and result in a worse performance. 
While SRD keeps a good balance among fast threads and slow 
threads, obtaining more gains in environment with more 
competition for the common resources. 



4.2 Factor of Social Exploitation and Self 
Exploration 
Figure 2 illustrates the impact of different (social, self) pairs on 
performance. To make it clear, performance increments of SRD 
with various (social, self) over ICOUNT are presented. On the 
parameter setting axis, the ratio of social to self, self and social 
are listed from top to bottom, and from left to right the value of 
social:self is kept ascending with generally descending self and 
ascending social. 
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Figure 2. Impact of (social, self) pair on performance. 

 

Figure 2 demonstrates that (social, self) has less influence on the 
IPC performance than on the Hmean performance. Since the IPC 
metric is simply the sum of IPCs of all the threads, while Hmean 
is the harmonic mean of the individual thread speedups [16]. As 
SRD’s capability of social exploitation and self exploration 
changes along with the (social, self) pair, each thread contributes 
different individual IPC performance. Different combination of 
IPCs from the individual threads often keeps the total IPC steady, 
while it is prone to result in varieties of Hmean metric. 

As social grows (means the trial distributions are more attracted 
by historical experiences) and self shrinks (means the exploration 
scope of trial distributions becomes more limited), several 
representative settings are displayed in Figure 2. 

At (1.2, 2.4), SRD’s exploration capability surpasses its 
exploitation capability, the trial distributions often search blindly 
across the whole resource distribution space and make the 
historical experience Pl almost out of use. At (1.6, 1.6), the IPC 
and Hmean gains in most of workloads reach their crest values, 
indicating a balanced capability of social exploitation and self 

exploration. At (2, 1), most of IPC gains touch their bottom while 
most Hmean gains attain their peak values. As viewed from 
statistics, when social is set to 2, social×r2 in Eq.(4) is about 1 in 
statistical sense, then Eq.(4) transforms to: 

idldid rselftptx δ××+≈+ 1)()1(                         (5) 

Eq.(5) implies that the trial distributions do their exploration just 
away from the historical IPC-best experience Pl, there is little 
chance for SRD to approach to the IPC-best distribution, but 
many chances for those low ILP threads to obtain extra resources. 
Therefore, SRD exhibits degraded IPC performance but excellent 
Hmean performance at (2, 1). After (2, 1), SRD’s exploitation 
capability exceeds its exploration capability, the trial distributions 
are excessively attracted by historical experience while do tiny 
exploration. SRD inclines to pursuing IPC performance at the 
expense of fairness. 

According to the above discussion, we can find optimal (social, 
self) settings for SRD around (1.6, 1.6). 

4.3 Exploration Step 
The exploration step Delta represents the searching scope of the 
trial distributions, which has a direct impact on SRD’s self 
exploration part. This subsection analyses several illustrative and 
evident optimization procedures of SRD with different Delta (4, 8 
and 12) in several workloads. To make it clear, average IPC of 
every 10 allocation periods is presented. 
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Figure 3. Impact of Delta on optimization procedure in 

workload {lucas, perlbmk}. 

 

Figure 3 implies that the three optimization procedures come into 
different resource distribution spaces. Delta=12 is the earliest one 
to find the better optimal distribution space, but there are frequent 
drops on its IPC line. These indicate that a bigger exploration step 
provides a better searching ability, but it is not easy to make the 
trial distributions converge at a steady state. Delta=4 does not 
escape from the inferior optimal distribution space until terminal 
periods, suggesting that a small exploration step provides a weak 
searching ability and makes the trial distributions apt to stagnate 
in inferior optimal distribution space. 

In Figure 4, the periodically emerging of IPC peaks reflects the 
periodically changing of program phase and optimal resource 
distribution. Performance in this kind of workloads is determined 
by how quickly the transient optimal distributions are found and 
for how long the exploitation on the optimal distributions will 
persist. It challenges both the social and self part of SRD. 
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Figure 4. Impact of Delta on optimization procedure in 

workload {art, mcf}. 

 

Among the eleven situations in APs numbered from 100 to 950 
where complete IPC peaks emerge, Delta=12 always achieves 
peaks earlier than the other two, since Delta=12 owns better 
searching capability. However, in three situations (near 275, 750 
and 900), Delta=12 misses the better peaks while Delta=8 catches 
them; in six situations (near 120, 200, 350, 450, 520 and 830), 
peaks of Delta=12 are narrower than those of Delta=8 although 
Delta=12 obtains better peak values; only in two (near 590 and 
670) of the eleven situations, Delta=12 attains performance 
comparable to Delta=8. These phenomena show that for most of 
the situations Delta=8 can make persistent exploitation on optimal 
distributions for a longer time than Delta=12 does. 

Delta=4 is always the latest one to catch the new performance 
peaks because of its weak exploration ability, it is difficult to 
capture transient program phases. 

 

1.5

2

2.5

3

3.5

4

1 201 401 601 801 1001 1201 1401

AP

IP
C

Delta=4 Delta=8 Delta=12

 
Figure 5. Impact of Delta on optimization procedure in 

workload {lucas, equake, applu, vpr}. 

 

Figure 5 shows that Delta=12 and Delta=8 find the better optimal 
distribution space earlier than Delta=4 in APs from 40 to 550, but 
Delta=12 obviously loses the optimal distributions near 680, 800 
and in APs from 1180 to 1400 while Delta=8 holds them. 

In summary, a large Delta provides a big exploration scope, it is 
easy to capture transient performance peaks, but also easy to lose 
them. For a small Delta supplying weak exploration ability, it is 
too slow to capture transient program phases, stagnation in the 
inferior optimal distribution space often happens. Only a 
moderate Delta can help to do both necessary exploration and 
persistent exploitation. 

4.4 Colony Scale and Allocation Period 
In the simulation, we found that Colony_size from 4 to 8 is 
reasonable for SMT processors with a max thread number of 4. It 
is not easy for a small scale colony to discover the optimal 
allocation in resource distribution space. While a large colony 
scale results in a long generation period, which makes the 
historical experience lose its directive significance in the next 
generation period in an environment with changing program 
behavior. Hence it is difficult to catch the optimal distribution 
also. 

Since the generation period is the product of the allocation period 
and Colony_size. A small allocation period will produce a short 
generation period and many generations of colony in a given 
cycles of simulation. It can perform fine-grained optimization, but 
needs more additional computation. While a large allocation 
period makes a long generation period, consequently the historical 
experience loses its directive significance according to the 
program locality principle, and it is difficult to find the optimal 
distribution. Therefore, the allocation period is a tradeoff between 
the optimization effect and additional computation. 

5. CONCLUSIONS 
This work presents a swarm-inspired resource distribution policy 
for SMT processors, which adjusts the trial resource distributions 
directly targeting the runtime performance. By adaptation of the 
particle swarm optimization, a computational model is established 
for SRD to steer the social exploitation and self exploration 
activities of the trial distributions on behalf of potential solutions 
of resource distribution. 

Simulation results show that SRD obtains potential Hmean 
increment as well as good IPC increment over other three 
methods. Under the IPC metric, SRD outperforms ICOUNT, 
STATIC and AROB by 29.1%, 24.1% and 16% on average 
respectively, and under the Hmean metric SRD outperforms the 
three methods by 18.2%, 14.1% and 9.6% on average respectively. 
Generally, SRD provides more IPC and Hmean gains in a more 
complicated SMT environment such as the WL4, MIX and MEM 
type workloads. 

Experiments and discussions on SRD’s important parameters 
demonstrate that, the (social, self) pair functions as a lever 
between the exploitation on experience distribution and the 
exploration of new potential distribution, a balanced pair can take 
both throughput and fairness metrics into account; the exploration 
step impacts on the capability of searching for new solutions, a 
moderate step will help to timely find a better optimal distribution 
space and stick to the optimal space for enough time; and dealing 
with the colony scale and the allocation period is a tradeoff 
between the optimization quality of resource distribution and 
additional computation. 

Further work will try to design and simulate the asynchronous 
interaction between the hardware that performs SRD algorithm 
and the new SRD-supported SMT processor (mentioned at the 
end of Subsection 2.3). And also do some studies on the auto-
adjustment of important parameters of SRD, such as the (social, 
self) pair and Delta, to make SRD more generally smart for 
specific program phases that emerge in flight. 
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