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ABSTRACT
Biological systems have evolved themselves to withstand
against perturbations so that a characteristic, called robust-
ness, is the most commonly observed feature in all living
organisms. To find out the secret of robustness in biologi-
cal systems, many researchers have investigated the system
level structure of biological organizations. One of the known
structural features that enable biological systems to be ro-
bust is modularity.

In this paper we study the correlation between modu-
larity structure and robustness in IP networks. We carry
out a simulation study to observe resistibility of different
topologies, which have different level of modularity struc-
ture, against a perturbation created synthetically. The nu-
merical results show that the quantified modularity seems
to be more important measure to understand robustness
of IP networks than any other common properties such as
clustering coefficient, degree distribution, and average path
length.
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1. INTRODUCTION
Many measures, which characterize complex networks, have

been proposed and studied to predict its certain dynamic
behaviors and to reveal its hidden properties. One of these
hidden properties is robustness, which enables a system to
withstand external and internal perturbations [5]. Since ro-
bustness is an indispensable property that guarantees cer-
tain performance of networks, researchers have tried to find
a correlation between robustness of networks and measured
features such as the average path length [7], clustering coef-
ficient, and degree distribution [1].

Especially, the degree distribution of complex networks
has attracted great attention from researchers after it was
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discovered that degree distributions of many different com-
plex networks can be better described by a power law of the
form P (k) ∼ kγ rather than the conventional Poisson dis-
tribution. The power law degree distribution implies that a
few nodes have extremely large number of links as well as
there are large number of small degree nodes. Thus, if we
assume that high degree nodes are more important than less
degree nodes, the power law networks (also called scale free
networks) provide clues that they are error tolerance - ran-
domly chosen node is likely to be small degree nodes- and
attack vulnerable - when high degree nodes are intentionally
chosen [1]. In other words, complex networks with scale free
property are robust to a random failure and fragile to an
intentional attack.

It is an undeniable fact that the scale free property as
well as the other measures introduced previously somehow
contribute for understanding robustness of networks. The
question is which one is better than the other to describe
the robustness. It would be nice if we find a superior mea-
sure against the others to explain robustness of all different
kinds of complex networks. However, finding such a measure
is a difficult task since each complex network has heteroge-
neous characteristics. Therefore, rather than trying to find
an universally accepted measure, categorizing networks and
differentiating disturbances are easier and faster way to un-
derstand the problem.

As the title of this paper implies, we have been develop-
ing a robust network model based on biologically inspired
approaches. Reviewing some biology papers, we found an
interesting fact that many biological systems have a spe-
cific topological structure called modularity. For instance,
Ravasz et al [8] found that 43 metabolic networks they ob-
served were organized as highly connected structural mod-
ules. Also, the relation between robustness and modularity
structure of biological system has been briefly mentioned in
[11] that modularity structure localizes damages and pro-
hibits the malicious effect from spreading to the whole sys-
tem. The structural characteristic called modularity at-
tracted our attention because the modularity structure found
in biological systems may be a key element to understand
robustness of any system and we may be able to include the
property in our robust network design process. This is the
motivation of this paper to find whether modularity really
provides sufficient information about robustness of complex
networks.

In this paper we study the impact of modularity prop-
erty on robustness of IP (Internet Protocol) networks. It
is not difficult to image that IP networks have modularity



structure due to the fact that they consist of a collection of
PoPs (Point of Presence) which can be regarded as a mod-
ule. The main contribution of this paper is to show the
correlation between robustness and modularity property in
different topologies. To demonstrate the correlation, we cre-
ate a disturbance to network topologies that have the dif-
ferent strength of modularity, and observe the resistivity of
the topologies against the perturbation.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide a toy example that provides an intuitive
understanding of the concept of modularity, and the impact
of modularity on robustness of networks. This is followed
by the quantification of modularity, and we discuss why IP
networks have modularity structure in Section 3. Section 4
provides the experimental setup used in our evaluation study
and present results from a perturbation scenario. Finally, we
conclude the paper in Section 5.

2. WHICH TOPOLOGY IS MORE ROBUST?
Understanding robustness of networks starts from under-

standing different metrics from the theory of complex net-
works. Most commonly used metrics are average path length,
clustering coefficient, and degree distribution. The average
path length is calculated by averaging shortest paths be-
tween any pair of nodes in the network. This metric is
closely related to a cascading failure or a virus spreading
in the network. For instance, a network with small average
shortest paths is vulnerable to a virus spreading. Cluster-
ing coefficient of a node, the ratio between the number of
actually connected neighbor nodes and the number of pos-
sible connections, shows how well the neighbor nodes are
connected each other. Therefore, high clustering coefficient
networks are likely (but not always) to be robust against
random failure of links or nodes. The degree distribution
was briefly described in the previous section. Degree of a
node simply represents the number of links which are con-
nected to neighbor nodes so that degree distribution shows
the overall connectivity among nodes in the network.

Although these measures are useful information to reveal
certain characteristics of networks, it is not good enough to
show the structural property of a network, which is impor-
tant to understand its robustness. This can be illustrated
by a toy example as follow.

Figure 1: Toy example.

The both topologies (a) and (b) have the same average
clustering coefficient 0 and average degree 2.2. The diame-
ters, which is defined to be the maximal distance among all
distances between any pair of nodes, are the same to be 5
in each topology. Also, the distribution of degree for both
topologies are the same (degree exponent, γ = 2.2). The
both topologies can be easily extended to be scale free net-
works by adding some additional links to each node. The

only difference is the average path lengths which are 2.56
and 2.44 in both topologies (a) and (b) respectively.

In this toy example, seeing the visualized topologies in
Fig. 1 can provide more useful information about the ro-
bustness of topologies than reading the measured metrics.
For instance, the topology (a) in Fig. 1 can be divided into
two groups easily by cutting the link connecting the node
3 and 6. Therefore, the topology (a) must be less robust
than the one (b) for a link failure case. How about a dif-
ferent perturbation such as a failure cascading? Assuming
that the node 1 experiences a certain failure, how much time
does it take the failure to reach to the node 9, which is the
farthest node from the node 1? Since the number of hops
between node 1 and 9 are 5 in both topologies, it may take
the same amount of time. However, since the failure has
to go through the node 3 to reach to node 9 in the topol-
ogy (a), the structure of topology (a) restricts the failure
spreading more efficiently than the topology (b), which im-
plies that the topology (a) is more robust than the other
topology (b) against a failure spreading case. How about a
traffic dynamic scenario? For example, when a link is con-
gested, some flows on the link need to be re-routed. In that
case, which topology experiences less disturbance by the re-
routed flows? It is probably topology (a) because when a
link in one of two isolated local networks composed of nodes
(1-2-3-4-5) and (6-7-8-9-10) experiences a congestion, flows
on the link tend to be re-routed inside the local network so
that the disturbance caused by the re-routed flows is local-
ized.

Since the robustness is measured in terms of the network
behavior as a function of disturbance [9], the toy example
clearly shows that robustness of a network needs to be un-
derstood according to a disturbance.

3. MODULARITY IN IP NETWORKS
One question we need to answer from the toy example is

which structural property enables us to predict the robust-
ness of the networks before any analytical and numerical
studies. We think the answer is modularity. The property
has been studied in different areas for a long time with dif-
ferent names such as community structure, graph partition-
ing in graph theory and computer science, and hierarchical
clustering in sociology [6]. Modularity can be defined as a
network property which shows how easily a network can be
divided into groups. The topology (a) in Fig.1 can be di-
vided into two subnetworks more easily than topology (b) so
that we can say the former topology has higher modularity
value than the latter.

Modularity structure is observed in many different kinds
of networks from biological networks to technical networks
such as IP networks. IP networks consist of point-of-presence
(POPs), which can be regarded as modules. Inside a PoP,
BR(Backbone Router) and ER(Edge Router) are densely
connected, and PoPs are connected each other with core
backbone links. As we observed in the toy example, this
structural property impacts on behavior of networks against
certain perturbations.

In [6], Newman et al developed an algorithm to quantify
the strength of modularity. The method follows an iteration
process. The first step involves finding of a link where most
flows use. Such a link is called a high betweenness link. In
the topology (a) in Fig. 1, the link composed of node 3 and
6 has the highest betweenness value. After the highest be-



tweenness link is found, the link is removed, and then if the
disconnection splits a network, the strength of modularity is
calculated using the following equation.

Q =
∑

i

(eii − a2
i ) (1)

Where Q is the quantified modularity value, e is a sym-
metric matrix which represents the connectivity among mod-
ules. The dimension of e is the same as the number of mod-
ules in the network. Also, ai represents a row or column
sum of matrix ai =

∑
j eij . As a result, the value Q shows

the ratio between the number of links in modules and that
of links among modules.

Newman et al stressed that a high betweenness link needs
to be found again in each iteration. Since the iteration pro-
cess produces a series of modularity values, the maximum
value is chosen to be the modularity value of the network.
In Fig. 1, the modularity values obtained using Newman’s
method for topologies (a) and (b) are 0.314 and 0.0165 re-
spectively, and they are well matched to the structural ob-
servation of two networks.

4. RESULTS AND DISCUSSION
We have shown the concept of modularity and the im-

pact of modularity structure on robustness of networks us-
ing a toy example. In the example, we guessed the behav-
iors of networks purely based on the structure observation in
three different perturbation scenarios, namely random link
failure and intentional attack, failure cascading, and traffic
dynamic. In this section we carry out simulation studies
whether the guess in the toy example is correct in real IP
topologies. A simulation program, using the C++ language,
was built to simulate a perturbation.

Table 1: Real ISP topologies, and topologies gener-
ated from BA and FKP models that have the same
number of nodes and links with the real one. Modu-
larity values of topologies from BA model are set to
zero since they produced negative values. (ACC:
Average Clustering Coefficient, AD: Average De-
gree, ASP: Average Shortest Paths, DE: Degree Ex-
ponent, M: Modularity).

ACC AD DE ASP M
AT&T 0.166 4.987 1.68 5.073 0.784

ORG Sprint 0.399 5.482 1.66 4.062 0.732
Ebone 0.298 3.729 1.22 4.974 0.724
Level3 0.260 17.01 1.00 3.356 0.238
AT&T 0.047 4.987 2.58 3.429 0.000

BA Sprint 0.063 5.482 2.75 3.338 0.000
Ebone 0.045 3.729 2.46 3.201 0.000
Level3 0.159 17.01 1.32 2.529 0.000
AT&T 0.835 4.987 5.36 4.677 0.832

FKP Sprint 0.894 5.482 6.36 4.708 0.809
Ebone 0.221 3.729 1.27 4.580 0.538
Level3 0.602 17.01 2.15 3.229 0.211

We use four of real ISP (Internet Service Provider) level
topologies, which were obtained by Spring et al in [10]. We
manipulated the topology data to extract link information
for our simulation study. The four ISP level topologies are
AT&T, Sprint, Ebone, and Level3.

In addition, we generated topologies from BA [2] and FKP
[4] models respectively in order to generate topologies with
different modularity levels. For example, BA model is based
on the preferential attachment algorithm so that nodes in
the topologies tend to be connected each other strongly.
The strong connectivity makes it difficult to split the net-
work, and it causes the network to have a weak modular-
ity value. On the other hands, FKP model makes use of
measures of betweenness of nodes for the network growth
algorithm so that cutting some high betweenness links are
likely to split the network. That is why topologies from
FKP model produce relatively high modularity values. Ta-
ble 1 shows topologies categorized into three main groups,
which are original ISP topologies, topologies generated from
BA [2] and FKP [4] models with their calculated properties.

4.1 Random and intentional attack
Random failure and intentional attack are the most well

known scenarios to examine robustness of networks. Al-
bert et al [1] explored the scenario and suggested that scale
free networks are robust against random attack but fragile
to intentional attack. However, if all networks we consider
are scale free networks, is it possible to tell which topology
is more robust than the other under the disturbance? In
this section, we want to observe which property of topology
provides most useful information to predict the robustness
against these random and intentional attack.
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Figure 2: Intentional node removals based on be-
tweenness centrality: (a)AT&T (b) Sprint (c) Ebone
(d) Level3

Figure 2 shows the variation of diameter of networks as
a node is removed in the order of highly utilized one. The
highly utilized node is found by counting how many flows go
through the node. In this perturbation scenario, a topology
that keeps its size longer against the node removal is re-
garded as more robust. Most interesting observation is that
maintenance of connectivity in each topology seems to be in-
versely proportional to the modularity value. It means that
a network topology with smaller modularity value keeps its
function longer than the one with higher modularity value.
We can observe the correlation in Fig. 2(a), 2(b), and 2(d).



Although, Ebone topology provides a result that the orig-
inal Ebone topology keeps its connectivity longer than the
one from FKP model in spite of its larger modularity value,
modularity values seem to provide more useful information
to predict the robustness against this intentional attack sce-
nario than the any other measures in Table 1.
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Figure 3: Random node removals: (a)AT&T, (b)
Sprint, (c) Ebone, (d) Level3

Figure 3 shows the case of random node attack. Since the
topologies we consider are scale free networks, we observed
the same result as Albert et al [1] did, which is that net-
works seem to be robust to a random attack but fragile to
an intentional attack.

What we are interested in this result is that the resistivity
of topologies against the random attack is also in inverse pro-
portion to the calculated modularity values. Once again the
modularity values well predict the robustness of topologies
against the random attack scenario better than the other
measures shown in Table 1.

5. CONCLUSIONS
We showed a toy example, which provides an intuitive

understanding about robustness of networks in different dis-
turbances. The robustness of each topology was explained
based on its topological structure called modularity.

To extend our understanding from the toy example to real
complex networks, we carried out numerical simulations to
find out the correlation between modularity structure and
robustness of networks in real IP networks. We simulated
different perturbations and observed behavior of the net-
works under the synthetic perturbations. The simulation
results confirmed that the modularity value of a network
plays an important role to discover the robustness of net-
works.

In addition, topologies generated from FTK model pro-
duced more similar behavior to the original topologies than
BA topologies under the synthetic perturbations. The re-
sults suggest that accuracy of network models needs to be
verified using not only common metrics such as the average

path length, clustering coefficient, and degree distribution
but also how well the network produced by the model du-
plicates a certain behavior against different perturbations.

Since the correlation between modularity structure and
robustness of networks is revealed satisfactorily in the simu-
lation study, further work will focus on including this struc-
tural property into the robust network design process.
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