
Immunity based Virus Detection with Process Call
Arguments and User Feedback

Zhou Li, Yiwen Liang, Zejun Wu, Chengyu Tan
College of Computer Science,

Wuhan University,

Wuhan, 430072, P.R. China

lzcarl@gmail.com, ywliang@whu.edu.cn, wuzejun@126.com, nadinetan@163.com

ABSTRACT
Detecting unknown virus is a challenging task. Most of the current
virus detection approaches, such as anti-virus tools, require
precognition of virus signatures for detection, but they are hard to
detect unknown virus. In this paper, we present a new immunity
based virus detection approach. This approach collects arguments
of process calls instead of the sequence of process, which obtain
more information of process, and then utilizes them to train
detectors with Real-valued Negative Selection (RVNS) algorithm.
In the stage of testing, user feedback is analyzed to adjust the
threshold between normal files and viruses. We took two
experiments to evaluate the performance of the approach, and the
detection rate achieved is 0.7, which proved this approach could
cope with unknown virus.

Keywords
Artificial Immune System, Real-valued Negative Selection,
Process Call Arguments, Virus Detection, User Feedback

1. INTRODUCTION
As computer virus spreads faster and threatens computer
system more seriously than ever before, how to detect virus
is researched intensively. Classical virus detection
approaches aim to find signatures of known viruses, that are
the characteristics of infected files. However, it is hard for
these approaches to cope with unknown viruses presenting
new signatures and with viruses obfuscating their
signatures.

The problems found in computer systems are quite similar
to ones in Human Immune System (HIS). When HIS is
attacked by unknown viruses, it will adaptively produce
detectors and kill these viruses. Inspired by HIS, Artificial
Immune System (AIS) [1] is considered as one of the new
methods to defeat spreading computer viruses. Among all
the AIS models, Self-nonself model is commonly adopted

to detect virus. In addition, virus behaviors are considered
by AIS as the detecting objects other than virus signatures.
Previous virus experiments based on AIS against unknown
viruses demonstrate that AIS is capable to find these
viruses.

However, mainly focusing on the sequence of process calls
and regarding them as the embodied virus behaviors,
former virus detecting approaches with AIS are incapable
of gathering enough information of virus behaviors. Same
sequences of process calls might cause entirely different
result due to different arguments. Moreover, when detectors
are formed after training stage, they are limited to adjust to
actual test result. Therefore, their performance will not be
improved in the practical use.

In this study, we present a framework using immunity
based virus detection with process call arguments and user
feedback aiming to detect unknown virus accurately and
adaptively. The main contributions of this work include
collecting process call arguments for training data and
introducing user feedback to the testing stage. In the
training stage, the arguments of normal process calls are
used to train detectors by Real-valued Negative Selection
(RVNS) algorithm. In the testing stage, normal samples and
abnormal samples are tested, and the threshold between
normal files and viruses is adjusted by user feedback.
Differed from previous approaches adopting Linux
platform for experiments, we choose Windows XP platform
that are used more common.

Related works and Background knowledge are introduced
in next chapter. In Chapter 3, the proposed approach is
described. At last, the experiments based on Windows XP
platform and future work are discussed in Chapter 4 and
Chapter 5.

2 BACKGROUND

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

2.1 Signature based Virus Detection
“Virus is a program that can infect other programs by
modifying them to include a possibly evolved copy of
itself.”[21] Currently, the spreading of virus has caused
innumerous loss. Only in the first half of year 2007, Bionetics'07, December 10-13, 2007, Budapest, Hungary.

Copyright 2007 ICST 978-963-9799-11-0

111,474 new samples of virus have been found, which had
infected 75,967,19 computers in China.[22] To respond to
this severe situation, main computer security companies
have released their anti-virus software. These software
mainly adopt classic signature based virus detection method
to detect virus.

Former signature based virus detection approach looks for
the existence of special files or codes, and uses a classifier
to distinguish the virus files from normal files [9][23][24].
Through examining the signature, a virus is identified
uniquely by anti-virus software. The detection rate of
known virus is acceptable of this approach. However, this
method does not perform well when detecting unknown
virus since the signatures of these virus have not been
stored in the signature base yet. To keep up with the
increasing number of viruses, anti-virus software have to
update to the newest signature base frequently, which cost
time and bandwidth. Moreover, new techniques are
employed by virus to escape from detection such as code
obfuscation and self-evolving. It means that one virus
might have several signatures. Thus, the size of signature
base would increase gradually and finding a signature of
one virus would take more time.

2.2 Artificial Immune based Virus Detection
In order to overcome these disadvantages of signature
based virus detection, Artificial Immune based virus
detection is proposed recently for detecting computer virus.

Among various mechanisms in the biological immune
system that are explored by AISs, negative selection,
immune network model and clonal selection are still the
most important mechanisms. In this paper, we focus on
Negative Selection models [11][12].

Negative Selection is a mechanism to train detectors based
on the self/non-self discrimination principal in immune
system. After this process, tolerant detectors are generated,
and they can detect unknown antigens, which fail to react to
detectors correctly.

The algorithm contains two steps. At first step, the training
step, normal self samples are changed into n-dimensional
points, and the algorithm receives them as the input. The
detectors are trained to cover nonself space while do not
intersect with self space and other detectors. When a
detector is mature (go through given generations and still
suit for the condition), it is removed from the population,
and can be used to detect antigens. This iterative process is
finished by generating sufficient detectors to cover given
portion of non-self space or reaching given generations. In
second step, the testing step, detectors from first step are
used to classify samples with normal ones and abnormal
ones.

Forrest first proposed a method for change detection using
negative selection algorithm, and it aimed to build an

intrusion detection system based on the notion of self
within a computer system [2].

Building on previous work by the Forrest, A universal
architecture of AIS (ARTIS) is proposed by Hofmeyr
et.[3][4][5]. Concepts and mechanisms of HIS are
implemented in ARTIS such as self-nonself, detectors, self-
tolerance, clonal selection. Since then, many AIS based
applications adopted ARTIS as their architecture.

The Artificial Immune based virus detection system
described by Kephart from IBM focused on the automatic
detection of computer viruses and worms [6]. Unlike
ARTIS, in purpose of saving time and increasing efficiency,
it does not utilize all the mechanisms of HIS, and
techniques like blueprint [7] and trap [8] are included in the
system.

Currently, there are some researchers combine AIS and
signature to build their Artificial Immune based virus
detection systems. AIVDS proposed by Hyungjoon Lee
extracts signatures from normal files as self in order to train
detectors, and signatures are fixed length strings from the
head of files. Files infected by viruses should represent
different signatures and can be detected [9].

3 APPROACH FOR VIRUS DETECTION
3.1 algorithm process
In this work, a Real-valued Negative Selection (RVNS)
algorithm [13] based virus detection approach is
implemented. Figure 1 illustrates the algorithm with four
stages. In the data input stage, self samples are collected
and processed. The process monitor collects value of given
arguments of the file operaions done by process, and
converts them into self samples for training. We choose
real-valued type other than traditionally used binary type to
present self samples. Due to the wide range of each
parameter and large space for a long binary to code a large
value, binary type is deficient in this case.

At the detectors generating stage, all of the self samples are
considered as hypersphere in Rn space. Affinity of a
detector and an antigen is judged by membership function,
which establishes whether a point lies in the shape. This
function depends on the shape of detectors, such as
hypersphere, and the distance measure. By means of Monte
Carlo algorithm, the fitness of detectors can be readily
calculated and thus detectors covering sufficient space are
produced.

At the testing stage, we first set the threshold - the rate of
abnormal file operations to all the file operations- and then
evaluate the algorithm with normal and abnormal samples.
This stage integrates user feedback to regulate the threshold
dynamically in order to detect various virus in real
environment. Accordingly, the detection rate is improved
and the false alarm rate is reduced.

Figure 1. Algorithm process

3.2 Transform of operations
When a host PC is infected by computer virus, virus will try
to gain control of the host and commit different kinds of
destructions. As the differences of architectures and
implementations between various operating systems,
general behaviors of viruses vary greatly. Virus behaviors
on Windows XP platform are shown as following.

Modify Registry: Add startup registry key at the place such
as Run, Runonce, RunonceEx, RunServices. When system
starts, virus executes by itself.

Hijack Files: When host is infected, the virus replaces
certain content of system files or inserts itself into certain
system files. After that, the virus code will be executed
before the original code when operating system accesses
the file.

Copy Files: Virus copies files it self-extracts to the system
folders. Therefore, it can hide the executives.

Modify System Files: Autorun.exe, win.ini, system.ini are
vulnerable and are often modified by virus. By adding the
commands of virus, malicious code is executed when host
starts up.

Between all these operations, manipulations of files are the
most frequently operations of one application, which can
indicate whether an application is malicious. Nevertheless,
even if the APIs called by one application are the same, the
arguments of the calls differentiate. Take Word of
Microsoft co. as an example: this application also modifies
registry and system files, though it is a normal application.
Thus, we cannot simply rely on finding out suspicious
sequences to distinguish virus from normal applications.
This paper takes into account arguments of process calls as
the important characteristics of viruses behaviors, and
regards the file operations as the monitoring objects [15].

In one file operation, there are six pivotal arguments:
operation kind, path, file name, success or not, parameter 1,
parameter 2 (referred to FileMon [16]). These attributions
determine the effect of one file operation. Table 1 shows
the fields and descriptions.

Table 1. Details of attributions

Attributions Field Description
Operation

 Kind
{Create,
 Delete,
Write}

The action to one file

Path String type The directory of the
manipulated file

File Name String type The name of the
manipulated file

Success
or Not

Boolean type If one file operation is
successful, the result is

true, else false.
Parameter 1 Integer type When operation kind is

Create, it is the options
（Create, Overwrite）.
When operation kind is
Writing, it is the offset

to the file head.
Parameter 2 Integer type When operation kind is

Create, it is the access
method (Read, Write,

etc.).
When operation kind is
Writing, it is the length

of file writing.

The passages below describe the concrete meaning of Table
1.
Path and filename determine the position of one file. As
normal applications hardly modify or delete the system files,
they can be important signatures of one application.

Parameter 1 and Parameter 2 reflect the manner one
application manipulates the file. Normal applications rarely
modify or overwrite specific areas of one file. Hence, they
can be other useful elements.

Success or Not is the result of file operation. The
inexistence of one file or the restriction to access one file
will lead to the failure of one operation. It can indicate
whether an operation is legitimate.

Each attribution should be changed into real value type
ranged in [0,1]n as the input of training stage. First, the
attributions are changed into Integer type, and then
normalized to real-valued type. The technique is described
below.

The field of Operation Kind includes Create, Delete, Write,
which can be marked as 1, 2, 3.

Path and file name are string type, we sum up the ASCII
value of characters included in these two attributions to
obtain the integer value. Let c1, c2, c3… cn be the ASCII

value of the characters of one string, the value is 1

N

i

i

c
=
∑

Success (true) or not (false) is Boolean type, and are cast
into 1 and 0.

Parameter 1 and Parameter 2 store the call parameters of
Create and Write. They are already integer type, so they are
not changed. Since Delete does not have arguments, the
value of parameter 1 and parameter 2 are 0 for Delete.

Then values are normalized to real-valued type ranged in
[0,1]n. We denote maxp as the maximal value of one
attribute in operation set, and minp as the minimal value of
one attribute in operation set, and p is the value of one
operation needs to be transformed, and pn is the new value,
which is defined as:

pn=(p-minp)/(maxp-minp)

If maxp and minp are the same value, an extra value will
add to maxp to avoid divide-zero error.

3.3 Algorithm for detectors generation
The approach developed in this paper uses RVNS to train
as many detectors with high fitness as possible. The
following sections describe the details of RVNS such as
representations of self/nonself, detectors, fitness
calculation , generic operators.

3.3.1 Detector Representation
The file operations are cast into points in [0,1]n after the
attributions are extracted and transformed. Likewise,
detectors should be represented in [0,1]n. In this approach,
we choose hyper-sphere with an n-dimensional center and a
radius as the form of detectors.

Besides the representation of one individual, to judge
whether a point is in the detector needs a membership
function. We choose Minkowski distance function to
compute the distance of a point and a detector. Minkowski
distance between point x and y is:

1/(,) ()n n
i idist c x c x= −∑

A point lies in a detector if the distance is less than the
radius of the detector.

3.3.2 Fitness Calculation
Fitness is the evaluation of the quality of one individual.
Detectors with higher fitness would be selected. As
detectors are hyper-spheres in [0,1]n, the fitness of one
detector is high when it covers large non-self space and
overlaps small space with other detectors. Meanwhile, the
detector must have no intersect with self points. The fitness
function of detector D is defined as follows:

fitness(D)=effective-coverage(D)-C(m)*m

The effective coverage is the volume that one detector
covered while not yet covered by other detectors. Let V(D)
be the volume of detector D and OL(D) be the overlap

between D and other detectors, then fitness(D)=V(D)-
OL(D). The volume of a 2k or 2k+1 dimensional hyper-
sphere of radius r is

2
2 ()

!

k
k

kV r r
k
π

=
or

2 1 2 1
2 1

!() 2
(2 1)!

k k k
k

kV r r
k

π+ +
+ =

+ .

However, the overlap between detectors is not easy to
calculate. As calculating the intersect volume of two n-
dimensional shapes is difficult. Moreover, the arithmetic
complexity of geometry overlap calculating algorithm rises
sharply when the dimension of space increases.
In this work, Monte Carlo technique, a well-established
calculation technique, is used to estimate the volume of
overlap. To compute the volume, a set of N random points
uniformly distributed in [0,1]n are generated. Sump is
defined as the number of the points which lie both in the
areas of detector A and B. Then the volume of the overlap
is sump/N*1. The arithmetic complexity of volume
calculating is O(N), and the cost is relatively smaller
consequently.

When a detector intersects with self points, the fitness
subtract m * C(m). m is the self points that lie in the area of
detectors. C(m) is the penalty function that prevent
detectors from covering self points.

3.3.3 Genetic Algorithm
Figure 2 shows the genetic algorithm used to train detectors.
We use Roulette Wheel Selection to select best individual,
two-point crossover and bit-flip mutation f crossover and
mutation. When the coverage reaches the desired coverage
or desired number of detectors have been generated, the
algorithm terminates. After the training, a certain number of
detectors go into testing stage.

Figure 2. Process of Algorithm

3.4 User Feedback
The objective of user feedback in testing stage is to
improve the detection rate and reduce false rate. We define
the rate of abnormal file operations to all the file operations
as the threshold between normal files and virus. Before
testing, a given threshold is set by previous knowledge, and
the rate of abnormal file operations to all the file operations
is calculated when a sample comes into the testing stage. A
test sample is malicious only if the rate is bigger than the
threshold. Since the distribution of the rate of normal files
and virus vary greatly, rightly adjusted threshold would
enable detectors to perform more accurately. When
carrying out one test, the threshold is moderated based on
user’s opinion about previous result and current result.
Users are not required to give judgment to all the detections
result but just several.

In the real environment, when a detection event happens,
system pops up a dialog to inform user and asks user
whether this result is correct. User estimates the result
based on the information such as infected file and
suspicious process delivered by the system. And the
threshold will be adjusted based on user response.

There are three kinds of feedback given by user: correct,
false positive of virus and false negative of normal files.
Different methods of threshold calculation according to
three scenes are described as follows:

A. Scene 1 (correct):

 There is no need to modify threshold for a correct result,
and the threshold is fixed.

B. Scene 2 (false positive of virus)

Let th be the threshold and p be the rate of the virus test
case. According to previous experiments, the rate of a
normal file is likely to be less than the threshold and the
rate of virus is likely to be bigger than the threshold. Thus p
is less than th and the new threshold th`=th-dt, (dt>0).

Denote N as the number of all the tested normal cases, n as
the number of cases whose rates are between p and th, then:

dt=th-p n=0,

dt=(1-n/N)*(th-p)*M n>0

M is a constant value, which decides the level of threshold
change.

C. Scene 3 (false negative of normal files)

th and p are defined the same as Scene 2. But in this circs, p
is bigger than th and the new threshold th’=th+dt, (dt>0).

Denote N as the number of the entire tested virus cases, n
as the number of cases whose rate is between th and p, then:

dt=p-th n=0,

dt=(1-n/N)*(p-th)*L n>0

L also decides the level of threshold change. Nonetheless,
M is relatively bigger as the problem brought by false
positive of virus is more severe than false negative of
normal files. Based on previous experiments, M and L are
set to 1.1 and 0.9.

4 EXPERIMENTS
The primary goal of the experiments is to test whether this
approach can detect virus while does not mistake the
normal application for virus. We chose Macro Virus as
detect object, since the behaviors of their host application
are easy to capture. “Macro viruses, as the name suggests,
are designed to add their code to the macros associated with
documents, spreadsheets and other data files. “ [19]. As the
approach aimed to run on Windows XP platform, and “the
vast majority of macro viruses were designed to spread on
the back of Microsoft® Office data files” [19]. We selected
Word (with most Macro virus cases) as the monitoring
object. Generally, Macro Virus infects document formatted
by Word and damages files through Word, Excel, etc.

4.1 Experimental Arguments
The parameters used in the experiments are listed as
following: crossover rate = 0.8; mutation rate = 0.8; max
generations = 150; population size = 40; desired
coverage=0.99; self threshold = 0.1. In the training stage,
the terminating condition is that maximum generation
reaches 150 or coverage reaches 85%.

4.2 Data preparation
To capture the file operations of one application, we use
FileMon[16] as system monitor and collector. This tool can
capture all file system activities at real-time. We confined
the monitoring scope to process named WINWORD.
Meanwhile, the operation kind must be create, delete and
write. The operations are saved to a log file.

Since the coverage of a ball in a given area with the same
radius reduces when dimension increased, many detectors
are needed in order to cover six dimensions space, which is
inefficient and costs time. So the dimensions are eliminated
to three with the combination of different dimensions.
“Operation Kind” and “Success or Not”, “Path” and “File”,
“Parameter 1” and “Parameter 2” are combined separately.
Let a be the value of the first argument and b be the value
of second argument and nb is the number of digits of b,
then the combined value is a*10nb+b.

Another problem is that different file names would
influence the result of test, as file name is also an
attribution. The file name in each train or test case is set to
a constant value. Path is similar processed with file name.

For example, there is one operation with six attributes
(CREATE,
C:\DOCUME~1\lizhou\LOCALS~1\Temp\~DFD485.tmp,
~DFD485.tmp, S, CREATE, 0013019F) as (Operation
Kind, Path, File Name, Success or Not, Parameter 1,
Parameter 2), and the filename is changed into A. After the
process of integer presentation, normalization and attributes
combination, one self point is generated with three real-
valued parameters (0.009900990099, 0.038940400873,
0.26787898835).

We used three sample sets to carry out the experiments.
The first set is the file operations of normal document,
which we used to train detectors.

Table 2 shows the specific training cases. We list ten cases,
and each case contains normal file operations. As other
operations such as modify the document only modify the
data in memory, the case only contains these operations are
not used to test.

Table 3 shows the virus test cases. We obtained the entire
virus samples from VX Heaven [20]. In addition, we select
the virus described in Viruslist [19]. Before starting test, we
open the virus infected documents, create another document
and save it. Each created document (also infected) is used
to test.

Table 4 shows the normal test sets. There are five cases to
test. Since the content and structure of one document does
not have any impact on the test result. We prepare four
normal cases with Macro and one case without Macro.

Table 2. Specific training cases.

Case No Description

1 Open normal document without Marco.
2 Open normal document with Marco.
3 Save normal file already opened.
4 Save document as template.
5 Run Word.
6 Create a document.
7 Close document in Word.
8 Exit Word.
9 Edit document in Word.

10 Save document newly created

Table 3. List of Macro Virus.

Case No Virus Name
1 Virus.MSWord.Beast
2 Virus.MSWord.Dub
3 Virus.Multi.Cocaine
4 Virus.MSWord.Inexist.b
5 Virus.MSWord.Mentes
6 Virus.MSWord.Mimir
7 Virus.MSWord.Natas
8 Virus.MSWord.Outlaw
9 Virus.MSOffice.Shiver

10 Virus.MSWord.Titasic

Table 4. Testing cases of the file operations of normal
documents

Case No Description

1, 2 Open normal document
without Marco.

3, 4 Open normal document
without Macro and save it.

5 Open normal document
with Macro and save it.

4.3 Result
After 10 times training, the best training result is the
detector list including 150 detectors with coverage 0.87575.
This detector list was used for test.

To evaluate the improvement that user feedback takes on
the test result. We carried out experiments with or without
user feedback.

A. Experiment 1

This experiment is free of user feedback and Table 5 shows
the testing result for Macro Virus cases. The threshold of
ratio of nonself points to all the points is fixed to 0.15, and
the cases above that threshold are abnormal. The detection
rate is 0.5, while the false positive rate is 1. Half of the

cases are not detected, and their results are between 0.05
and 0.15, which is much smaller than the average ratio of
abnormal cases.

Table 5. Testing result for Macro Virus cases

Case
No

Total
points

Nonself
points

Ratio Result
(ratio=0.15)

1 5497 5402 0.982 Abnormal
2 35 4 0.114 Normal
3 5681 5449 0.959 Abnormal
4 5454 5446 0.998 Abnormal
5 121 2 0.016 Normal
6 64 9 0.141 Normal
7 5496 5446 0.991 Abnormal
8 12 1 0.083 Normal
9 79 4 0.051 Normal

10 5681 5461 0.961 Abnormal

Table 6 shows the test result for normal cases, the ratio is
also 0. 08. No normal case is detected and false negative
rate for normal cases is 0.

Table 6. Testing result for normal cases

Case
No

Total
points

Nonself
points

Ratio Result
(ratio=0. 08)

1 49 0 0 Normal
2 16 0 0 Normal
3 61 4 0.066 Normal
4 56 4 0.071 Normal
5 19 0 0 Normal

B. Experiment 2

This experiment relies on user feedback. Similar to
Experiment 1, we used cases described in Table 2 for
detectors training. In the testing stage, we still used cases
described in Table 3 and Table 4. However, threshold is
adjusted in six virus samples and three normal samples. The
rest our virus samples and two normal samples are tested
with the adjusted threshold. Every Two virus samples are
followed by one normal sample.

Table 7 shows the threshold change towards each test case.
The threshold is set to 0.15 initially. When a case goes
through testing, the threshold is adjusted. After testing V1,
N2 and V6, the threshold is modified as error detection
happens.

Table 7. Testing result for cases to adjust threshold

Case
No

Ratio Adjusted
Threshold

Result

V1 0.982 0.15 Abnormal
V2 0.114 0.114 Normal
N1 0 0.114 Normal
V3 0.959 0.114 Abnormal
V4 0.998 0.114 Abnormal
N2 0 0.114 Normal
V5 0.016 0.016 Normal
V6 0.141 0.016 Abnormal
N3 0.066 0.066 Abnormal

(V= virus, N= Normal)

The final threshold is 0.066 after training with user
feedback.

Six cases are tested with adjusted threshold. Table 8 shows
the detection result for these samples.

Table 8. Testing result for cases with adjusted threshold

Case
No

Ratio Result
(ratio=0.15)

V7 0.991 Abnormal
V8 0.083 Abnormal
N5 0.071 Abnormal
V9 0.083 Normal

V10 0.961 Abnormal
N6 0 Normal

(V= virus, N= Normal)

After the two-stage test, the detection rate is 0.7. False
positive rate for Macro Virus cases is 0.43 and false
negative rate for normal cases is 0.66. The detection rate
improves by 0.2 while the false positive rate drops by 0.57
and false negative rate rises by 0.66.

C. Result Analysis

The detection rate and false negative rate are relatively
higher and false positive rate is relatively lower in
Experiment 2. We can reach conclusions from the result
above:

 Adjusting threshold with user feedback is able to
provide higher detection accuracy but might increase
the possibility of false negative of normal files. As
detecting virus is more important to user, the result in
Experiment 2 is acceptable.

 When the number of points is high, it is very likely
that virus infects a file.

 When opening a normal document, the operations are
limited to several kinds. However, at the time saving a

modified document, a large number of different
“Write” operations would influence the testing result.

Though over half of the cases of Macro virus are detected,
there are some cases not detected. To enhance the system
performance, modifying the parameters for training
algorithm, obtaining more samples of Macro virus,
adjusting the initial threshold ratio might improve the
system’s performance.

5 CONCLUSION
This paper presents an approach for detecting virus with
user feedback. In the training stage, we implement the
algorithm for training detectors based on RVNS. In the
testing stage, we utilize user feedback to adjust threshold.
Finally, we carry out experiments aimed at detecting Macro
virus. In addition, the experiments show that this approach
can detect virus while avoid mistaking normal applications
for virus. Preknowledge of the specific virus and specific
application is not required.

Current work mainly focuses on detecting virus from the
log file of the operations done by virus. To fulfill the
requirement for detecting virus at real time, it needs to
monitor the application when it runs, and the efficiency of
the algorithm needs to be considered. Multi-shaped
detectors [14] can be used to improve the detection rate and
reduce the false negative rate and false positive rate. Other
operations such as operations to Registry would be included
in the future development of the approach to collect more
information of an application. Finally, though user’s
feedback only plays an important role in threshold adjusting
in the current model, we will consider the detectors’
generation with user feedback in next step.

REFERENCES
[1] Julie Greensmith, and Jamie Twycross. Immune System

Approaches to Intrusion Detection – A Review , ICARIS
2004, LNCS 3239, pp. 316–329, 2004.

[2] Stephanie Forrest, Alan S. Perelson, Lawrence Allen, and
Rajesh Cherukuri. Selfnonself discrimination in a computer.
In Proceedings of the 1994 IEEE Symposium on Security and
Privacy, page 202. IEEE Computer Society, 1994.

[3] S. Hofmeyr. An Immunological Model of Distributed
Detection and its Application to Computer Security. Ph.D.
dissertation, Univ. New Mexico, 1999.

[4] S. Hofmeyr and S. Forrest. Immunity by design: an artificial
immune system. Proc. of Genetic Evolutionary Computation
Conf. San Francisco, CA, 1999.

[5] S. Hofmeyr, S. Forrest. Architecture for an artificial immune
system. Evolutionary Computation, 2000, 8(4):443–473.

[6] J Kephart. A biologically inspired immune system for
computers. In Proceedings of the Fourth International
Workshop on Synthesis and Simulation of Living Systems,
Artificial Life IV, pages 130–139, 1994.

[7] J.O. Kephart and W.C. Arnold. Automatic extraction of
computer virus signatures. Proceedings of the Fourth
International Virus Bulletin Conference, St. Helier, Jersey,
UK, 1994.

[8] J.O. Kephart, Gregory B. Sorkin, Morton Swimmer, and Steve
R. White. Blueprint for a Computer Immune System.
Proceedings of the 1997 International Virus Bulletin
Conference, San Francisco, California, October, 1997.

[9] Hyungjoon Lee, Wonil Kim, Manpyo Hong. Biologically
Inspired Computer Virus Detection System. BioADIT 2004,
LNCS 3141, pp. 153–165, 2004.

[10] Gaurav Tandon and Philip Chan. Learning Rules from System
Call Arguments and Sequences for Anomaly Detection.
Department of Computer Sciences Technical Report CS-
2003-20, Florida Institute of Technology, Melbourne, FL,
2003.

[11] E. Hart and P. Ross. Exploiting the analogy between
immunology and sparse distributed memories. Proceedings
of the First International Conference on ICARIS, 2002.

[12] S. Forrest, A.S. Perelson, L. Allen, and R. Cherukuri. Self-
Nonself Discrimination in a Computer. In Proceedings of the
1994 IEEE Symposium on Research in Security and Privacy,
Los Alamitos, CA: IEEE Computer Society Press, 1994.

[13] F. Gonzalez, D. Dasgupta. Anomaly detection using real-
valued negative selection. Journal of Genetic Programming
and Evolvable Machines, Vol. 4, 2003, 383-403.

[14] Sankalp Balachandran, Dipankar Dasgupta, Fernando Nino,
Deon Garrett. A General Framework for Evolving Multi-
Shaped Detectors in Negative Selection, In the proceedings
of IEEE Symposium Series on Computational Intelligence,
April 1-5, 2007.

[15] Roberto Battistoni, Emanuele Gabrielli, and Luigi V.
Mancini, A Host Intrusion Prevention System for Windows
Operating Systems. ESORICS 2004, LNCS 3193, pp. 352–
368, 2004.

[16]http://www.microsoft.com/technet/sysinternals/default.mspx
Sysinternal FileMon.

[17] Function Premnmx. Matlab Help.
[18] Oak Ridge National Laboratory. Introduction to Monte Carlo

method. Computational Science Education project, 1995.
[19] http://www.viruslist.com, Viruslist
[20] http://vx.netlux.org/, VX Heaven,
[21] Cohen, F. Computer Viruses: Theory and Experiments.

Computers and Security, 6 (1987) 22–35.

[22]http://news.duba.net/report/dbhd/2007/07/04/110797.shtml,
virus report by Kingsoft, 2007

[23] 4. Gryaznov. D. Scanners of the Year 2000: Heuristics. In
Proceedings of the 5th Virus Bulletin International
conference, Boston, Massachusetts (1999) 225–234.

[24] Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J. Data Mining
Methods for Detection of New Malicious Executables. In
Proceedings of the 2001 IEEE Symposium on Security and
Privacy, Oakland, California (2001) 38–49

