
A Swarm-Inspired Resource Distribution
for SMT Processors

Hongzhou Chen, Lingdi Ping, Xuezeng Pan,
Kuijun Lu

College of Computer Science, Zhejiang University
Hangzhou, China

honjoychan@gmail.com

Xiaoning Jiang
Sunyard System Engineering Co. Ltd.

Hangzhou, China

jxn@sunyard.com

ABSTRACT
The performance in Simultaneous Multi-Threading (SMT)
processors is mainly determined by the distribution of the
common resources among the threads. However, the threads
exhibit dynamically complicated behavior while they compete for
resources at runtime. It is a challenge to meet the changing
resource requirements of the threads. This work proposes a
Swarm-inspired Resource Distribution (SRD) policy to address
the dynamic optimization problem of resource distribution for
SMT processors, which uses the runtime performance to guide the
generating of trial distributions. A computational model is
established by adaptation of swarm intelligence to direct the
social exploitation and self exploration activities of the trial
distributions in the dynamic optimization environment. Results
from simulation show that, benefiting from the good cooperation
between SRD’s social exploitation on historical experience and
self exploration of new solutions, SRD obtains satisfying
improvements of both throughput and fairness performance,
especially in complicated SMT environment.

Keywords
Simultaneous multithreading, resource distribution, bio-inspired
model, optimization method, swarm intelligence.

1. INTRODUCTION
Simultaneous Multi-Threading (SMT) is one paradigm of
processor design exploiting Thread Level Parallelism (TLP). SMT
processors can run instructions from different threads
concurrently, reducing the wastage of instruction slots in the
pipeline due to insufficient Instruction Level Parallelism (ILP);
the combined ILP from all threads therefore provides high
performance gains [1, 2]. In an SMT model, each thread owns
private program counter, rename table, load/store queues, branch
predictor, etc., while shares some critical data-path resources such
as the physical registers, the issue queues, and the execution units.
However, the threads change their resource requirement as their
program behavior changes, and they compete for the common

resources more than share them. So how reasonably the common
resources are distributed among the threads mainly determines the
throughput and fairness performance of SMT processors.

Most of the existing resource distribution methods, such as
ICOUNT [2], STALL [3], Data Gating (DG) [4], rely mainly on
the fetch policy at the front-end, which select threads to fetch
according to some monitored information in the pipeline such as
the cache miss count or the occupancy of issue queues. The
common resources are implicitly distributed among the threads by
controlling the number of instructions that flow into the pipeline.
Unfortunately, the fetching selection that is made from this
limited information is somewhat uncertain. It is difficult for this
implicit way to reflect the real resource requirement of threads.

As another type of resource distribution methods, explicit policies
allocate resource to the threads in a direct way. For example, the
STATIC [5, 6] method partitions common resources among all
threads statically with each thread monopolizing equal shares of
resources, pitifully suffering resource wastage because some
thread may not take full advantage of the allocated resources.
Other explicit policies makes dynamic allocation decision based
on information such as the limited pipeline information monitored
in Dynamically Controlled Resource Allocation (DCRA) [7] and
the program phase information in Adaptive Reorder Buffers
(AROB) [8]. These dynamic distribution policies—though
generally attaining good effect—are guided by the supervised
indirect information instead of the real performance, and unaware
of the impact of their distribution solutions on the real
performance, it is not easy to figure out the optimal distribution
solution efficiently. In addition, their more focus on alleviating
specific bottlenecks in SMT processors decreases their generality
for complicated SMT environments with changing program
behavior.

Taking advantage of swarm intelligence, this work proposes a
Swarm-inspired Resource Distribution (SRD) policy to solve the
nonlinear optimization problem of resource distribution for SMT
processors. In SRD, there is a resource distribution colony
consisting of several trial resource distributions on behalf of
different resource distribution solutions. The runtime performance
produced by applying each of the trial distributions for a period
helps to judge how well the trial distributions are, and it is used to
guide the generating of new colony of trial distributions. A
computational model for generating the colony is adapted from
swarm intelligence to direct the social exploitation and self
exploration activities of the trial distributions in the dynamic
optimization environment. Results from simulation show that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Bionetics'08, November 25-28, 2008, Hyogo, Japan.
Copyright 2008 ICST 978-963-9799-35-6.

SRD obtains potential increments of fairness performance as well
as good increments of throughput performance by just using the
real-time throughput performance as the feedback information.
This can be attributed to the good cooperation between SRD’s
social exploitation part and self exploration part. Some important
parameters of SRD are discussed also.

In the remaining sections of this paper, we introduce our SRD
policy for SMT processors in Section 2 and present the
experimental methodology in Section 3. Then after the simulation
results and some related discussions in Section 4, we conclude
this paper in Section 5.

2. SWARM-INSPIRED RESOURCE
DISTRIBUTION
2.1 Adoption of Swarm Intelligence
The main idea of our policy is derived from Particle Swarm
Optimization (PSO) [9, 10], which is one of the swarm
intelligence methods and developed from researches on the
behavior of bird colony in prey. In PSO, each individual particle
is treated as a point in a D-dimension space, representing a
potential solution to the problem. The ith particle is represented
by Xi = (xil, xi2, …, xiD), its flying velocity is represented by Vi =
(vil, vi2, …, viD), and its best historical position is recorded as Pi =
(pi1, pi2, … , piD). The index of the best particle among the whole
colony is represented by symbol g. At the end of every generation
t, particles evolve their velocity and position into the next
generation t+1 according to the following iterative velocity and
position equations [9]:

))()((c))()((c)()1(2211 txtprtxtprtvtv idgdidididid −××+−××+=+

(1)

)1()()1(++=+ tvtxtx ididid (2)

where c1, c2 are two positive constants, r1 and r2 are two random
numbers in range [0,1]. The first part of Eq.(1) represents the
former velocity of particle. The second part of Eq.(1) is the
“cognition” part, representing particle’s self exploration of the
solution space. The third part is the “social” part, representing the
information sharing (exploitation on historical experience) or
collaboration among particles [10]. Compared with other
algorithms in the evolutionary computation field, PSO can both
avoid high gene flow via implicit weak selection mechanism in
early iterations, and converge quickly at reasonable solution.

When PSO is introduced into the optimization problem of
resource distribution, each particle represents a trial resource
distribution among the threads. Each trial distribution is applied to
the threads for a period of time (named Allocation Period, AP). At
the end of every AP, the processor performance in that AP is
evaluated. When all of the trial distributions are applied one after
the other, a new generation of colony is figured out according to
the velocity and position equations. And then a new iteration
begins. The period between two adjacent generations is called a
generation period.

In the SMT environment, however, threads’ resource requirement
changes with their program behavior. All the three parts in Eq.(1)
need adaptation for the dynamic optimization of resource
distribution for SMT processors.

1. In dynamic SMT environment, the optimal resource
distribution often changes with program behavior. According to
the program locality principle, the local optimal distribution plays
a more significant role than the global one does in generating a
new distribution colony. Therefore, the best local historical
position Pl, instead of the best global historical position Pg, should
be used to direct the social exploitation part in Eq.(1).

2. For the self part in Eq.(1), the individual global experience Pi is
of less significance in the same sense as Pg does. Instead, the trial
distributions are designed to take random explorations in the
resource distribution space as their self activities (see Section 2.2).

3. The first part in Eq.(1) originally means particle’s memory of
former velocity, representing the global exploration ability. For
optimization problem that features a large solution space, the
velocity part can keep large exploration scope in early iteration
stages, preventing individual particle from being excessively
influenced by local optimal solutions. While in SMT environment,
the limited quantity of common resources provides a small
discrete solution space of resource distribution. It is not difficult
for particles to cover the entire resource distribution space even
without the velocity part. So the first part has no more obvious
meaning and can be omitted.

2.2 SRD Policy
Our policy involves the distribution of three kinds of important
common resources: the reorder buffers (ROB), the physical
register files (RF) and the issue queues (IQ). For simplicity, only
the distribution of ROB among threads is taken into account, and
the distribution of RF and IQ are just kept in proportion to that of
ROB in every allocation period, since a given thread often utilizes
roughly similar fractions of the three common resources.
Moreover, we only care about the distribution of the integer
register files because it can indirectly control the distribution of
the float point register files. The trial distribution that produces
the best IPC (Instructions Per Cycle, a throughput metric)
performance in a previous generation period is chosen to direct
the resource distribution optimization in the succeeding
generation period.

Let Colony_size denote the colony scale, N denote the number of
threads, the ith trial distribution Xi = (xi1, xi2, ···, xid, ···, xiN)
represent the distribution of ROB among threads from 1 to N. The
best local historical distribution is represented by Pl = (pl1, pl2, ···,
pld, ···, plN), the self exploration variation Δi＝ (δi1, δi2, ···, δid, ···,
δiN) represents the variation of ROB distribution that is made by
the self exploration activity of the ith trial distribution, it is
generated by borrowing Delta (named exploration step) entries of
ROB for a random thread m from each of the rest N-1 threads,
defined as Eq.(3):

⎩
⎨
⎧

=−
≠−

=
)()1(

)(
mdifDeltaN

mdifDelta
id

，

，
δ (3)

According to the main idea described above, the computational
model for SRD to update trial distributions can be simply
established as Eq.(4):

))()(()()1(21 txtprsocialrselftxtx idldididid −××+××+=+ δ (4)

where self is self exploration factor, indicating the capability of
exploration of new distribution solutions; social is social
exploitation factor, indicating the capability of exploitation on
historical experience. r1 and r2 are random numbers in range [0,1].
The introduced randomicity is supposed to avoid excessive
influence by the historical experience, and also it brings chance to
low ILP threads to obtain extra resources for fairness.

Finally, SRD works as follows. In the initialization stage, the trial
distributions are set with even distribution of ROB resources. The
IPC performances of all trial distributions are set to zero. Let the
system begin to apply the trial distributions from the first trial
distribution X0. At the outset of every allocation period (finish
applying the previous trial distribution Xi-1 and begin to apply the
next trial distribution Xi), the IPC performance produced by Xi-1 is
evaluated. If Xi-1 is the last trial distribution XColony_size-1 (namely,
a generation period also comes at the outset of the current
allocation period), then Pl is updated with the trial distribution
that yields the best IPC performance, and the self exploration
variation is calculated for every trial distribution by Eq.(3), and
then a new generation of trial distributions are figured out
according to Eq.(4). If Xi-1 is not XColony_size-1, then apply Xi to the
threads; else let the system start another applying round from the
first trial distribution X0. The RF and the IQ resources are always
allocated proportionately to the ROB distribution in every
allocation period.

2.3 Implementation
For a possible implementation of the SRD policy, additional
hardware is needed by SMT processors for supporting SRD.

First, a set of allocation registers is needed to store the
distributions of the three kinds of common resources among
threads, which are updated by SRD algorithm in every allocation
period.

Secondly, a committed instruction counter is demanded to
evaluate the runtime IPC performance. When an allocation period
starts, the committed instruction counter is reset to zero, and then
increases automatically by 1 as soon as any instruction is
committed from the ROB. Occupancy counters of the ROB, RF
and IQ resource are also demanded by each thread for comparing
with the resource quotas stored in the allocation registers.
Whenever an instruction obtains a resource item, its
corresponding occupancy counter increases by 1 automatically.
The ROB and RF occupancy counters will decrease by 1
automatically when an instruction is committed. The IQ
occupancy counter will decrease by 1 automatically when an
instruction is issued.

And in the front end, a comparing logic should be implemented to
perform the comparison between the occupancy counters and the
allocation registers. The output of the comparing logic is fed to
the fetch logic, which will stall fetching from a thread if any of its
occupancy counters exceeds its corresponding allocation register.

Finally, hardware that implements SRD algorithm is required. At
each allocation period, it evaluates the runtime IPC of the prior
allocation period via dividing the committed instruction counter
by AP, and applies the current trial distribution to threads by
writing it into the allocation registers. At each generation period,
it generates new trial distributions.

In consideration of efficiency, hardware that performs SRD
algorithm may work asynchronously with the critical pipeline in
the new SRD-supported SMT processor, there is no block or wait
operation between them except two kinds of mutex between: the
read operation on the allocation registers by the comparing logic
and the write operation on them by the SRD hardware; the write
operation on the committed instruction counter by the instruction
committing logic and the read operation on them by the SRD
hardware. Since the two mutexes happen only once for every
allocation period, the SRD hardware will entail a little expense on
SMT processor.

3. SIMULATION METHOD
To evaluate the performance of our policy, we used M-Sim [11],
which is a modified version of Simplescalar 3.0 [12] and supports
both the SMT model and the superscalar model. Details in
simulator configuration are shown in Table 1.

Table 1. SMT simulator configuration

Parameters Configuration
Bandwidth 8-wide fetch, issue and commit

Queue size 256 entry ROB, 128 entry LSQ, 160
entry IQ

Phys. registers 160 integer and 160 float-point
Fetch policy ICOUNT

Function unit and
Lat. (total/issue)

6 Int Add (1/1), 3 Int Mult (3/1) / Div
(20/19), 4 Mem Port (1/1), 3 FP Add
(2/1), 3 FP Mult (4/1) / Div (12/12) /
Sqrt (24/24)

Branch predictor 2K-entry gshare, 2K-entry 4-way set-
associative BTB

L1 I-cache 64KB, 2-way set-associative, 32 byte
line, 1 cycle hit time

L1 D-cache 64KB, 4-way set-associative, 32 byte
line, 1 cycle hit time

Unified L2 cache 2MB, 8-way set-associative, 64 byte
line, 10 cycles hit time

Memory 64-bit width, 200 cycle access latency

The workloads of SPEC CPU2000 benchmarks [13] simulated in
our experiment were composed of the precompiled Alpha binaries
available at the Simplescalar website [12]. The reference input
sets of those benchmarks were used. For each thread, the
simulator fast skipped to the earliest simulation point among the
single simulation point, the early single simulation point and the
initialization end point [14, 15], and then simulated the sub-
sequent 100M instructions. In the SMT mode, we stopped the
simulation as soon as any thread committed 100M instructions.

In creating the multithreaded workloads, we first classified all
benchmarks into two types according to the results obtained in a
single-threaded superscalar environment. One type features high
instruction level parallelism, and the other is of memory-intensive,
labeled “ILP” and “MEM” respectively. Then we totally
organized 36 multithreaded workloads: six 2-threaded and six 4-
threaded for each of the ILP, MEM and MIX (mixture of ILP and
MEM) type (see Table 2 for details). In the following expression,
“WL2” and “WL4” denote all the 2-threaded and 4-threaded
workloads respectively, “ILP2” and “ILP4” denote the 2-threaded

and 4-threaded workloads of ILP type, and so on for the MEM
and MIX type workloads.

Table 2. Simulated multithreaded workloads

Type 2-threaded 4-threaded
wupwise, gzip wupwise, gzip, mesa, gcc

mesa, gcc apsi, perlbmk, galgel, vortex
apsi, perlbmk fma3d, apsi, bzip2, crafty
galgel, vortex mesa, apsi, wupwise, perlbmk
apsi, fma3d galgel, vortex, crafty, gcc

ILP

bzip2, crafty fma3d, eon, gcc, crafty
art, gzip art, mcf, wupwise, gzip

wupwise, mcf swim, twolf, mesa, gcc
swim, vortex lucas, vpr, apsi, perlbmk
mesa, twolf equake, twolf, galgel, vortex

lucas, perlbmk art, swim, equake, crafty

MIX

apsi, vpr mgrid, applu, fma3d, gcc
art, mcf art, mcf, swim, twolf

swim, twolf lucas, vpr, equake, twolf
lucas, vpr art, swim, mcf, vpr

equake, twolf mgrid, applu, lucas, twolf
art, swim lucas, equake, applu, vpr

MEM

mcf, vpr art, parser, twolf, mcf

We used two metrics for performance evaluation in these
multithreaded workloads, the first one is the total throughput in
terms of commit IPC rate (IPC), and the second one is the
harmonic mean of individual speedups (Hmean) [16], taking
account of fairness among threads in case of favoring a thread
with high IPC at the expense of restraining a thread with low IPC.

4. RESULTS AND DISCUSSIONS
We compared SRD with three other methods: AROB (a better one
among existing methods), the common method ICOUNT and
STATIC. The optimal parameter settings for AROB are referred
to in work [8]. From our experimental experience, SRD’s
Colony_size is set to 6; both social and self are set to 1.6. The
decision or allocation period of AROB and SRD are set to 32K
machine cycles. Also, the settings and meaning of SRD’s
important parameters are discussed in this section.

4.1 IPC and Hmean Performance
Figure 1 shows the IPC and Hmean improvements of SRD over
ICOUNT, STATIC and AROB. It is observed that, under the IPC
metric (Figure 1(a)), SRD outperforms ICOUNT, STATIC and
AROB by 29.1%, 24.1% and 16% on average respectively, and
under the Hmean metric (Figure 1(b)), SRD outperforms the three
methods by 18.2%, 14.1% and 9.6% on average respectively.
Comparing the gains in the ILP, MIX, MEM type workloads, both
the IPC and the Hmean gains in the MIX and MEM type
workloads contribute most to the whole average gains, whereas
the gains in ILP workloads are not so outstanding or sometimes
slightly poor. And regarding the gains in the WL2 and WL4
workloads, SRD provides more IPC and Hmean gains in the WL4
workloads than in the WL2 workloads.

Since the programs in the ILP type workloads own similarly high
ILP level, those resource distribution policies that are biased to

high ILP thread seem to favor each of the threads to the same
extent. Therefore, the ILP-favored policies can produce good
fairness as well as take full advantage of the high ILP of fast
threads to obtain considerable throughput performance. The
mechanism of ICOUNT and AROB does more favor to high ILP
thread, and so does STATIC—a static resource distribution
version of ICOUNT. Thus the three methods have desirable
performance in ILP type workloads, leaving little potential gain
space to SRD.

However, in the MEM workloads where cache miss happens
frequently and the MIX workloads that are composed of ILP and
MEM workloads, threads have distinct ILP levels and exhibit
complicated behavior when competing for resource. The ILP-
favored policies are prone to favor high ILP threads with more
resources, with little consideration of the resource requirement of
low ILP threads. This may result in degradation of both the whole
throughput and the fairness performance. SRD however keeps
good balance among fast threads and slow threads through its
well-cooperated social exploitation part and self exploration part,
providing outstanding gains in more complicated SMT
environment.

-10
0

10
20
30
40
50
60

A
V

G

W
L2

W
L4 IL
P

M
IX

M
E

M

IL
P

2

M
IX

2

M
E

M
2

IL
P

4

M
IX

4

M
E

M
4IP

C
 In

cr
em

en
ts

%

ICOUNT STATIC AROB

(a)

-10

0
10

20

30
40

A
V

G

W
L2

W
L4 IL
P

M
IX

M
E

M

IL
P

2

M
IX

2

M
E

M
2

IL
P

4

M
IX

4

M
E

M
4H
m

ea
n

In
cr

em
en

ts
% ICOUNT STATIC AROB

(b)

Figure 1. Increments of SRD over ICOUNT, STATIC and
AROB.

As to the contrast between the gains in WL2 and WL4 workloads,
the common resources in 2-threaded environment are
comparatively sufficient. The ILP-favored policies help to exert
the potential performance of the fast thread and do not
excessively restrain the slow one, consequently producing good
IPC and Hmean performance and leaving little gain space to SRD.
While in the WL4 workloads where resources are comparatively
scarce, such favor to high ILP threads will ignore the resource
requirement of low ILP threads and result in a worse performance.
While SRD keeps a good balance among fast threads and slow
threads, obtaining more gains in environment with more
competition for the common resources.

4.2 Factor of Social Exploitation and Self
Exploration
Figure 2 illustrates the impact of different (social, self) pairs on
performance. To make it clear, performance increments of SRD
with various (social, self) over ICOUNT are presented. On the
parameter setting axis, the ratio of social to self, self and social
are listed from top to bottom, and from left to right the value of
social:self is kept ascending with generally descending self and
ascending social.

0

10

20

30

40

50

0.
50

1.
00

1.
67

2.
00

2.
40

2.
80

2.4 1.6 1.2 1 1 1

1.2 1.6 2 2 2.4 2.8

social:self
self
social

IP
C

 In
cr

em
en

ts
% AVG

WL2
WL4
ILP
MIX
MEM

(a)

0
5

10
15
20
25
30

0.
50

1.
00

1.
67

2.
00

2.
40

2.
80

2.4 1.6 1.2 1 1 1

1.2 1.6 2 2 2.4 2.8

social:self
self
social

H
m

ea
n

In
cr

em
en

ts
% AVG

WL2
WL4
ILP
MIX
MEM

(b)

Figure 2. Impact of (social, self) pair on performance.

Figure 2 demonstrates that (social, self) has less influence on the
IPC performance than on the Hmean performance. Since the IPC
metric is simply the sum of IPCs of all the threads, while Hmean
is the harmonic mean of the individual thread speedups [16]. As
SRD’s capability of social exploitation and self exploration
changes along with the (social, self) pair, each thread contributes
different individual IPC performance. Different combination of
IPCs from the individual threads often keeps the total IPC steady,
while it is prone to result in varieties of Hmean metric.

As social grows (means the trial distributions are more attracted
by historical experiences) and self shrinks (means the exploration
scope of trial distributions becomes more limited), several
representative settings are displayed in Figure 2.

At (1.2, 2.4), SRD’s exploration capability surpasses its
exploitation capability, the trial distributions often search blindly
across the whole resource distribution space and make the
historical experience Pl almost out of use. At (1.6, 1.6), the IPC
and Hmean gains in most of workloads reach their crest values,
indicating a balanced capability of social exploitation and self

exploration. At (2, 1), most of IPC gains touch their bottom while
most Hmean gains attain their peak values. As viewed from
statistics, when social is set to 2, social×r2 in Eq.(4) is about 1 in
statistical sense, then Eq.(4) transforms to:

idldid rselftptx δ××+≈+ 1)()1((5)

Eq.(5) implies that the trial distributions do their exploration just
away from the historical IPC-best experience Pl, there is little
chance for SRD to approach to the IPC-best distribution, but
many chances for those low ILP threads to obtain extra resources.
Therefore, SRD exhibits degraded IPC performance but excellent
Hmean performance at (2, 1). After (2, 1), SRD’s exploitation
capability exceeds its exploration capability, the trial distributions
are excessively attracted by historical experience while do tiny
exploration. SRD inclines to pursuing IPC performance at the
expense of fairness.

According to the above discussion, we can find optimal (social,
self) settings for SRD around (1.6, 1.6).

4.3 Exploration Step
The exploration step Delta represents the searching scope of the
trial distributions, which has a direct impact on SRD’s self
exploration part. This subsection analyses several illustrative and
evident optimization procedures of SRD with different Delta (4, 8
and 12) in several workloads. To make it clear, average IPC of
every 10 allocation periods is presented.

1.2

1.6

2

2.4

2.8

3.2

1 101 201 301 401 501 601 701 801 901

AP

IP
C

Delta=4 Delta=8 Delta=12

Figure 3. Impact of Delta on optimization procedure in

workload {lucas, perlbmk}.

Figure 3 implies that the three optimization procedures come into
different resource distribution spaces. Delta=12 is the earliest one
to find the better optimal distribution space, but there are frequent
drops on its IPC line. These indicate that a bigger exploration step
provides a better searching ability, but it is not easy to make the
trial distributions converge at a steady state. Delta=4 does not
escape from the inferior optimal distribution space until terminal
periods, suggesting that a small exploration step provides a weak
searching ability and makes the trial distributions apt to stagnate
in inferior optimal distribution space.

In Figure 4, the periodically emerging of IPC peaks reflects the
periodically changing of program phase and optimal resource
distribution. Performance in this kind of workloads is determined
by how quickly the transient optimal distributions are found and
for how long the exploitation on the optimal distributions will
persist. It challenges both the social and self part of SRD.

0.3

0.8

1.3

1.8

2.3

2.8

1 101 201 301 401 501 601 701 801 901

AP

IP
C

Delta=4 Delta=8 Delta=12

Figure 4. Impact of Delta on optimization procedure in

workload {art, mcf}.

Among the eleven situations in APs numbered from 100 to 950
where complete IPC peaks emerge, Delta=12 always achieves
peaks earlier than the other two, since Delta=12 owns better
searching capability. However, in three situations (near 275, 750
and 900), Delta=12 misses the better peaks while Delta=8 catches
them; in six situations (near 120, 200, 350, 450, 520 and 830),
peaks of Delta=12 are narrower than those of Delta=8 although
Delta=12 obtains better peak values; only in two (near 590 and
670) of the eleven situations, Delta=12 attains performance
comparable to Delta=8. These phenomena show that for most of
the situations Delta=8 can make persistent exploitation on optimal
distributions for a longer time than Delta=12 does.

Delta=4 is always the latest one to catch the new performance
peaks because of its weak exploration ability, it is difficult to
capture transient program phases.

1.5

2

2.5

3

3.5

4

1 201 401 601 801 1001 1201 1401

AP

IP
C

Delta=4 Delta=8 Delta=12

Figure 5. Impact of Delta on optimization procedure in

workload {lucas, equake, applu, vpr}.

Figure 5 shows that Delta=12 and Delta=8 find the better optimal
distribution space earlier than Delta=4 in APs from 40 to 550, but
Delta=12 obviously loses the optimal distributions near 680, 800
and in APs from 1180 to 1400 while Delta=8 holds them.

In summary, a large Delta provides a big exploration scope, it is
easy to capture transient performance peaks, but also easy to lose
them. For a small Delta supplying weak exploration ability, it is
too slow to capture transient program phases, stagnation in the
inferior optimal distribution space often happens. Only a
moderate Delta can help to do both necessary exploration and
persistent exploitation.

4.4 Colony Scale and Allocation Period
In the simulation, we found that Colony_size from 4 to 8 is
reasonable for SMT processors with a max thread number of 4. It
is not easy for a small scale colony to discover the optimal
allocation in resource distribution space. While a large colony
scale results in a long generation period, which makes the
historical experience lose its directive significance in the next
generation period in an environment with changing program
behavior. Hence it is difficult to catch the optimal distribution
also.

Since the generation period is the product of the allocation period
and Colony_size. A small allocation period will produce a short
generation period and many generations of colony in a given
cycles of simulation. It can perform fine-grained optimization, but
needs more additional computation. While a large allocation
period makes a long generation period, consequently the historical
experience loses its directive significance according to the
program locality principle, and it is difficult to find the optimal
distribution. Therefore, the allocation period is a tradeoff between
the optimization effect and additional computation.

5. CONCLUSIONS
This work presents a swarm-inspired resource distribution policy
for SMT processors, which adjusts the trial resource distributions
directly targeting the runtime performance. By adaptation of the
particle swarm optimization, a computational model is established
for SRD to steer the social exploitation and self exploration
activities of the trial distributions on behalf of potential solutions
of resource distribution.

Simulation results show that SRD obtains potential Hmean
increment as well as good IPC increment over other three
methods. Under the IPC metric, SRD outperforms ICOUNT,
STATIC and AROB by 29.1%, 24.1% and 16% on average
respectively, and under the Hmean metric SRD outperforms the
three methods by 18.2%, 14.1% and 9.6% on average respectively.
Generally, SRD provides more IPC and Hmean gains in a more
complicated SMT environment such as the WL4, MIX and MEM
type workloads.

Experiments and discussions on SRD’s important parameters
demonstrate that, the (social, self) pair functions as a lever
between the exploitation on experience distribution and the
exploration of new potential distribution, a balanced pair can take
both throughput and fairness metrics into account; the exploration
step impacts on the capability of searching for new solutions, a
moderate step will help to timely find a better optimal distribution
space and stick to the optimal space for enough time; and dealing
with the colony scale and the allocation period is a tradeoff
between the optimization quality of resource distribution and
additional computation.

Further work will try to design and simulate the asynchronous
interaction between the hardware that performs SRD algorithm
and the new SRD-supported SMT processor (mentioned at the
end of Subsection 2.3). And also do some studies on the auto-
adjustment of important parameters of SRD, such as the (social,
self) pair and Delta, to make SRD more generally smart for
specific program phases that emerge in flight.

6. ACKNOWLEDGEMENT
This work was supported by the National Hi-Tech Research and
Development Program (863) of China (No. 2006AA01Z431), and
the Key Science and Technology Program of Zhejiang Province
of China (No. 2007C11068, 2007C11088).

7. REFERENCES
[1] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous

multithreading: maximizing on-chip parallelism. In
Proceedings of the 22nd Annual International Symposium on
Computer Architecture, IEEE CS, Washington, DC, 1995,
392-403.

[2] D. M. Tullsen, S. J. Eggers, J. S. Emer, and H. M. Levy.
Exploiting choice: instruction fetch and issue on an
implementable simultaneous multithreading processor. In
Proceedings of the 23th Annual International Symposium on
Computer Architecture, IEEE CS, Washington, DC, 1996,
191-202.

[3] D. M. Tullsen and J. A. Brown. Handling long-latency loads
in a simultaneous multithreading processor. In Proceedings
of the 34th Annual ACM/IEEE International Symposium on
Microarchitecture, IEEE CS, Washington, DC, 2001, 318–
327.

[4] A. El-Moursy and D. H. Albonesi. Front-end policies for
improved issue efficiency in SMT processors. In
Proceedings of the 9th International Conference on High
Performance Computer Architecture, IEEE CS, Washington,
DC, 2003, 31-42.

[5] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J.
A. Miller, and M. Upton. Hyper-threading technology
architecture and microarchitecture. Intel Technology Journal,
6, 1 (Feb. 2002), 4-15.

[6] S. E. Raasch and S. K. Reinhardt. The impact of resource
partitioning on SMT processors. In Proceedings of the 12th
Int’l Conf. on Parallel Architectures and Compilation
Techniques, IEEE CS, Washington, DC, 2003, 15-25.

[7] F. Cazorla, A. Ramirez, M. Valero, and E. Fernández.
Dynamically controlled resource allocation in SMT
processors. In Proceedings of the 37th International
Symposium on Microarchitecture, IEEE CS, Washington,
DC, 2004, 171-182.

[8] J. Sharkey, D. Balkan, and D. Ponomarev. Adaptive reorder
buffers for SMT processors. In Proceedings of the 15th
International Conference on Parallel Architectures and
Compilation Techniques, ACM Press, New York, NY, 2006,
244-253.

[9] R. Eberhart and J. Kennedy. A new optimizer using particles
swarm theory. In Proceedings of the Sixth International
Symposium on Micro Machine and Human Science, IEEE
Press, Piscataway, NJ, 1995, 39-43.

[10] J. Kennedy. The particle swarm: social adaptation of
knowledge. In Proceedings of the International Conference
on Evolutionary Computation, IEEE Press, Piscataway, NJ,
1997, 303~308.

[11] J. Sharkey, D. Ponomarev, and K. Ghose. M-Sim: a Flexible,
Multi-threaded Simulation Environment. Tech Report CS-
TR-05-DP01. Department of Computer Science, SUNY
Binghamton, 2005.

[12] D. Burger, T. M. Austin, and S. Bennett. Evaluating Future
Microprocessors: the Simplescalar Tool Set. Technical
Report 1308, Computer Science Department, University of
Wisconsin-Madison, Madison, USA, 1996.

[13] J. Henning. SPEC CPU2000: measuring CPU performance in
the new millennium. IEEE Computer, 33, 7 (Jul. 2000), 28-
35.

[14] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior.
In Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ACM Press, New York, NY, 2002, 45-57.

[15] E. Perelman, G. Hamerly, and B. Calder. Picking statistically
valid and early simulation points. In Proceedings of the 12th
International Conference on Parallel Architectures and
Compilation Techniques, IEEE CS, Washington, DC, 2003,
p.244.

[16] K. Luo, J. Gummaraju, and M. Franklin. Balancing
throughput and fairness in SMT processors. In Proceedings
of the International Symposium on Performance Analysis of
Systems and Software, IEEE CS, Washington, DC, 2001,
164-171.

