
Three models for gene assembly in ciliates: a comparison
(Invited Paper)

Miika Langille
Department of IT, Åbo

Akademi University
ICT-building, Joukahaisenkatu
3-5 A, 5th floor Turku 20520

Finland
miika.langille@abo.fi

Ion Petre
Academy of Finland, and

Turku Centre for Computer
Science

Department of IT, Åbo
Akademi University

ICT-building, Joukahaisenkatu
3-5 A, 5th floor

Turku 20520 Finland
ion.petre@abo.fi

Vladimir Rogojin
Turku Centre for Computer

Science
Department of IT, Åbo

Akademi University
ICT-building, Joukahaisenkatu

3-5 A, 5th floor
Turku 20520 Finland

vladimir.rogojin@abo.fi

ABSTRACT
We survey in this paper the main differences among three
variants of an intramolecular model for gene assembly: the
general, the simple, and the elementary models. We present
all of them in terms of sorting signed permutations and
compare their behavior with respect to: (i) completeness,
(ii) confluence (with the notion defined in three different se-
tups), (iii) decidability, (iv) characterization of the sortable
permutations in each model, (v) sequential complexity, and
(vi) experimental validation.

Keywords
ciliate, simple gene assembly, simple model, elementary mo-
del, confluence, completeness, characterization, sequential
complexity, model validation, signed permutations, sorting

1. INTRODUCTION
Gene assembly in ciliates has been subject of intense re-

search in the last few years, both regarding the molecular
details driving it, as well as the theoretical implications of
some mathematical models proposed for it, see [7, 10, 25,
17, 16, 26, 1, 20].

Ciliates form an ancient and rich group of eukaryotes.
There are about 8000 species of ciliates currently known.
Two characteristics which are common for all ciliates dis-
tinguish them from other groups of unicellular eukaryotes.
First, they all have “cilia”, organs used for motility and for
feeding. Second, they all have two types of nuclei presented
in each organism. Almost all RNA-transcriptions happen in
macronuclei (somatic nuclei) during the life of a ciliate. The
DNA-molecules in the micronuclei (germline nuclei) seem to
remain silent until the sexual reproduction begins (see [24]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Bionetics ’08, November 25-28, 2008, Hyogo, Japan
Copyright 2008 ICST 978-963-9799-35-6.

The genetical information is stored in different ways on
micro- and macronuclear molecules. The macronuclear genes
are contiguous sequences of nucleotides. The micronuclear
genes however, are split into coding blocks (called MDSs),
shuffled and separated by noncoding blocks (called IESs).
This shuffling and inversion of MDSs is especially visible
in a species of ciliates called stichotrichs. Macronuclear
molecules are known to be the shortest DNA in Nature,
ranging in the Sterkiella nova organisms between 200bp and
3700bp with an average of 2200 bp in length (see [11, 5, 6,
23, 24, 27]). Macronuclear molecules consist mainly of cod-
ing sequences. On the other hand, coding sequences occupy
as little as 2 – 5 % of the micronuclear molecules of the
length about 107 bp (in Sterkiella nova, see [5, 23]).

At some point during sexual reproduction, ciliates destroy
all macronuclei and develop new ones from the micronuclei.
In the process they must excise non-coding sequences and as-
semble correctly all coding blocks of the micronuclear genes.
This process is called gene assembly. For a brief introduc-
tion to the biology of ciliates, especially to the gene assembly
process we refer to [7].

Two molecular models have been proposed for gene as-
sembly in ciliates. The intermolecular model [17, 16] and the
intramolecular model [10, 25] suggest splicing of gene frag-
ments via short nucleotide sequences called pointers. Each
pointer at the end of an MDS repeats at the beginning of
the MDS which follows it in the assembled gene. Recent
results [1, 20] suggest that some template molecules may
assist the correct alignment of the recombining molecules.
The intermolecular model suggests that two molecules may
participate in the recombination, while the intramolecular
model considers folding and recombination within a single
molecule.

We focus in this paper on the intramolecular model (called
in the sequel the general model) and on two of its variants:
the simple model, introduced in [15] and the elementary
model, introduced in [14].

The general model consists of three molecular operations,
ld, hi, dlad, see [10, 25]. The three operations are illustrated
in Figure 1 where in each case we show the folding of the
molecule on itself, the recombination that takes place and
the subsequent result. A characteristic of this model is that
all three operations operate on a single molecule that folds

ld(i) ld(ii) ld(iii)

hi(i) hi(ii) hi(iii)

dlad(i) dlad(ii) dlad(iii)

Figure 1: Illustration of the ld, hi, dlad molecular
operation showing in each case: (i) the folding, (ii)
the recombination, (iii) the result. Courtesy of Tero
Harju.

on itself in a specific way. One thus says that the model is
intramolecular.

Note that the three intramolecular operations allow in
their general formulation that the MDSs participating in
an operation may be located anywhere along the molecule.
Arguing on the principle of parsimony, a simplified model
was introduced in [15], asking that all operations are ap-
plied ‘locally’. This simple model consists of the same three
molecular operations as the general model, requiring how-
ever that there is at most one coding block involved in each
of the three operations. This idea was then further devel-
oped into two separate models, both using the terminology
of simple gene assembly . In the first one, that we will re-
fer to in here as the elementary model , introduced in [13,
14], the model was further restricted so that only micronu-
clear, but not composite, MDSs could be manipulated by
the molecular operations. Consequently, once two or more
micronuclear MDSs are combined into a larger composite
MDS, they can no longer be moved along the sequence. The
second model, that we will refer to as the simple model [18],
allowed that both micronuclear, as well as composite MDSs
may be manipulated in each of the three molecular opera-
tions.

However minor the difference between the frameworks of
the simple and the elementary models may seem, it does
have a great impact on the characteristics of each model.
We survey in this paper the main known results on the sim-
ple and elementary gene assembly, comparing them also with
the corresponding properties of the general model with re-
spect to: (i) completeness, (ii) confluence (with the notion
defined in three different setups), (iii) decidability, (iv) char-
acterization of the sortable permutations in each model, (v)
sequential complexity, and (vi) experimental validation. For
this, we introduce in this paper a permutation-based pre-
sentation of the general model. We discuss in particular the
question of model validation and consider the assembly of
all currently known ciliate gene patterns, see [4]. We also
present several open problems in this area.

The results in this paper have been previously published
in [8, 14, 18, 19] using non-uniform (and even conflicting)
terminology and notation. In here we give the topic a uni-
form presentation, fix the terminology and discuss in some
details differences among the three models of interest.

2. MATHEMATICAL PRELIMINARIES
For a finite alphabet A = {a1, . . . , an}, we denote by A∗

the free monoid generated by A and call any element of A∗

a word. For any v ∈ A∗, we denote dom(v) = {a ∈ A |
a occurs in v}.

Let A = {a1, . . . , an}, where A∩A = ∅. For p, q ∈ A∪A,
we say that p, q have the same signature if either p, q ∈ A,
or p, q ∈ A and we say that they have different signatures
otherwise. For any u ∈ (A∪A)∗, u = x1 . . . xk, with xi ∈ A∪
A, for all 1 ≤ i ≤ k, we denote ‖u‖ = ‖x1‖ . . . ‖xk‖, where
‖a‖ = ‖a‖ = a, for all a ∈ A. We also denote u = xk . . . x1,
where a = a, for all a ∈ A. We say, that u is uniformly
signed, if either xi ∈ A for all 1 ≤ i ≤ k, or xi ∈ A for all
1 ≤ i ≤ k.

For strings u, v over Σ, we say that u is a substring of
v, denoted by u ≤ v, if v = xuy, for some strings x, y.
We say that u is a subsequence of v, denoted by u ≤s v, if
u = a1a2 . . . am, ai ∈ Σ ∪ Σ and v = v0a1v1a2v2 . . . amvm,
for some strings vi, 0 ≤ i ≤ m, over Σ.

A permutation π over A is a bijection π : A → A. Fixing
the order relation (a1, a2, . . . , am) over A, we often denote
π as the word π(a1) . . . π(am) ∈ A∗. A signed permutation
over A is a string ψ ∈ (A∪A)∗, where ‖ψ‖ is a permutation
over A. We say that a signed permutation π is (circularly)
sorted if it is of either of the following forms:

(i) π = akak+1 . . . ana1 . . . ak−1, for some k ≥ 1. In this
case, we say that π is an orthodox sorted permutation.

(ii) π = ak−1 . . . a1 an . . . ak+1 ak, for some k ≥ 1. In this
case, we say that π is an inverted sorted permutation.

In both cases, if k = 1, then we say that π is a linear sorted
permutation; otherwise, we say that it is circular.

A sorted block in the signed permutation π is a substring of
π either of the form aiai+1 . . . aj , or of the form aj . . . ai+1 ai,
1 ≤ i ≤ j ≤ n, where ai−1ai, ai ai−1, ajaj+1, aj+1 aj are not
substrings of π. By S(π) we denote the total number of
sorted blocks in π. Clearly, the permutation is cyclically
sorted if we have S(π) ≤ 2.

The notion of structure of a permutation will be useful
in the paper. To define it, we first introduce the morphism
ξi : (A ∪A)∗ → (A ∪A)∗, for any 1 ≤ i ≤ |A|:

ξi(aj) =





λ if j = i;

aj if j < i;

aj−1 if j > i;

where aj ∈ A ∪A.
Consider the mapping σi : (A ∪ A)∗ → (A ∪ A)∗, where

for any string u ∈ (A ∪A)∗, σi(u) is defined as follows:

(a) σi(u) = u, if aiai+1 � u, with ai, ai+1 ∈ A, or ai+1 ai �
u, with ai, ai+1 ∈ A, and

(b) σi(u) = ξi(u) otherwise.

Then, the structure of a string is the mapping σ : (A ∪
A)∗ → (A ∪ A)∗, such that σ(u) = (σ1 ◦ σ2 ◦ . . . ◦ σ|A|−1 ◦
σ|A|)(u). Note that the structure of a sorted permutation π
is either σ(π) = a1, or σ(π) = a2a1, where a1, a2 ∈ A, or
σ(π) = a1a2, where a1, a2 ∈ A.

Example 1. Consider a sorted permutation π = 34512.
We find its structure σ(π) as follows:

π5 = σ5(π) = π π2 = σ2(π3) = π3

π4 = σ4(π5) = ξ4(π5) = 3412 π1 = σ1(π2) =
π3 = σ3(π4) = ξ3(π4) = 312 = ξ1(π2) = 21

σ(π) = π1 = 21

3. GENE ASSEMBLY AS A SORTING OF
SIGNED PERMUTATIONS

As discussed in [18, 13, 14], a natural formalization of
the simple and elementary operations is through rewriting
rules for signed permutations. A given gene is represented
as a signed permutation by denoting the sequence and the
orientation of its MDSs and assembling the gene is mod-
eled through the sorting of the associated permutation. As
shown in Definitions 1, 2, 3, the formalization of the molec-
ular models in terms of sorting permutations is somewhat
intricate: a high number of cases needs to be considered.
For the general model, a more concise formalization can be
done in terms of signed double occurrence (also called legal)
strings, see [7]. The two main advantages of the legal string
framework are: (i) it abstracts from denoting the sequence of
gene blocks to denoting only the sequence of pointers (and
in the process it ignores the two markers); (ii) it models
gene assembly as a process of consecutive pointer removals,
based on the observation that the assembled gene contains
no pointers.

The simple model makes crucial use of the two markers.
Consequently, this model can only be formalized through
extended legal strings that denote the pointers, as well as
the markers of the gene, as done in [3]. The resulting model
is equivalent with the permutation-based model for simple
operations but more concise for the same reasons (i)-(ii) dis-
cussed above.

In the case of the elementary model however, it is cru-
cial that all pointers and markers are indicated throughout
the gene assembly, rather than being removed as in the (ex-
tended) legal string framework. The main reason is that the
elementary model distinguishes between the original (mi-
cronuclear) gene blocks and the larger (composite) blocks
that are being formed throughout the process of assembly.
It is an open problem whether a more concise formalizations
may be introduced also for the elementary model.

In the following we consider a presentation based on signed
permutations for all three models. This presentation in the
case of the general model appears to be given here for the
first time, although an equivalent presentation in terms of
MDS descriptors was reported before, see [7]. As observed
also in the case of simple and elementary operations, it is a
characteristic of permutation-based models for gene assem-
bly that the ld operation is not explicitly modeled. Instead,
it is just assumed that two consecutive blocks are going to
be spliced together in a bigger composite block at some ar-
bitrary point, independently of the other operations applied
to the permutation.

3.1 Modeling of the general operations
Consider a gene pattern formalized as a signed permu-

tation over alphabet Πn = {1, 2, . . . , n}. We formalize the
general operations over signed permutations as follows:

Definition 1. i. For each 1 ≤ p < n, hip is defined as

follows:

hip(xpy(p + 1)z) = xp(p + 1)yz,

hip(xpy(p + 1)z) = xyp(p + 1)z,

hip(x(p + 1)ypz) = xy(p + 1)pz,

hip(x(p + 1)ypz) = x(p + 1)p yz,

where x, y, z are signed strings over Πn. We denote
Hi = {hii | 1 ≤ i < n}.

ii. For each 1 ≤ p, q < n, where |p − q| > 1, dladp,q is
defined as follows:

dladp,q(xp′′uq′′vp′wq′z) = xwq′q′′vp′p′′uz,

dladp,q(xp′′uq′vp′wq′′z) = xwvp′p′′uq′q′′z,

dladp,q(xp′uq′′vp′′wq′z) = xp′p′′wq′q′′vuz,

dladp,q(xp′uq′vp′′wq′′z) = xp′p′′wvuq′q′′z,

where p′ = p, p′′ = p + 1, or p′ = (p + 1), p′′ = p,
and q′ = q, q′′ = q + 1, or q′ = (q + 1), q′′ = q, and
x, u, v, w, z are signed strings over Πn. In all these
case, we also denote dladq,p = dladp,q.

For each 1 < p < n, we define dladp−1,p and dladp,p−1

as follows:

dladp−1,p(xp′′′up′′wp′z) = xwp′p′′p′′′uz,

dladp−1,p(xp′′vp′wp′′′z) = xwvp′p′′p′′′z,

dladp−1,p(xp′up′′′vp′′z) = xp′p′′p′′′vuz,

where p′ = p−1, p′′ = p, p′′′ = p+1, or p′′′ = (p + 1),
p′′ = p, p′ = (p− 1), x, u, v, w, z are signed strings over
Πn. We denote Dlad = {dladi,j | 1 ≤ i, j < n, i 6= j}.

Example 2. Consider the permutation π1 = 2514376.
We sort it by hi and dlad as follows:

hi5(2514376) = 27 34156 hi4(4 7 3 2 156) = 1237456
hi2(27 34156) = 2374156 dlad3,6(1237456) = 1234567
hi1(2374156) = 4 7 3 2 156

3.2 Modeling of the simple operations
Simple operations are a restriction of the general oper-

ations [9, 7]: they rearrange pieces of DNA containing at
most one MDS, be that micronuclear, or composite.

Definition 2. The molecular model of simple hi and sim-
ple dlad can be formalized as follows.

i. For each 1 ≤ p < n, shp is defined as follows:

shp(xp . . . (p + i)(p + k) . . . (p + i + 1)y) =

= xp . . . (p + i)(p + i + 1) . . . (p + k)y,

shp(x(p + i) . . . p(p + i + 1) . . . (p + k)y) =

= xp . . . (p + i)(p + i + 1) . . . (p + k)y,

shp(x(p + i + 1) . . . (p + k)(p + i) . . . py) =

= x(p + k) . . . (p + i + 1)(p + i) . . . py,

shp(x(p + k) . . . (p + i + 1)p . . . (p + i)y) =

= x(p + k) . . . (p + i + 1)(p + i) . . . py,

where k > i ≥ 0 and x, y are signed strings over Πn.
We denote Sh = {shi | 1 ≤ i ≤ n}.

ii. For each p, 2 ≤ p ≤ n− 1, sdp is defined as follows:

sdp(x p . . . (p + i) y (p− 1) (p + i + 1) z) =

= xy(p− 1)p . . . (p + i)(p + i + 1)z,

sdp(x (p− 1)(p + i + 1)yp . . . (p + i)z) =

= x(p− 1)p . . . (p + i)(p + i + 1)yz,

sdp(x(p + i + 1)(p− 1)y(p + i) . . . pz) =

= x(p + i + 1)(p + i) . . . p(p− 1)yz,

sdp(x(p + i) . . . py(p + i + 1)(p− 1)z) =

= xy(p + i + 1)(p + i) . . . p(p− 1)z,

where i ≥ 0 and x, y, z are signed strings over Πn. We
denote Sd = {sdi, sdi | 1 ≤ i ≤ n}.

Example 3. Consider the following signed permutation
π1 = 54 763 1 2. It can be sorted by the following composition
of simple operations

sh6(π) = 54 7 6 3 1 2, sh4 ◦ sd2 ◦ sh6(π) = 5 4 7 6 3 2 1,
sd2 ◦ sh6(π) = 54 7 6 3 2 1, sd4 ◦ sh4 ◦ sd2 ◦ sh6(π) =

= 7 6 5 4 3 2 1.

3.3 Modeling of the elementary operations
The elementary model is a restriction of the simple model:

elementary intramolecular operations rearrange only micro-
nuclear MDSs. This leads to the following formalization for
elementary operations.

Definition 3. i. For each p ≥ 1, ehp is defined as fol-
lows:

ehp(xp(p + 1)z) = xp(p + 1)z,

ehp(xp(p + 1)z) = xp(p + 1)z,

ehp(x(p + 1)pz) = x(p + 1)pz,

ehp(x(p + 1)pz) = x(p + 1)pz,

where x, z are signed strings over Πn. We denote
Eh = {ehp | 1 ≤ p ≤ n}.

ii. For each p, 2 ≤ p ≤ n− 1, edp is defined as follows:

edp(xpy(p− 1)(p + 1)z) = xy(p− 1)p(p + 1)z,

edp(x(p− 1)(p + 1)ypz) = x(p− 1)p(p + 1)yz,

edp(xpy(p + 1) (p− 1)z) = xy(p + 1) p(p− 1)z,

edp(x(p + 1) (p− 1)ypz) = x(p + 1) p (p− 1)yz,

where x, y, z are signed strings over Πn. We denote
Ed = {edp | 1 < p < n}.

Note that Eh ⊂ Sh ⊂ Hi and Ed ⊂ Sd ⊂ Dlad.

Example 4. Assume the signed permutation π = 315246.
It can be sorted by a composition of elementary operations
as follows

ed5(π) = 312456, ed3 ◦ eh1 ◦ ed5(π) = 123456.
eh1 ◦ ed5(π) = 312456,

3.4 Sorting strategies: terminology
A composition of operations Φ = φk ◦ φk−1 ◦ . . . φ2 ◦ φ1,

where all operations are from either Hi∪Dlad, or Sh∪ Sd, or
Eh∪Ed is called a strategy. A composition Φ = φk ◦ φk−1 ◦
. . . φ2 ◦ φ1 of operations is called a sorting strategy for π, if
Φ(π) is a (circularly) sorted permutation. If φ ∈ (Hi∪Dlad)
for all 1 ≤ i ≤ k, we say that Φ is a general sorting strategy.

If φ ∈ (Sh∪ Sd) for all 1 ≤ i ≤ k, we say that Φ is a simple
sorting strategy. If φ ∈ (Eh∪Ed) for all 1 ≤ i ≤ k, we
say that Φ is an elementary sorting strategy. We say that
an unsorted signed permutation π is blocked if no (simple,
elementary) operation is applicable to it. We say that Φ is
an unsuccessful strategy for π, if Φ(π) is blocked. If there
are no sorting strategies for π, then we say that π is an
unsortable permutation.

4. COMPARISON OF THE THREE MOD-
ELS

In this section we compare the general, simple and elemen-
tary intramolecular models for gene assembly by different
criteria:

- completeness: whether any gene pattern may be assem-
bled or not;

- confluence, defined in three different ways:

(i) whether there are permutations having both suc-
cessful and unsuccessful strategies,

(ii) whether different assembly strategies starting from
the same gene pattern lead to assembled genes
with the same structure,

(iii) if different assembly strategies starting from the
same gene pattern lead to the same assembled
gene;

- decidability of assembly: whether it is possible to decide
effectively if a given gene pattern can be assembled or
not;

- characterization of gene patterns that can be assembled
(starting from certain characteristics of a given gene
pattern we can conclude whether the gene pattern can
be assembled);

- sequential complexity is constant: whether all assembly
strategies apply the same number of intramolecular op-
erations;

- model validation: whether it is consistent with biological
data.

4.1 Completeness
It was shown in [9, 7] that the general model is complete,

i.e., it assembles any gene pattern. The result was proved
in terms of MDS-descriptors. To prove it for signed permu-
tations, one may take two different approaches.

On one hand, one may observe that the set of signed per-
mutations and that of MDS descriptors are in an one-to-one
correspondence. Moreover, for a signed permutation π, if
ψ(π) is its corresponding MDS descriptor, then for any op-
eration f ∈ Hi∪Dlad, ψ(f(π)) = f(ψ(π)). The completeness
result for signed permutations then follows easily from the
corresponding result for MDS descriptors.

On the other hand, one may give a direct proof of the
completeness, by essentially mimicking the proof in the case
of MDS descriptors. The essential observation in this case
is that for any φ ∈ Hi∪Dlad and any signed permutation π,
the number of sorted blocks of φ(π) is smaller than that of
π (i.e., S(φ(π)) < S(π)). One needs to observe then that a
signed permutation π is sorted if and only if S(π) ≤ 2 and
π is uniformly signed.

Theorem 1. All signed permutations are sortable over
Hi ∪ Dlad.

Note however that the simple and the elementary models
are not complete, as shown by the following example.

Example 5. Consider the permutation π = 321. We
cannot apply either eh or sh operations as all pointers have
the same signature, and there is no applicable ed or sd opera-
tion either. On the other hand, π is successful in the general
model: dlad1,2(π) = 123.

4.2 Confluence
We consider the notion of confluence in three different se-

tups, so as to reflect the success of different assembly strate-
gies, the resulting gene structure, or the resulting gene pat-
tern. These aspects are discussed below stressing the differ-
ences between the three models for gene assembly.

Consider first the most common notion of confluence, re-
quiring that the result of all assemblies of a given input
is the same. Equivalently, all strategies for a given signed
permutation are confluent. It is easy to see that neither
of the three models for gene assembly is confluent in this
sense. For this, consider the permutation π = 2413. Then
dlad2,1(π) = sd2(π) = ed2(π) = 4123, while dlad2,3(π) =
sd3(π) = ed3(π) = 2341. Note that this observation does
not contradict earlier invariant results of [8, 21], see also [7],
where it was proved that the result of all assembly strate-
gies of a given gene/string is always the same. The differ-
ence comes from considering a so-called boundary ld opera-
tion that would be applied as a last step in both strategies
above to yield a circular string 1234 (that may also be de-
noted as 2341, 3412, or 4123, or even their inverses). In the
permutation-based presentation, we have chosen to consider
only standard linear permutations, rather than circular ones.
The non-confluence result above is a direct consequence of
this choice. We discuss more aspects of this matter in Sec-
tion 5.

The example above shows that all three models are nonde-
terministic in the sense that different sorting strategies may
lead to different results. A natural question is then whether
a given signed permutation may have both successful, as well
as unsuccessful strategies in any of the three models. Con-
sider then the following notion of confluence. We say that
the general (simple, elementary, resp.) model is confluent
if there are no signed permutations having both successful
and unsuccessful strategies.

It follows from Theorem 1 that the general model is indeed
confluent in the sense above. As shown in [18], the simple
model is also confluent. However, the elementary model
is not confluent. To see it, consider the permutation π =
24135. Then ed3(π) = 23415 is a blocked permutation, while
ed2 ◦ ed4(π) = 12345, a sorted permutation.

It was proved in [8, 21], see also [2], that for any gene
pattern, either all general assembly strategies assemble it to
a linear molecule, or all of them assemble it to a circular
one. Consequently, even though if the assembly process is
non-deterministic, the results of all possible assemblies of a
given gene pattern have the same structure. I.e., the results
of all sorting strategies applicable to a permutation have the
same structure. As such, the same result holds also for all
sorting strategies in the simple and in the elementary mod-
els. The question may however be asked also for the unsuc-
cessful strategies. In this context, we say that a model for

gene assembly is confluent if, for any signed permutation, all
its sorting strategies lead to permutations having the same
structure. Based on the considerations above, it follows eas-
ily that the general model is confluent in this sense, while
the elementary model is not (since a permutation may have
both successful and unsuccessful elementary strategies). In-
terestingly, it was proved in [18] that the simple model is in
fact confluent in this sense.

Example 6. Consider permutation π = 623514. There
are only two simple strategies applicable to π: π1 = sd2(π) =
651234 and π2 = sd4(π) = 623451. These strategies are un-
successful, and there are no other simple strategies applicable
to π. Permutation π cannot be sorted by simple operations.
Note however, that permutations π1 and π2 have the same
structure σ(π1) = 321 = σ(π2).

The following table captures the behavior of the three
models for gene assembly with respect to the three notions
of confluence above. Interestingly, none of these notions dis-
tinguishes the simple and the general model. One property
that does distinguish between the two is the completeness,
valid only for the general model.

Success Same result Same structure
General confluent not confluent confluent
Simple confluent not confluent confluent

Elementary not confluent not confluent not confluent

Table 1: The results of considering confluence with
regard to the three aspects are summarized here.

4.3 Deciding the sortability problem
For the simple and elementary models, which are not com-

plete, deciding the sortability of a given signed permutation
is an interesting problem. Based on the confluence results
in the previous section, it turns out that the problem is easy
for the simple model: for any signed permutation, either
all its sorting strategies are successful, or they are all un-
successful. As such, to decide the sortability problem, it is
enough to find an arbitrary strategy (e.g., using a straight-
forward procedure having quadratic time complexity) and
answer ‘yes’/‘no’, depending on whether or not that strat-
egy is successful.

For the elementary model the problem of the eh-sortability
of a signed permutation is easy.

Theorem 2 ([14]). The signed permutation π is eh-sor-
table if and only if either

(i) ‖π‖ = k(k + 1) . . . n12 . . . (k − 1) and for some 1 ≤ i ≤
k − 1, k ≤ j ≤ n we have i, j unsigned, or

(ii) ‖π‖ = (k−1) . . . 21n . . . (k +1)k, and for some 1 ≤ i ≤
k − 1, k ≤ j ≤ n we have i, j signed.

The problem of the ed-sortability turns out to be techni-
cally more involved, since a signed permutation may have
both successful, and unsuccessful strategies. A complete
characterization of the ed-sortable signed permutation has
been given in [13, 14, 22]. The main notions used in the re-
sult are those of dependency graphs and forbidden elements.
We only present here these notions for unsigned permuta-
tion; in the case of signed permutation, the setup is tech-
nically more complex, see [14]. Note also that an efficient
decision procedure for the sortability problem is only known
for unsigned permutation, see [22]

GFED@ABC10

		
GFED@ABC
.1.

		

��

GFED@ABC
.6.

		

GFED@ABC
.5.

		

// GFED@ABC
.8. 22

GFED@ABC
.3.

rr

GFED@ABC
.2. // GFED@ABC

.7.
GFED@ABC
.4. // GFED@ABC

.9.

Figure 2: The dependency graph associated to π =
62 8 4 10 7 1 3 5 9.

Dependency graphs in the elementary model
Dependency graphs suggest in which order elementary oper-
ations should be used to assemble a given gene pattern. Let
π be an unsigned permutation with dom(π) = {1, 2, . . . , n}.
We associate to it a dependency graph Γπ = (Vπ, Eπ) to π,
where Vπ = dom(π), and

Eπ ={(1, 1), (n, n)} ∪ {(i, i)|(i + 1)(i− 1) ≤s π}∪
∪ {(j, i)|(i− 1)j(i + 1) ≤s π}.

Intuitively, an edge (j, i) in Γπ shows that in any sorting
strategy for π, the operation edj should be used first, in
order for edi to become applicable. If there is a loop (i, i) in
Γπ, then edi cannot be applied in any strategy applicable to
π. We refer to [14] for a proof of these observations.

Example 7. Consider the unsigned permutation π = 6 2 8
4 10 7 1 3 5 9. Its associated dependency graph Γπ = (Vπ, Eπ)
is shown in Figure 2.

We have loops (1, 1), (5, 5), (6, 6), (10, 10) in the depen-
dency graph, and so, the operations ed1, ed5, ed6 and ed10

cannot be applied in any strategy applicable to G. We have
cycle 8 3 8 in Γπ and so, neither operation ed3, nor opera-
tion ed8 can be applied in any strategy applicable to π. The
dependency graph Γπ suggests the following order of opera-
tions to be applied in any sorting strategy of π: ed2 should
be applied before ed7, and ed4 should be applied before ed9.
Indeed, for instance, strategy ed9 ◦ ed4 ◦ ed7 ◦ ed2(π) sorts π:
ed9 ◦ ed4 ◦ ed7 ◦ ed2(π) = 6 7 8 9 10 1 2 3 4 5.

Forbidden elements and ed− sortability of unsigned
permutations
For a signed permutation π, we say that p ∈ dom(π) is
forbidden in π if and only if there exists no composition of
eh and ed operations applicable to π with p in the domain of
one of them. We denote Uπ the set of all forbidden elements
of π. It was proved in [14] that p ∈ U(π) if and only if

(i) p is on a cycle of Γπ or

(ii) there is a path from q to p in Γπ, for some q on a cycle
of Γπ or

(iii) there exists r > 1 such that there are paths from r− 1
to p and from r to p in Γπ.

The following result gives the eh− and ed−sortability of
unsigned permutations.

Theorem 3 ([14]). The unsigned permutation π is ed-
sortable if and only if π|Uπ is sorted.

Finding an efficient method for the eh, ed-sortability of a
signed permutation remains an open problem.

4.4 Characterization of sortable permutations
The following theorem characterizes ed-sortable unsigned

permutations. A similar, albeit technically more involved,
characterization exists also for signed permutations, see [14].

Theorem 4 ([14]). Let π be a unsigned permutation.
Then π is Ed-sortable if and only if there exists a partition
{1, 2, . . . , n} = D∪U , such that the following conditions are
satisfied:

(i) π|U is sorted;

(ii) The subgraph induced by D in Gπ is acyclic;

(iii) If (p, q) ∈ Gπ with q ∈ D, then p ∈ D;

(iv) For any p ∈ D, (p− 1)(p + 1) ≤s π;

(v) For any p ∈ D, (p− 1), (p + 1) ∈ U .

For simple operations we do not have a characterization
of sortable permutations for the moment. For general op-
erations the question is moot since all signed permutations
are sortable.

4.5 Sequential complexity
We focus now on the length of various sorting strategies

of a given signed permutation, where the length is defined as
the number of operations in the strategy. Consider first the
general model and let π1 = 152 436. One can sort it by ap-
plying dlad1,5 ◦ hi2, or by applying hi2 ◦ hi3 ◦ hi1. These two
sorting strategies are of different length, and use a different
combination of operations.

Somewhat surprisingly, the situation is different in the
simple model and by consequence, also in the elementary
model. It was established in [19] (using a string-based for-
malism) that any two sorting strategies for a given signed
permutation have the same assembly length.

Theorem 5 ([19]). Let π be a signed permutation and
φ, ψ be two simple sorting strategies for π. Then φ and ψ
have the same sequential assembly length. Moreover, they
have the same number of sh and the same number of sd
operations.

The differences between the general model and the two re-
stricted models go beyond Theorem 5. E.g., when choosing
operations in the simple model, we may always just choose
the first available operation as the number of operations re-
quired in the end remains the same. If the operations were
given different weights or costs, then the general model may
have optimal and sub-optimal sorting strategies. We refer
to [12] for a detailed discussion on various measures of com-
plexity for gene assembly.

4.6 Model validation
A database of known sequences of micronuclear and mac-

ronuclear ciliate genes can be found in [4]. Based on the
completeness result for the general model, it is clear that all
the gene patterns have an assembly strategy in the general
model. As it turns out however, the elementary model can-
not account for the assembly of some of the gene patterns
in [4].

General Simple Elementary
Completeness complete not complete not complete

Confluence (Success) confluent confluent not confluent
Confluence (Structure) confluent confluent not confluent
Confluence (Result) not confluent not confluent not confluent
Deciding Sortability yes: trivial yes: confluence open for eh+ ed

Charact. sortable permutations trivial open yes
Sequential Complexity constant no yes yes

Model Validation valid valid not valid

Table 2: Summary for general, simple and elementary intramolecular models

Example 8. Actin I gene in it Sterkiella nova is repre-
sented by the permutation π = 346579218. It is easy to
check that there is no elementary sorting strategy applicable
to π. However, we can sort π by applying the simple sorting
strategy

sh1 ◦ sh2 ◦ sd8 ◦ sd5(π) = 9 8 7 6 5 4 3 2 1.

Below we will outline all the available scrambled gene pat-
terns in [4], together with one simple sorting strategy. Genes
that are not scrambled in their micronuclear form or the ones
that have missing MDSs will not be included.

Actin I, Sterkiella n. : π = 346579218;

sh1 ◦ sh2 ◦ sd8 ◦ sd6(π) = 987654321.

Actin I, Sterkiella h. : π = 346579 10 218;

sh1 ◦ sh2 ◦ sd8 ◦ sd6(π) = 10 987654321.

Actin I, Stylonychia p. : π = 34657821;

sh1 ◦ sh2 ◦ sd6(π) = 87654321.

α Telomere Binding Protein, Sterkiella n. :

π = 13 5 7 9 11 2 4 6 8 10 12 13 14;

sd10 ◦ sd8 ◦ sd6 ◦ sd4 ◦ sd2(π) =

= 1 2 3 4 5 6 7 8 9 10 11 12 13 14.

DNA Polymerase α, Paraurostyla weissei:

π = 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8

6 1 2 3 4 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

43 45 46 47 48

The signed permutation sorting strategy for this gene
is just sh1 repeated 40 times.

4.7 Summary
Table 2 summarizes properties of general, simple and ele-

mentary models considered in this paper.

5. DISCUSSION AND OPEN PROBLEMS
There has been significant interest in the last few years in

the so-called simple operations for gene assembly, both for
their biological appeal as a minimal, parsimonious model,
but also for the properties of their mathematical formaliza-
tion. The term simple has been used in connection with
two different version of the model. In this survey we review
these two models and fix the proper terminology. We also
compare the mathematical properties of these two models
with those of the general model.

For reasons detailed already in Section 3 we chose in this
paper to follow a permutation-based presentation, rather
than a string-based one. Indeed, a string-based presenta-
tion that would be more concise than the permutation-based
one is still missing for the elementary model. Our choice of
using permutations rather than strings has one direct con-
sequence that we mentioned already in Section 4.2. Rather
than eliminating all pointers as in the legal string and end-
ing up with linear, or circular strings, we always end up
with sorted linear permutations, where the term ‘sorted’ is
extended to cover also permutations such as 3412. We call
such a permutation circularly sorted, see Section 2. For this
reason, a permutation such as 2413 may be sorted to two
seemingly different results: either 2341, or 4123. Clearly,
the two results correspond to the same circular string in the
framework of legal strings. This ambiguity leads neverthe-
less to some open problems of independent interest. E.g.,
given a permutation that may be sorted circularly, enumer-
ate efficiently all the circularly sorted permutations it can be
sorted to. Similarly, the permutation 213 may be sorted to
either 231 or 213. One may also ask about the properties of
those permutations that have sortings both to an unsigned
permutation, as well as to a signed one. The properties of
the three models may even be different in this respect.

There are two currently open problems related to the sim-
ple model: the linear decidability of the sortability prob-
lem and computing the number of sortable permutations of
length n. It is however possible that these two problems are
intertwined and an answer to one may at least partly solve
the other.

Decidability. It was shown in [18] that it is possible to de-
cide whether a permutation is sortable or unsortable in the
simple model by applying available operations in an arbi-
trary order until the permutation is blocked or sorted. This
gives us a quadratic method for deciding. Our first open
problem is related to the optimality of this method: is there
a procedure to decide in linear time the sortability problem
in the simple model?

For the elementary model, finding an efficient decision pro-
cedure for {eh, ed}-sortability problem is also open.

Sortable permutations of length n. As we pointed out
also in this paper, not all permutations may be sorted using
the simple operations. This differs from the general model
which has been shown to be complete. Thus, an interest-
ing problem is computing how many permutations of length
n are sortable in the simple/elementary models. As a re-
lated problem, it should even be interesting to see whether
the ratio of sortable signed permutations tends to 0 when n
tends to infinity. Both problems are open also in the case of

unsigned permutations.

6. ACKNOWLEDGMENTS.
Ion Petre and Vladimir Rogojin are supported by Academy

of Finland, project 108421. Vladimir Rogojin is on leave of
absence from Institute of Mathematics and Computer Sci-
ence of Academy of Sciences of Moldova, Chisinau MD-2028
Moldova. Vladimir Rogojin is supported by Science and
Technology Center in Ukraine, project 4032. We are grate-
ful to an anonymous referee who suggested the discussion
in the beginning of Section 5 when reviewing a preliminary
version of this paper.

7. REFERENCES
[1] A. Angeleska, N. Jonoska, M. Saito, and

L.F.Landweber. Rna-template guided dna assembly.
Journal of Theoretical Biology, 248:706–720, 2007.

[2] R. Brijder, H. Hoogeboom, and G. Rozenberg.
Reducibility of gene patterns in ciliates using the
breakpoint graph. Theoretical Computer Science,
356:26–45, 2006.

[3] R. Brijder, M. Langille, and I. Petre. A string-based
model for simple gene assembly. In E. Csuhaj-Varju
and Z. Esik, editors, FCT 2007, Proceedings, volume
4639 of Lecture Notes in Computer Science, pages
161–172. Springer-Verlag Berlin Heidleberg, 2007.

[4] A. Cavalcanti, T. Clarke, and L. Landweber.
Mds ies db: a database of macronuclear and
micronuclear genes in spirotrichous ciliates. Nucleic
Acids Research, 33:396–398, 2005.

[5] W. Chang, P. Bryson, H. Liang, M. Shin, and
L. Landweber. The evolutionary origin of a complex
scrambled gene. In Proceedings of the National
Academy of Sciences of the US, volume 102, pages
15149–15154, 2005.

[6] W. Chang, S. Kuo, and L. Landweber. A new
scrambled gene in the ciliate uroleptus. Gene,
368:72–77, 2006.

[7] A. Ehrenfeucht, T. Harju, I. Petre, D. M. Prescott,
and G. Rozenberg. Computation in Living Cells: Gene
Assembly in Ciliates. Springer, 2003.

[8] A. Ehrenfeucht, I. Petre, D. M. Prescott, and
G.Rozenberg. Circularity and other invariants of gene
assembly in ciliates. In M. Ito, G. Paun, and S. Yu,
editors, Words, semigroups, and transductions, pages
81–97. World Scientific, Singapore, 2001.

[9] A. Ehrenfeucht, I. Petre, D. M. Prescott, and
G. Rozenberg. Universal and simple operations for
gene assembly in ciliates, pages 329–342. Kluwer
Academic, Dortrecht, 2001.

[10] A. Ehrenfeucht, D. M. Prescott, and G. Rozenberg.
Computational aspects of gene (un)scrambling in
ciliates. In L. F. Landweber and E. Winfree, editors,
Evolution as Computation, pages 216–256. Springer,
Berlin, Heidelberg, New York, 2001.

[11] W. Foissner and H. Berger. Identification and
ontogenesis of the nomen nudum ypotrichs (protozoa:
Ciliophora) oxytricha nova (=sterkiella nova sp. n.)
and o. trifallax (=s.histriomuscorum). Acta Protozool.,
38:215–248, 1999.

[12] T. Harju, C. Li, I. Petre, and G. Rozenberg.
Complexity measures for gene assembly. In K. Tuyls,

editor, Proceedings of the Knowledge Discovery and
Emergent Complexity in Bioninformatics workshop,
volume 4366 of Lecture Notes in Bioinformatics, pages
42–60. Springer, 2007.

[13] T. Harju, I. Petre, V. Rogojin, and G. Rozenberg.
Simple operations for gene assembly. In A. Carbone
and N. A. Piercei, editors, Proceedings of DNA-based
computers 11, volume 3892 of Lecture Notes in
Computer Science, pages 96–111. Springer, 2006.

[14] T. Harju, I. Petre, V. Rogojin, and G. Rozenberg.
Patterns of simple gene assembly in ciliates. Discrete
Applied Mathematics, 2007. to appear.

[15] T. Harju, I. Petre, and G. Rozenberg. Modelling
simple operations for gene assembly. In J.Chen,
N.Jonoska, and G.Rozenberg, editors, Nanotechnology:
Science and Computation, pages 361–376, 2006.

[16] L. F. Landweber and L. Kari. Evolution as
computation, chapter Universal molecular computation
in ciliates, pages 257–274. Natural computing series.
Springer Verlag, Berlin, Heidelberg, New York, 1999.

[17] L. F. Landweber and L. Kari. The evolution of cellular
computing: Nature’s solution to a computational
problem. In L. Kari, H. Rubin, and D. H. Wood,
editors, Proceedings of the 4th DIMACS Meeting on
DNA-Based Computers, volume 52, (1–3), pages 3–13.
Elsevier, 1999.

[18] M. Langille and I. Petre. Simple gene assembly is
deterministic. Fundamenta Informaticae,
73(1-2):179–190, 2006.

[19] M. Langille and I. Petre. Sequential vs. parallel
complexity in simple gene assembly. Theoretical
Computer Science, 395(1):24–30, 2008.

[20] M. Nowacki, V. Vijayan, Y. Zhou, K. Schotanus,
T. Doak, and L. Landweber. Rna-mediated epigenetic
programming of a genome-rearrangement pathway.
Nature, 451:153–158, Jan. 2008.
doi:10.1038/nature06452.

[21] I. Petre. Invariants of gene assembly in stichotrichous
ciliates. Information Technology, 48(3):161–167, 2006.

[22] I. Petre and V. Rogojin. Decision problem for shuffled
genes. Information and Computation, 2007. to appear.

[23] D. M. Prescott. The dna of ciliated protozoa.
Microbiology and Molecular Biology Reviews,
58(2):233–267, 1994.

[24] D. M. Prescott. DNA manipulations in ciliates. In
W. Brauer, H. Ehrig, J. Karhumäki, and A. Salomaa,
editors, Formal and Natural Computing, volume 2300
of Lecture Notes in Computer Science, pages 394–417.
Springer, 2002.

[25] D. M. Prescott, A. Ehrenfeucht, and G.Rozenberg.
Molecular operations for dna processing in
hypotrichous ciliates. European Journal of
Protistology, 37:241–260, 2001.

[26] D. M. Prescott, A. Ehrenfeucht, and G.Rozenberg.
Template-guided recombination for ies elimination and
unscrambling of genes in stichotrichous ciliates.
Journal of Theoretical Biology, 222:323–330, 2003.

[27] M. Swanton, J. Heumann, and D. Prescott. Gene-sized
dna molecules of the macronuclei in three species of
hypotrichs: size distribution and absence of nicks.
Chromosoma, 77:217–227, 1980.

