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ABSTRACT
In recent literature, the relationship between structure and
dynamics in biochemical networks has been intensively in-
vestigated. In fact, the scarcity of information about such
networks has led to attempts to predict some of their dy-
namic features based exclusively on more easily available
structural information. A recent finding relating structure
to dynamics is that network motifs (a structural feature)
that are structurally stable (a dynamic feature) are enriched
in some biochemical networks [21].

In this work, we systematically investigate the method
in [21] and the assumptions it relies on. Our findings sug-
gest that the conclusions drawn on the considered biologi-
cal networks (over-representation of structurally stable mo-
tifs) cannot be generalized, as they critically depend on a
user-defined choice of null model in the motif enrichment
analysis. We have further applied the method in [21] to
metabolic networks, which provide an excellent test-bed, as
a relatively large amount of information is available about
the type, strength and activity of metabolic interactions.
For metabolic networks we arrive at the same conclusion:
stability cannot be derived from local structure.
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1. INTRODUCTION
Experimental techniques in molecular biology have wit-

nessed impressive developments over the last few years, and
the genomes of many micro-organisms have been exten-
sively annotated. Despite this progress, the available exper-
imental data (e.g. data generated in knock-out studies or
in steady-state perturbation experiments) provide mainly
structural information about the biochemical networks in
the cell (e.g. the transcriptional, signalling and metabolic
networks). The limited availability of time-series measure-
ments of good quality makes it difficult to reliably estimate
the kinetic parameters characterizing the dynamic behaviour
of such networks in vivo.

However, a better understanding of the complex dynam-
ics of living cells is a pre-requisite for boosting the emerging
fields of metabolic engineering and synthetic biology [11].
Therefore, different methods have been investigated to find
out to what extent the dynamic behaviour of different bio-
chemical networks is determined/constrained by their struc-
ture, and to develop methods elucidating such possible re-
lationships between structure and dynamics. The starting
point of all these methods is to associate a (directed) graph
to the considered biochemical network, in which the nodes
represent its constituent building blocks (e.g. genes, pro-
teins, metabolites, etc.), and the edges represent the inter-
actions between them. One of the earliest attempts to re-
late structure to dynamics was chemical reaction network
theory: the existence of multiple steady states is predicted
exclusively based on the analysis of topological properties
of the network graph [5, 6]. More recent studies have in-
vestigated the interplay between global topological prop-
erties of the network graph (i.e. node degree distribution)
and robustness against random or targeted perturbations
(see for example [2, 4]). For some regulatory networks, for
which the sign of the edges in the associated graph is also
known (i.e. activation or inhibition), the over-abundance of
sign-consistent feedback and feed-forward loops (compared



to negative loops) has been related to monotonicity and to
stability [19, 22]. Moreover, a number of quite successful
methods have been specifically developed for the analysis
and re-engineering of metabolic networks, such as flux bal-
ance analysis, elementary fluxes modes, and structural ki-
netic modeling [9, 16, 23].

Another very active research area is the investigation of
the relationship between local topological properties and
the (global) dynamic behaviour of the network. A network
graph can be decomposed into small subgraphs (network mo-
tifs), and the frequencies of occurrence of these motifs (typ-
ically three- or four-node motifs are considered) can be used
to characterize the local connectivity patterns of the net-
work. It has been shown in [3] that certain motifs (e.g. the
feed-forward loop) are enriched in many different biochem-
ical networks; that is, they are over-represented compared
to random networks of the same size. However, it is not
straightforward to determine what mechanisms govern the
relative abundance of the different motifs, or what dynamic
property is carried by motifs that may have been positively
selected for by natural selection.

A recent paper has investigated the relationship between
the stability of a motif, referred to as structural stability, and
its frequency of occurrence in a number of transcriptional
regulatory networks and other biological networks [21]. The
method entails two main steps for each motif: (i) calcula-
tion of the over- or under-representation of the motif in the
considered biological network, compared to a reference ran-
dom network (the so-called null model); (ii) calculation of
the structural stability score (SSS) of the motif, the fraction
of parameter settings for which the motif is stable (see Sec-
tion 2.4 for more details). The key finding in [21] is that
there is a positive correlation between the SSS and the fre-
quency of occurrence of a motif: structurally stable motifs
are enriched in biochemical networks.

The idea to relate motifs to dynamic properties of the
overall network, though very attractive, has recently met
some serious criticism. In [13], it is argued that some spe-
cific motifs (e.g. the feed-forward loop) can exhibit a broad
range of dynamic behaviour, making it very hard to clearly
establish a link between structure and dynamics. Further-
more, in [7] it has been pointed out that a network made
up of stable motifs is not necessarily stable itself: stability
is a global property of an interconnected system and cannot
be directly inferred from the properties of its constituent
sub-systems. These controversies call for a more systematic
investigation of the results presented in [21].

The goal of this paper is systematically investigate the
findings in [21]. Our analysis clearly shows that the choice
of null model in the motif enrichment calculations critically
affects the results in [21]. Since the chosen null model,
Erdös-Rényi (ER) random networks, is not generally con-
sidered appropriate for the considered biochemical networks
(see Section 2.3 for more details), the claim that structurally
stable motifs are over-represented cannot be confirmed.

For the biochemical networks studied in [21], only binary
interaction information is available (i.e. we know whether an
edge is present or not in the network graph). For metabolic
networks however, more information is available about the
type, strength and activity of many of the interactions.
These additional data provide an excellent test-bed for a sys-
tematic evaluation of the method in [21], since we can build
a a network model that is more biologically meaningful. In

this paper, we have considered the metabolic network in [8].
We have determined interaction types based on the stoichio-
metric matrix of the metabolic network (see Section 2.5.1)
and retrieved information about the strength [1] and ac-
tivity [17] of interactions (see Sections 2.5.2 and 2.5.3).
However, for metabolic networks, the conclusion does not
change: structurally stable motifs are not over-represented,
and hence stability cannot be derived from local structure.

2. METHODS

2.1 Data-sets

2.1.1 Biological networks in Prill’s work
The data in [21] describe the transcriptional regulatory

networks of Escherichia coli and Saccharomyces cerevisiae,
the developmental transcriptional network of Drosophila
melanogaster, the signal transduction knowledge environ-
ment (STKE) network, and a neural connection map of
Caenorabditis Elegans.

2.1.2 Metabolic network
We have considered the S. Cerevisiae metabolic model

presented in [8]. This model contains a quite complete list
of chemical reactions (1223 metabolites, 929 irreversible re-
actions and 477 reversible reactions) including compartmen-
talization information. The great majority of reactions are
associated to annotated genes. The authors kindly provided
an updated version of the data in [8], which is still unpub-
lished (S. Cerevisiae iMM904 ).

In order to construct the parameter distribution necessary
for the determination of interaction strengths, we used the
enzyme database BRENDA [1]. BRENDA is indexed by en-
zyme commission (EC) numbers corresponding to enzyme-
catalyzed reactions, thus allowing us to retrieve the kinetic
parameters of each reaction.

Information on the activity of enzyme-catalyzed reactions
(not all reactions are active at any given time) has been re-
trieved from a micro-array compendium [17], a large collec-
tion of micro-array experiments on S. Cerevisiae, consisting
of 9335 gene expression levels collected in 165 experiments
performed under a number of different growth conditions.

2.2 Network motifs
A compact representation of a biochemical network can be

obtained by associating a (directed) graph to the network:
the nodes represent its constituent building blocks (genes,
proteins, metabolites, etc.), whereas the edges represent the
interactions between them. A network motif is a very small
(directed) subgraph (see Fig. 1). This paper only deals with
motifs consisting of three nodes with two to six directed
edges. In three-node motifs, the length of the shortest path
between any of the three nodes is at most two. A node
can be a member of multiple motifs, and the same holds
for interactions. Although sets of three nodes might have
very different interaction strengths, motif counts only look at
structure, i.e. the interaction between the nodes is binarized
(either there is an interaction or not). Therefore, there are
only 13 possible network motifs, which are shown in Fig. 1.

Each motif is uniquely identified by its adjacency matrix.
It is a 3 × 3 matrix, and a nonzero entry at position (i, j)
means that component i is influenced by component j. An
adjacency matrix contains binarized interaction information



id6 id12 id14 id36
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id98 id102 id108 id110

id238

Figure 1: All possible network motifs consisting of 3 nodes.

The motif ID is the decimal form of the binary integer ob-

tained by concatenating the rows of the adjacency matrix.

at these positions; the Jacobian corresponding to the kinetic
model associated to the motif contains the actual interaction
strengths.

2.3 Motif enrichment analysis
Motif enrichment is determined by generating a large

number of randomized versions of the original biochemical
network, and calculating a z-score for each motif m as

Zm =
Nrealm − mean(Nrandm)

std(Nrandm)
, (1)

where Nrealm is the number of occurrences of motif m in
the real network and Nrandm the set of occurrences of motif
m in the random networks. A high z -score for motif m
indicates that the probability of finding motif m as often as
in the biochemical network by chance is low. Conversely, a
low z -score indicates that the probability of finding motif m
as little as in the biochemical network is low. Z -scores are
normalized to unit length (normalized z-scores or NZSes),
by using

NZSm =
Zm√∑M
l=1 Z2

l

, (2)

in which M is the number of motifs. These NZSes can be
compared across different networks.

The calculation of NZSes requires the generation of ran-
dom networks and counting motif frequencies. Both of these
tasks can be equivalently performed with the software tools
Mfinder and FANMOD [15, 24]. However, FANMOD has the
advantage of being able to handle colored edges (see below).

In this work, we generate the random networks used
as null model according to the Erdös-Rényi (ER) method
as originally done in [21], and according to the switching
method [20], which is the default method used by both
Mfinder and FANMOD. The ER method puts p nodes on
a canvas and subsequently adds q directed edges, uniformly
picked from the set of all possible p · (p−1) edges. Networks
generated by this method have node degree distributions
that follow a Poisson distribution, whereas it is commonly
observed that biological networks are scale-free, i.e. their

node degree distribution follows a power law [4]. Random
networks generated using this method are therefore deemed
less suitable for representing biological networks. Another
problem is that the probability of generating bidirectional
edges is low: bidirectional edges are rare in ER networks.
Network motifs with such edges are hardly found in ER ran-
dom networks, resulting in low (zero) variance and thus in
an infinite NZS, which is obviously an undesired effect.

The switching method on the other hand operates as fol-
lows [20]. The original network is used as basis and a pair
of edges (A → B, C → D) is repeatedly randomly selected
and switched to obtain (A → D, C → B). The exchange is
only performed if it does not introduce an edge that already
exists or a self-edge, i.e. an edge from a metabolite to itself.
Furthermore, unidirectional edges are only exchanged with
other unidirectional edges and bidirectional edges only with
bidirectional ones. Edge “colors” (corresponding to some
discrete property) can also be taken into account, i.e. edges
are only switched when they have the same color. The pro-
cess is repeated a sufficient number of times for the random
network to show good mixing (for details, see [15]). The
switching method preserves the number of incoming, outgo-
ing and bidirectional edges of each node of the real network,
and thus the exact degree distribution, making it a more
reliable enrichment analysis in biological networks.

For a global structural analysis of metabolic networks,
currency metabolites (e.g. ATP and ADP) are generally re-
moved. In fact, currency metabolites do not provide (spe-
cific) functional information about the metabolites they are
connected to [18]. However, for the local topological anal-
ysis, we found out that their removal produces results that
are qualitatively the same. All results reported here were
obtained on a complete metabolic network.

2.4 Structural stability
In [21], the structural stability score (SSS) is introduced

as a measure for the probability that the dynamical sys-
tems that can be associated to a given motif are locally (i.e.
around a steady-state) asymptotically stable with no oscil-
lation. This score is determined by first generating a large
number of possible Jacobian matrices for a given motif, and
subsequently calculating the eigenvalues of each of these Ja-
cobians. The SSS is the fraction of the Jacobians of which
all eigenvalues have a negative real part and zero imaginary
part. As it is computationally intractable to instantiate ev-
ery possible Jacobian, we sample from the space of possible
Jacobians, which is done by instantiating 10,000 Jacobians
in which each nonzero entry is sampled from a given dis-
tribution. In [21], Jacobians are constructed by assigning
a value sampled from a U(−1, 1) distribution (uniform over
range (-1,1)) to all non-diagonal, nonzero entries and a value
sampled from a U(−1, 0) distribution to all diagonal entries
of the adjacency matrix of a motif. Note that the range of
the SSS is [0, 1], with a value of 1 indicating that any dy-
namic system associated to the the motif is stable (i.e. the
interaction signs and strengths do not influence the stabil-
ity). On the other hand, a low value indicates that only a
small fraction of all possible parameters of the Jacobian can
guarantee stability.

2.5 Metabolic interactions
In this section, we describe how to determine the type,

strength and activity of metabolic interactions based on the
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Figure 2: The artificial network consisting of the two reactions shown at the top of this figure is used to illustrate how matrices

S and A are constructed. Also, an intermediate matrix Jt (not described in the main text) is shown, which is the result of the

multiplication S · A. Matrix Juc is constructed by setting all diagonal entries to zero and putting ones at the locations where

there are only positive values in Jt. Matrix Jc is constructed in a similar manner for the diagonal and positive entries. However,

the entries of Jt consisting of only negative values are set to 2, whereas the entries consisting of both positive and negative

values are set to 3. The resulting uncolored and colored networks are shown at the bottom of the figure.

information available in databases and in the literature (see
Section 2.1).

2.5.1 Interaction type
The behaviour of a dynamic system (a biochemical net-

work in our case) around a steady state can be described
using a linear approximation. The local linear model is de-
fined by the Jacobian, an n × n matrix (with n the number
of nodes in the network). Each element Ji,j represents the
influence of metabolite j on metabolite i. The structure of
the Jacobian (i.e. its nonzero entries) defines the topology
of the interactions in the biochemical network. In the case
of a metabolic network, the Jacobian J takes the form

J = S · ∂v

∂x

∣∣∣∣
x0

(3)

where S is a stoichiometric matrix of size m × r, with m
and r the number of metabolites and reactions respectively,
and ∂v

∂x

∣∣
x0 is a matrix of size r × m of partial derivatives

of the vector of reaction rates v with respect to the vector
of metabolite concentrations x in steady state x0. A stoi-
chiometric matrix contains the reaction coefficients of every
reaction of a reaction network. Each reaction is represented
by a column in the matrix in which substrates and products
of that reaction have some negative or positive integer value

respectively.
The metabolic network (Section 2.1.2) results in a stoi-

chiometric matrix S with m = 1223 and r = 1883. Note
that each of the 477 reversible reactions is represented as
two unidirectional reactions.

From the stoichiometric information in S, a matrix A can
be constructed which has the same dimensions as ∂v

∂x

∣∣
x0 and

has an entry of 1 at position (i, j) when the partial deriva-
tive of reaction j w.r.t. the concentration of metabolite i is
nonzero and 0 otherwise. When we substitute ∂v

∂x

∣∣
x0 in (3)

by A, we obtain a Jacobian which can be used to construct
matrices Juc and Jc representing an uncolored and a colored
model of our network respectively (later, edge color will be
used to differentiate different type of interactions). Juc is
constructed such that Juc

i,j is 1 when metabolite j has a pos-
itive effect on metabolite i, i.e. metabolite j is a substrate
in at least one reaction where metabolite i is a product, and
zero otherwise. Jc on the other hand, has three interaction
types: positive, negative and combined, which are (arbitrar-
ily) represented by 1, 2 and 3 respectively. A positive inter-
action is defined similar as for Juc. A negative interaction at
Jc

i,j indicates that metabolites i and j are both substrates in
the same reaction. A combined interaction is a combination
of these two interaction types, which should be thought of
as an interaction which can act in both a positive and a neg-



ative way. Juc contains the structural information without
interaction types, or colored edges. This network will from
now on be referred to as the uncolored network. Conversely,
the network represented by Jc will be referred to as the col-
ored network. Fig. 2 shows how a small artificial network
consisting of only two reactions would be transformed into
both networks.

2.5.2 Interaction strength
In a metabolic network, entries in the Jacobian matrix

represent interactions between metabolites. In our analy-
sis, we assume that all reaction rates follow the Michaelis-
Menten kinetic rate law:

v =
x

x + Km
· kcat · [E], (4)

where Km is the Michaelis-Menten constant, [E] is enzyme
concentration and kcat represents the maximum number of
moles of substrate that the enzyme can convert to product
per unit time [1].

Differentiating (4) gives:

dv

dx
=

kcat · [E] · Km

(x + Km)2
. (5)

We are interested in the values of dv
dx

in order to calculate

the matrix ∂v
∂x

∣∣
x0 . Subsequently, these can be sampled from

to generate matrix A (Section 2.5.1).
Values for Km and kcat are collected by parsing BRENDA,

whereas values for [E] are collected from [10], which contains
a list of concentrations for a number of proteins of S. Cere-
visiae. Values for Km, kcat and [E] were selected as triplets
only when (i) the three values belong to the same protein;
(ii) Km and kcat correspond to the same substrate and (iii)
Km and kcat correspond to the same conditions. Each triplet
of values for Km, kcat and [E] was entered 100 times in (5),
each time using a value for x uniformly picked from the
range [1 × 10−5, 2 × 10−2] moles per liter [12]. The result
is a distribution for dv

dx
, of which each sample represents an

entry in the ∂v
∂x

∣∣
x0 matrix.

Next, 1000 matrices Al, l ∈ [1 . . . 1000] are generated, by
assigning all nonzero entries in A a value randomly sampled
from the dv

dx
distribution. Using these Als, 1000 matrices Jl

are generated:

Jl = S · Al, l ∈ [1 . . . 1000]. (6)

Finally, all nonzero entries in the 1000 Jacobians thus gen-
erated are distributed over vectors jpos, jneg, jcom and
jdiag, representing positive, negative, combined or diag-
onal entries of a Jacobian matrix respectively, such that
jpos = {J l

i,j |Jc
i,j = 1}, jneg = {J l

i,j |Jc
i,j = 2}, jcom =

{J l
i,j |Jc

i,j = 3} and jdiag = {J l
i,j |i = j}. These four vectors

together will from now on be referred to as the BRENDA
distribution.

In Section 2.4, it was discussed how the method described
in [21] determines the SSS of a motif. It instantiates Ja-
cobians by sampling values from uniform distributions and
entering them in the adjacency matrix. We instead sample
from the BRENDA distribution, which seems biologically
more relevant. This is done by assigning diagonal values,
non-diagonal values of 1, non-diagonal values of 2, and non-
diagonal values of 3 in the adjacency matrix of a motif a
value sampled from jdiag, jpos, jneg, or jcom respectively.
The remaining part of the procedure is the same as described

in Section 2.4, yielding a new structural stability score based
on the BRENDA distribution. This new SSS and the SSS
of [21] will from now on be distinguished as the B-SSS (for
BRENDA) and the P-SSS (for Prill), respectively.

2.5.3 Interaction activity
The reactions described in the stoichiometric matrix rep-

resent all the chemical reactions taking place in the cell.
However, not all reactions are simultaneously active. In fact,
for a reaction to be active the corresponding enzyme (cat-
alyzing the reaction) has to be present, and the presence of
the enzyme is in turn regulated by genes.

The compendium in [17] provides the expression levels
of all the annotated genes in S. Cerevisiae. We selected
only the 902 genes known to regulate reactions in the
metabolic network in [8]. For each experiment, we used
expression values obtained by robust multi-chip analysis
(RMA) values [14] and scaled to a range of [0, 1], and
removed reactions for which the corresponding gene had
a value less than a threshold τ of 0.5. Other values for τ
(0.05 – 0.6) produced comparable results in terms of motif
counts (although the number of eliminated reactions varies
by an order of magnitude).

3. RESULTS

3.1 Baseline method
Fig. 3(a) shows the results for all the networks considered

in [21]. The motifs are divided into density classes, groups
of motifs having an equal number of edges (delimited by ver-
tical dashed lines). The dashed function represents the SSS,
the bars the NZS. In the case of 3-node motifs, the num-
ber of edges ranges from 2 to 6, yielding 5 density classes.
In Fig. 3(a), a descending stairs-like behaviour can be ob-
served (at least for some of the networks): within each den-
sity class, the highest scoring motifs appear on the left, the
lower scoring motifs on the right (positive correlation be-
tween the SSS and the NZS of a network motif). However,
it is important to point out that in Fig. 3(a) infinite NZS are
set to zero (consistent with the results in [21]). An example
is provided by motif 78 for the the transcriptional regulatory
network of the S. Cerevisiae, consisting of two bidirectional
edges (Fig. 1). Since the Erdös-Renyi (ER) randomization
method produces very few bidirectional edges (Section 2.3),
it is likely that the motif is not generated at all, resulting in
an infinite NZS (as in [21]). We can conclude that if we take
into account infinite NZSes, the correlation between the SSS
and the NZS is not much evident anymore.

3.2 Null model
The calculation of motif enrichment requires the definition

of a proper null model (see Section 2.3). Different choices are
possible for the generation of the random networks, and it
has been recognized that random networks generated by the
switching method should be preferred over ER random mod-
els, since they better preserve the topology of the original
network (see Section 1). Therefore, we have re-calculated
motif enrichment for the transcriptional regulatory network
in [21], using the switching method (see Fig. 3(b)).

It can be clearly seen that the choice of randomization
method has considerable influence on the results in [21]. In
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Figure 3: Network in Prill: structural stability score (SSS) and normalized z-scores (NZS) as a function of
the motifs. Motif enrichment calculation is based on random networks generated with the baseline method
and the switching method.
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Figure 4: Metabolic network: structural stability score (SSS) and normalized z-scores (NZS) as a function of
the motifs. Motif enrichment calculation is based on random networks generated with the baseline method
and the switching method.

Fig. 3(b), motif 38 still has a high NZS, but for the other
motifs, the trend seen in the original results is lost. Note in
particular motif 6, whose NZS has gone from around 1 to
−0.3, indicating that it has gone from occurring much more
frequently in the real networks than in the random ones, to
less.

In summary, by replacing the ER randomization method
by the switching method, we obtained results which are in
contrast with the ones reported in [21]: over-represented
motifs are now under-represented.

3.3 Metabolic interactions
In this section, we first apply the same analysis as in

Section 3.1 and Section 3.2 to the metabolic network of S.
Cerevisiae [8]. Then, we exploit the additional information,
about the interactions between metabolites, available for
the considered metabolic network: (i) interaction type, (ii)
strength and (iii) activity.

3.3.1 Baseline method and null model
The baseline method applied to the metabolic network

produces results in contrast to those in [21] (see Fig. 4(a)):
structurally stable motifs are clearly not enriched. Only two
motifs have a high NZS (78 and 110, which both have an
infinite NZS in Fig. 3(a)). The motif with highest NZS in
Fig. 3(a), 6, is not over-represented at all in our network. For
the metabolic network, motif 78 was generated only a few
times in the random networks, resulting in a low standard
deviation in (1), and thus a high NZS. Motif 238 (indicated
by a dot), consisting of even more bidirectional edges, is
never generated and thus has infinite NZS (the same holds
in Fig. 3(a)). Finally, note that motif 78 does not have the
highest SSS in its density class.

If we now apply the switching method, the results change
significantly (see Fig. 4(b)). The top scoring motif in Fig.
4(a), motif 78, now has the lowest NZS, caused by a high
frequency of motif 78 in the random networks. Motif 238
has a quite high NZS, but no longer infinite as in Fig. 4(b).
These observations indicate that the switching method has
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z-scores. The motifs are defined by structure and
interaction type (colored motifs).

generated more bidirectional edges than the ER method, as
expected. The top scoring motif is now motif 46. This is the
motif with the highest SSS of its density class. However, this
happens only in this density class and we cannot infer from
this finding that SSS and NZS are positively correlated.

3.3.2 Interaction type (colored edges)
The stoichiometric matrix entirely defines the mass-action

kinetic part of the reaction rates, and from that we can asso-
ciate a sign to the interactions between metabolites (neglect-
ing the enzymatic regulation part). In the colored model Jc,
to each edge a label 1, 2 or 3 is assigned, indicating a pos-
itive, negative or combined interaction (Section 2.5.1). Re-
sults in Sections 3.1-3.2 are based on the 13 possible 3-node
motifs of the uncolored model Juc (see Section 2.5.1). With
the colored model, we have NZSes for 97 motifs, instead of
only 13. As a consequence, the results in [21] can no longer
be compared directly. However, a similar NZS vs. SSS plot
can still be created (Fig. 5). A number of density classes
show some correlation between NZS and SSS. For instance,
inside classes 3 and 5 the over-represented motifs generally
appear on the left, whereas the under-represented ones ap-
pear on the right. However, the other classes do not show
this trend. Therefore, we can conclude that taking into ac-
count the interaction type, does not produce any definite
correlation between SSS and NZS.

3.3.3 Interaction strength
In [21], the calculation of the SSS was based on parameters

drawn from uniform distribution (P-SSS), since no further
biological knowledge was available. For metabolic networks,
a more realistic parameter distribution can be built based
on the parameter values in BRENDA (the BRENDA distri-
bution), which can be in turn used for the calculation of the
SSS (B-SSS).

Comparison of the P-SSS and the B-SSS (results not
shown) shows that (i) B-SSS never becomes 1 (there are
no motifs that are always stable) in contrast to the P-SSS
(motifs 6, 12, 36 and 38 are always stable); (ii) the difference
between the B-SSS for the colored and the uncolored model
is smaller than for the P-SSS (meaning that for the B-SSS
the sign of an edge is less important for the stability); (iii)
the P-SSS has a wider range than the B-SSS.
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Figure 6: Brenda based structural stability score
and normalized z-scores.

Despite these differences between P-SSS and B-SSS, we
found that the SSS vs. NZS plot does not change signifi-
cantly (see Figs. 5 and 6). We can conclude that the use of
the more biological Brenda distribution for the calculation
of the SSS does not produce the expected positive correla-
tion between SSS and NZS (with the last density class in
Fig. 6 the sole exception).

3.3.4 Interaction activity
If we take enzymatic regulation into account (Sec-

tion 2.5.3), we obtain the results in Fig. 7. The main ef-
fect of removing reactions is that many of the peaks in the
bar-plots in Fig. 5 and Fig. 6 disappear or get flattened.
Moreover, we can see that in the last density class the loca-
tion of the highest peak is shifted to the right. However, it
can be clearly seen that the new motif distribution still does
not have any correlation with the structural stability score.

4. CONCLUSIONS
Many studies have attempted to relate local topologi-

cal properties (i.e. network motifs) to (global) dynamic be-
haviour, showing that certain motifs are enriched in bio-
chemical networks, and that over-represented motifs may
confer some“desirable”dynamic feature on the network (e.g.
robustness, stability, etc.). However, some of these findings
are controversial and demand more investigation.

In this paper, we have investigated the results presented in
[21], where it is claimed that structurally stable motifs are
over-represented in 5 different biochemical networks. Our
study clearly shows that the conclusions in [21] critically
depend on the choice of null model in the motif enrichment
analysis (and on the choice to set to zero infinite z-scores).
Since the null model in [21] (Erdös-Rényi random networks)
is not appropriate to describe the (scale-free) topology of
the biochemical networks, the claim that structurally stable
motifs are over-represented cannot be confirmed.

Moreover, we have tested the method in [21] against a
biochemical network [8] for which information was available
about (i) the type, (ii) strength and (iii) activity of the
interactions. The main conclusion of this paper stays the
same: structurally stable motifs are not over-represented,
and hence stability cannot be derived from local structure
(we reached similar conclusions with a 4-node motif anal-
ysis, and with the metabolic networks of E. Coli and H.
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Figure 7: Structural stability score and normalized
z-scores (micro-array data).

Sapiens).
Our findings do not rule out the possibility that motif

enrichment in biochemical networks can be explained by
dynamic properties other than structural stability. Recent
results seem to suggest that monotonicity could be such a
property [19, 22].
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