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ABSTRACT 
Covariance models are a powerful description of non-coding 
RNA (ncRNA) families that can be used to search nucleotide 
databases for new members of these ncRNA families. Currently, 
estimation of the parameters of a covariance model (state 
transition and emission scores) is based only on the observed 
frequencies of mutations, insertions, and deletions in known 
ncRNA sequences. For families with very few known members, 
this can result in rather uninformative models where the 
consensus sequence has a good score and most deviations from 
consensus have a fairly uniform poor score. It is proposed here to 
combine the traditional observed-frequency information with 
known information about free energy changes in RNA helix 
formation and loop length changes. More thermodynamically 
probable deviations from the consensus sequence will then be 
favored in database search. The thermodynamic information may 
be incorporated into the models as informative priors that depend 
on neighboring consensus nucleotides and on loop lengths. 

Keywords 
Bioinformatics, Covariance models, RNA secondary structure, 
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1. INTRODUCTION  
Covariance models (CMs) have a well-established history of use 
in non-coding RNA (ncRNA) gene search [1, 2]. They can be 
thought of as an extension to profile hidden Markov models [3] 
that take into account RNA secondary structure in addition to 
primary sequence. The additional information about which model 
positions are expected to base pair with which other model 
positions is needed in ncRNA gene search since there is selection 
pressure to maintain the shape of ncRNA molecules. 
Simultaneous mutation of two model positions that are widely 
separated in sequence such that one Watson-Crick pair is 
substituted for another may not impede molecular function, 
whereas a single mutation in the pair might be fatal. Hence, an 
estimated probability distribution over the sixteen possible pairs 
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of nucleotides at the two positions (a joint distribution) can be 
much more useful than two individual (marginal) distributions 
over four possible nucleotides each. 

Estimation of covariance model parameters starts with the 
formation of a multiple alignment of known members of a ncRNA 
family annotated with secondary structure (base pairing) 
information. The model takes the form of a tree of states with 
probability distributions over symbol (nucleotide) emissions by 
states and transitions between states. Emission probabilities are 
estimated from observed frequencies of the four nucleotides (A, 
C, G, and U) in unpaired alignment columns and of nucleotide 
pairs in paired columns. Transition probabilities are estimated 
from observed position-dependent frequencies of insertions and 
deletions in the multiple alignment. 

More than half of the 594 covariance models available in the 
Rfam ncRNA database [4] are estimated using six or fewer known 
family members (Rfam 8.0, updated February 2007 [5]). As a 
result, most emission and transition probabilities are based on no 
observed occurrences of the emission or transition event. The 
simplest way to handle this is to add pseudocounts to all events 
such that no probability is estimated as identically zero. This 
amounts to applying a prior to the estimator with the information 
that no possibility should be completely ruled out. As the number 
of sequences used to estimate the parameters increases, the 
preponderance of evidence simply makes these non-zero 
probabilities very small relative to observed events. 

The most often used package for CM parameter estimation and 
CM-based ncRNA gene search (including the formation of the 
Rfam database) is Infernal [6]. In November 2005 this package 
began to incorporate Dirichlet mixture priors into the parameter 
estimation algorithm (with version 0.6). This allows for much 
more informative prior information based on observed 
frequencies of mutation, insertion, and deletion events in ncRNA 
molecules in general (not just in the specific family members used 
to estimate the model). This is a major step forward in that CM 
parameter files now incorporate a bias towards accepting AU, 
UA, GC, CG, GU, and UG even if these pairs were never 
observed in the multiple alignment data. Furthermore, insertion 
and deletion penalties now depend on whether they occur in a 
helix or a loop even if no insertions or deletions are observed in 
the multiple alignment. 

In this work we propose to go one step further in supplying prior 
information by incorporating measured thermodynamic properties 
of RNA [7]. This information is already widely used in algorithms 
that estimate RNA secondary structure from sequence [8, 9]. The 



thermodynamic measurements give another independent source of 
information for emission and transition probabilities. More 
importantly, the priors generated depend on the consensus 
sequence and secondary structure of the ncRNA family. As will 
be seen in the Parameter Estimation section below (sec. 3), loop 
lengths and neighboring base pairs in helices make a difference in 
the likelihood of insertions, deletions, and paired base emissions. 

Good CM parameter estimation is important not only for high 
quality of ncRNA gene search results, but also for the speed of 
modern CM-based search algorithms. In the Query-Dependent 
Banding method [10] used since version 0.71 of Infernal 
(November 2006), the state-dependent bounds on subsequence 
length are calculated using the parameters of the specific family 
being searched. The potential to improve search performance 
through limiting the subsequence length component of the search 
space has also been noted in [11]. As can be seen in the timing 
data of Weinberg and Ruzzo [12], CM-based ncRNA search can 
take a single processor years to search for members of a single 
family (and each family needs to be done independently), so 
performance is very important. 

The remainder of this paper is structured as follows. Section 2 
gives an overview of the organization of covariance models and 
their use in ncRNA gene search. The estimation of CM 
parameters using both traditional observed frequency approaches 
and the proposed thermodynamics approach is presented in 
Section 3. Concluding remarks may be found in Section 4. 

2. COVARIANCE MODELS 
The structure of a covariance model is determined by the 
consensus secondary structure of the ncRNA family multiple 
alignment. Pseudoknots [13] in the secondary structure are not 
allowed in a CM. If pseudoknots occur in the real structure, some 
base-paired positions must be represented as if they were unpaired 
(which results in some loss of model explanatory power). As a 
result, only three classes of consensus alignment columns exist: 
singlets, left pairs, and right pairs. Singlets are associated with 
left-emitting (L) or right emitting (R) nodes in the CM and each 
pair of columns is associated with a single pair-emitting (P) node. 
The other non-emitting types of nodes, start (S), end (E), and 
bifurcation (B) are used to organize the nodes into a tree. 

At the top of the tree is a special S node (called the root start 
node) and the bottom of the tree has one or more E nodes. Each 
node represents a sub-model covering a contiguous range of the 
consensus columns of the multiple alignment. The E nodes 
represent a null model (with a specific sequence position, but of 
length zero). Emitting nodes build on the representation of their 
child node by adding a position to the right (R), left (L), or both 
(P). B nodes have two child nodes (all others have one child) and 
merge two contiguous sub-models into a single contiguous model. 
The two B-node children are always S nodes such that each of the 
B-node children could be interpreted as a complete CM in their 
own right. 

In order to allow for insertions and deletions, every CM node type 
has a particular internal state structure. R-type, L-type, and P-type 
states are symbol-emitting just as the R, L, and P nodes are. 
Symbols might be emitted representing the consensus function of 
the node, in which case the R-type, L-type, and P-type nodes are 
designated MR, ML, and MP respectively (where M is for match). 

Insertions are allowed through the use of additional R- and L-type 
states designated IR and IL respectively. D states are non-emitting 
and allow the node to be bypassed. B, S, and E nodes contain B, 
S, and E states respectively representing their consensus function. 
The node tree completely determines the associated state tree, 
since the internal state arrangement of each node type is fixed. 
The state tree is what is actually processed when doing a database 
search. 

An example multiple alignment is shown in Figure 1 for the 
Cardiovirus cis-acting replication element (CRE) ncRNA family 
from Rfam (designated RF00453). Only the twelve sequences 
used to estimate the original model (the seed sequences) are 
shown, but a further 18 sequences have been found using the 
estimated CM through database search. This family happens to 
have no observed insertions or deletions, so all alignment columns 
are consensus columns. The next-to-last row in the alignment is 
the consensus secondary structure, where "<" and ">" are left and 
right half of a base pair respectively and "." is used for a singlet 
column.  The final row shows the consensus sequence. 

The Cardiovirus CRE covariance model has a single E node 
located between the leftmost ">" and the "." to its left. Ten L 
nodes represent the loop at the end of the hairpin, each 
representing an additional "." to the left of the string of dots 
represented by its child node. Three P nodes represent three "<" 
and ">" pairs working outward from the core of eleven singlets. A 
bulge loop on the 5' side of the helix is represented by three L 
nodes (group of three "." in Figure 1). Seven P nodes continue the 
helix. Finally, the root start node caps the node tree at the top. 
Since there are no bifurcations in this model, the node "tree" is a 
linear structure with no branching. The observed frequencies of 
symbol emissions are obtained by counting the number of A, C, 
G, and U in each column or AA, AC, ... , UU in each pair of 
columns. The observed frequencies of insertions between 
consensus columns or deletions of consensus columns are all zero 
for the sequences used to estimate this family model. 

 

ACGGUCACAAACACCCAGUCAACAGUGGGCCGU 
ACGGUCACAAACACCCAAUCAACCGUUGGUCGU 
UCGGCCACAAACACACAGUCUACUGUUGGCCGG 
UCGGCCACAAACACACAAUCUACUGUUGGUCGA 
UCGGCCACAAACACACAAUCUACUGUUGGUCGG 
UCGGCCGUAAACACCCAAUCAUCAGUAGGCCGA 
ACGGUCACAAACACCCAAUCAACCGUGGGCCGU 
UCGGCCACAAACACGCAGUCUACUGUUGGCCGA 
UCGGCCACAAACACUCAAUCCUCCGUUGGCCGG 
UCGGCCACAAACACACAAUCUACCGUUGGUCGA 
UCGGCCACAAACACCCAAUCUACUGUUGGUCGA 
ACGGUCACAAACACCCAAUCAACAGUAGGCCGU 
<<<<<<<...<<<..........>>>>>>>>>> 
UCGGCCACAAACACCCAAUCUACUGUUGGCCGA 

 
Figure 1. Cardiovirus CRE (RF00453) multiple alignment 

Figure 2 shows a graphical view of the consensus Cardiovirus 
CRE sequence and secondary structure. The letters show the most 
commonly occurring symbol at each consensus position, where 
the U at top left is on the 5'-end (sequence start end). The 5' bulge 
loop with consensus sequence CAA can be seen on the left. 



 
Figure 2. Cardiovirus CRE (RF00453) consensus structure 

The covariance model tree for Cardiovirus CRE is shown in 
Figure 3. Since this ncRNA family has no bifurcations, the 'tree' 
has only a single branch. The model is evaluated starting at the E 
node (bottom right) and progressing up the tree toward the root 
start node (upper left). The line connecting the right and left half 
in the figure has no special meaning and it there only to allow the 
figure to fit better on the page. 

 

Figure 3. CM node 'tree' for Cardiovirus CRE (RF00453) 

3. PARAMETER ESTIMATION 
3.1 Observed Frequencies Within a Family 
Given a set of aligned and structure-annotated RNA sequences, 
parameters for a CM model of the set of sequences can be found 
by counting the number of occurrences of each state transition 
and emission in the observed data. The transition and emission 
scores can then be set equal to the base 2 logarithm of the ratios 
of the counts to the number of samples. The resulting scores have 
units of bits such that a score increase of 1 implies a doubling of 
the likelihood that the database sequence fits the model. 

Many refinements can be made to this basic counting process. 
Emission probabilities can be corrected for bias in the background 
frequencies of the various symbols. This might be important if the 

ncRNA family only occurs in a particular organism and the 
genome of that organism is either AU or GC rich. Entropy 
weighting can be applied to the sequences to correct for the fact 
that the sequence set may contain mostly very similar sequences 
and very few dissimilar sequences. This can occur when a well-
studied model organism is overrepresented in the sequence set 
used to estimate the model. 

As discussed briefly in the introduction, it is unusual to include 
absolutely no prior information, either implicitly or explicitly, in 
the model estimate. At the very least, pseudocounts are added to 
every possible event (allowed state transitions, symbol emissions, 
or symbol-pair emissions) such that no allowed transition or 
emission score is set to minus infinity. This represents prior 
information in the sense that the model builder is saying that the 
event should be allowed even though it has never been observed. 
More informative priors are discussed in the following section. 

3.2 Dirichlet Mixture Priors for Observed 
Frequencies Outside a Family 
The current version of Infernal allows for the specification of 
Dirichlet mixture [14] priors. A Dirichlet mixture is a weighted 
combination of Dirichlet priors. One advantage to the Dirichlet 
prior is that the posterior distribution has the same form as the 
prior distribution when used in a Bayesian parameter estimation 
setting, which results in simpler calculation. The details of using 
Dirichlet priors will not be presented here, but the fact that there 
is a mechanism to include information from non-family sequences 
is important. If simulated sequences with deviations from the 
family consensus can be generated with deviation frequencies 
proportional to those expected from thermodynamic 
measurement, then the existing software can turn these simulated 
sequences into an appropriate prior for use by the Infernal search 
program. 

The existing use of the Dirichlet mixture prior in ncRNA search 
involves using a filtered database of real ncRNA sequences to 
build the prior. Most of these sequences will be from outside the 
particular family for which the prior will subsequently be used to 
build a model. As such, the prior is meant to represent generic 
features of all ncRNA molecules. Information such as the fact that 
Watson-Crick base pairs tend to substitute for one another more 
often than random pairs is contained in these priors. Other 
information includes the fact that insertions and deletions are less 
common in P nodes (helices) than in L or R nodes (loops). 

The priors in current use are specified over singlet emissions or 
pair emissions independent of the surrounding consensus 
symbols. As will be seen in the next section, this is a drawback, 
since thermodynamic measurement indicates that neighboring 
bases are important. The current transition priors are specified 
separately for the different types of states and containing nodes on 
each end of the transition (73 combinations in all). However, a 
transition to a D state in the middle of a hairpin loop (formed 
from a sequence of L nodes) will be the same no matter what the 
overall length of the loop. It is shown in Section 3.4 that 
thermodynamic measurement indicates that this prior ought to be 
adjusted depending on consensus loop length. 

Since the current Infernal package can not handle loop-length and 
neighboring nucleotide effects, the full extent of thermodynamic 
measurement information can not be incorporated into CM 



parameter estimation without altering the parameter estimation 
program (the Infernal package cmbuild program). However, a first 
step towards determining if the thermodynamic measurement 
information might be useful could be determined by seeing if a 
prior with similar effectiveness to the currently used prior can be 
built using the thermodynamic measurements in place of the 
general database sequences currently used. 

3.3 Dependence of Free Energy Changes on 
Neighboring Bases 
The free energy change as a result of a single-stranded RNA 
molecule forming hydrogen bonds with itself to generate a helix 
structure can be expressed as sum of terms [8]. There is a term for 
the helix as a whole which will be ignored in what follows since 
we will assume that the helix exists with or without a possible 
mutation if the RNA is in fact a true family member. There is a 
correction to the whole helix term that depends on whether the 
helix base sequences are symmetric which will also be ignored 
here, but which could be incorporated without too much trouble. 
Finally, there are a collection of terms which depend on the 
nucleotide composition of neighboring base pairs. These terms are 
sometimes called stacking energies or helix propagation energies 
and will be the focus of the discussion in this section. 

 

Table 1. Free energy changes for helix propagation  

Neighboring 
Bases 

∆G 
(kcal/mol) 

Neighboring 
Bases 

∆G 
(kcal/mol) 

5'-AA-3' 
3'-UU-5' 

-0.9 CC 
GG 

-2.9 

AU 
UA 

-0.9 CG 
GC 

-2.0 

UA 
AU 

-1.1 GC 
CG 

-3.4 

AC 
UG 

-2.1 CA 
GU 

-1.8 

AG 
UC 

-1.7 GA 
CU 

-2.3 

 

 
Free energy changes have been measured for Watson-Crick base 
pairs (CG, GC, AU, and UA) as well as wobble pairs (GU and 
UG) [7]. Table 1 shows the change in free energy associated with 
the addition of a base pair to the helix given an adjacent base pair 
for Watson-Crick base-pair combinations only. For example, if an 
AU base pair exists, another A is found to the right of the paired 
A, and another U is found to the left of the paired U, then 0.9 
kcal/mol is released by the formation of two hydrogen bonds 
between the previously unpaired A and U. This can be seen in the 
upper left entry of Table 1. Note that swapping the nucleotides in 
an entry both vertically and horizontally results in a new valid 

entry. Hence, the bottom right entry 
UC
AG  with ∆G = -2.3 also 

implies an entry 
GA
CU  with ∆G = -2.3. 

A single mutation of a base pair to another base pair implies 
changing two of these propagation energies, one with the mutated 
pair on the right and another with the mutated pair on the left. 
Table 2 shows the overall change in free energy for the case 
where a single base pair mutates from CG to GC (where the first 
nucleotide specified is nearer to the 5' end of the molecule than 
the second nucleotide). The un-mutated pair is shown as an italic 
CG in the table. The four larger bold bases are the consensus 
neighboring bases (where it is assumed the mutation of interest is 
happening at a location not on the end of a helix). From the table 
it is clear that the change in energy from this mutation depends on 
the neighboring bases in the helix. Furthermore, the differences 
are not insignificant as can be seen by comparing the magnitudes 
of the values in Table 2 to those in Table 1. The currently used 
priors enforce a single substitution penalty for the CG to GC 
mutation independent of the consensus neighboring bases. 

 

Table 2. Free energy changes for CG to GC mutation*  

Neighboring 
Bases 

∆G 
(kcal/mol) 

Neighboring 
Bases 

∆G 
(kcal/mol) 

5'-ACA-3' 
3'-UGU-

5' 
-0.1 CCC 

GGG 
+0.4 

ACU 
UGA 

0.0 CCG 
GGC 

0.0 

UCA 
AGU 

0.0 GCC 
CGG 

0.0 

UCU 
AGA 

+0.1 GCG 
CGC 

-0.4 

ACC 
UGG 

-0.1 CCA 
GGU 

+0.4 

ACG 
UGC 

-0.5 CCU 
GGA 

+0.5 

UCC 
AGG 

0.0 GCA 
CGU 

0.0 

UCG 
AGC 

-0.4 GCU 
CGA 

0.1 

*Ignores a further possible change of 0.4 in free energy due to 
breaking or inducing symmetry in the full helix. 

 
This lack of neighbor dependence can not be overcome without 
rewriting the parameter estimation code. This rewriting is feasible 
since the source code is publicly available, but requires significant 
coding effort. To use the current code, the values in Table 2 could 
be averaged into a single value (0.0) for CG to GC mutation. 
Similar values could be obtained for mutations such as AU to GC 
or UA to GU, etc. (which in general would not be 0.0). If 
mutations with large positive energy changes are considered less 
likely (since they are less likely to hold the helix together), then 
simulated sequences with fewer of these large positive-energy-
change events can be generated and used with existing software to 
estimate priors. If these thermodynamic-measurement based 
priors have similar effectiveness to those based on generic 



ncRNA sequences, then perhaps incorporating neighbor 
dependence will have some advantage. 

Table 3 shows an example of the free energy changes and the 
score changes associated with observed GC to GU mutations in 
the known Cardiovirus CRE sequences. The mutation positions 
are the fourth and fifth base pairs from the top in Figure 2. The 
third and sixth base pairs from the top of the figure are always GC 
in all 30 known sequences. The first column of the table shows 
the four observed mutation patterns, with the larger bold symbols 
in the middle showing the mutating pairs. The second column 
shows the number of times the mutation pattern is observed. 
Notice that the top pattern is the consensus even though the 
second pattern is the most often observed. This is partly due to the 
fact that the consensus was defined from the twelve seed 
sequences (Figure 1) used to estimate the model and not from the 
full set including an additional eighteen sequences found by 
searching with the model. It is also partly due to entropy 
weighting, since the overall sequences of the sixteen with the 
second pattern are much more similar to each other than to other 
sequences in the full set. 

Two sets of score changes are shown, one using Dirichlet mixture 
priors from version 0.7 of Infernal (∆Score70) and another using 
only pseudocounts from version 0.55 (∆Score55). These changes 
in scores are relative to the consensus sequence and are found by 
taking the difference between the GC and GU emission scores. 
The change in score for the last row is by definition the sum of 
the score changes in the second and third rows since the two 
mutations are taken as independent. The third column of Table 3 
shows the sum of the three helix propagation energy changes for 
the helix pattern (one energy for the two left pairs, one energy for 
the two central pairs, and one energy for the two right pairs). The 
free energy increases with GC to GU mutations as is to be 
expected since GU bonds are not as strong as GC. One notices a 
correlation between free energy changes and score changes. By 
regressing score changes on free energy changes, appropriate 
conversion factors between the two might be obtained. 

 

Table 3. Free energy and score changes in Cardiovirus CRE 
(RF00453) family due to GC/GU mutations 

Helix 
Pattern Observed ∆G 

(kcal/mol) 
∆Score70 

(bits) 

∆Score55 
(bits) 

GGCC 
CCGG 

6 -9.2 0 0 

GGUC 
CCGG 

16 -6.1 -2.46 -0.89 

GGCC 
CUGG 

6 -6.1 -2.78 -1.15 

GGUC 
CUGG 

2 -3.1 -5.24 -2.04 

 

3.4 Dependence of Free Energy Changes on 
Loop Lengths 
Thermodynamic measurements of RNA structures indicate that 
the number of bases in loops (unpaired segments of the RNA 

sequence) has a significant influence on the stability of the RNA 
molecule [7]. Three types of common loops will be discussed 
here: hairpin, bulge, and internal. The hairpin loop is a segment of 
unpaired sequence directly between two segments that are base 
paired with each other. A bulge loop is a segment of unpaired 
sequence that interrupts a helix on one side (either the 5'-side of 
the helix or the 3'-side). An internal loop is a pair of bulges on 
both the 3'- and 5'-side of a helix between the same two base pairs 
of the helix. In Figure 2, a hairpin loop is found at the bottom of 
the figure and a 5'-bulge loop with three unpaired bases is found 
on the left side of the figure. The 5'-bulge loop interrupts the helix 
between two AU base pairs. If there was also a 3'-bulge loop 
between the two U's, then the pair of bulge loops would instead be 
classified as a single internal loop. 

 

Table 4. Free energy changes for loop-length changes [7] 

Loop 
Length Internal Bulge Hairpin 

1 - +3.3 - 

2 +0.8 +5.2 - 

3 +1.3 +6.0 +7.4 

4 +1.7 +6.7 +5.9 

5 +2.1 +7.4 +4.4 

6 +2.5 +8.2 +4.3 

7 +2.6 +9.1 +4.1 

8 +2.8 +10.0 +4.1 

9 +3.1 +10.5 +4.2 

10 +3.6 +11.0 +4.3 

12 +4.4 +11.8 +4.9 

14 +5.1 +12.5 +5.6 
All free energy changes in units of kcal/mol 

 
 

Table 4 shows the free energy changes for various loop lengths 
for the three types of loops. Internal loops of length 1 are not 
possible since each of the component bulges must have at least 
one unpaired base. Hairpin loops of length 1 and 2 result in steric 
hindrance such that it is impossible to form the hydrogen bonds 
on the last base pair of the enclosing helix. Even if the last base 
pair of the potential helix was a Watson-Crick GC pair with very 
strong three hydrogen bond potential, it will not form, so the 
resulting length 1 or 2 hairpin loop will actually become a length 
3 or 4 loop. Hairpin loops of length 3 or 4 are still very tight and 
will tend to almost  entirely offset the  free energy of the end base 
pairs of the helix. This can be seen by the high +7.4 and +5.9 
kcal/mol free energy changes for hairpin loop lengths of 3 and 4. 
Bulge loops increasingly bend and disrupt the helix as they grow, 
so the free energy changes increase monotonically with loop 
length. Internal loops distort the helix much less and therefore 
have much smaller free energy changes. It should be noted that an 
internal loop of length two can be generated where no internal 



loop previously existed by a mutation in a base pair such that the 
resulting pair is no longer a Watson-Crick or GU pair. Hence the 
mutation free energy change values discussed in Section 3.3 
between Watson-Crick/GU pairs can be augmented to include all 
possible mutations. 

The dependence on loop lengths can be integrated into the CM 
parameter estimation if a separate prior is allowed for each  node 
of the CM rather than using the same prior for every node in the 
model of the same type. Rather than have a single prior for all L 
nodes, separate priors for L nodes in hairpin loops with consensus 
length 3, 4, 5, etc. need to be specified. The prior for the length-3 
hairpin L nodes would have a very large penalty on state 
transitions through the D state, whereas the prior for length-8 
hairpin L nodes would have a much smaller D-state transition 
penalty. 

Table 5. CM scoring for loop-length changes* 

Loop 
Change Context CM 

Node 
CM 

State 
RF453 
∆Score** 

Insert 
Hairpin L1-L2 L1 IL -5.29 

Insert 
Hairpin P-L P IL -5.70 

Insert 
Hairpin L-P P or 

 L 
IR or 
 IL -4.70*** 

Delete 
Hairpin Any L D -5.08 

Insert 
3'-Bulge R1-R2 R2 IR - 

Insert 
3'-Bulge P-R R IR - 

Insert 
3'-Bulge R-P P IR - 

Delete 
3'-Bulge Any R D - 

Insert 
5'-Bulge L1-L2 L1 IL -5.29 

Insert 
5'-Bulge P-L P IL -5.70 

Insert 
5'-Bulge L-P L IL -5.29 

Delete 
5'-Bulge Any L D -5.08 

*Internal loops in a CM are just a 3'-bulge and a 5'-bulge that happen 
to be internally adjacent to the same P node. There is no explicit 
linkage or special notation for the pair of bulges. 
**∆Score is relative to the local consensus sequence. Additional loop-
length changes (multiple insertions or deletions) require slightly 
different transition scores. Score changes are for Infernal 0.55 models. 
***∆Score using L.IL is -4.70 which exceeds ∆Score of -5.29 of P.IR, so 
dynamic programming will choose path with -4.70 score contribution. 
 
 
Table 5 shows how insertions and deletions are implemented in a 
CM for the various types of loops and whether the insertion or 
deletion is internal to the loop or at one of the loop ends. Only 
hairpin and bulge loops are shown since CMs treat internal loops 
as two completely independent bulge loops. The context column 
shows which type of CM node is associated with the consensus 
sequence symbol to the left and right of the insertion or deletion 

position. The CM node column shows the node that contains the 
state responsible for the insertion (IL or IR) or deletion (D) and 
the CM state column shows the responsible state. In the case of 
insertions on the 3'-end of a hairpin loop there is ambiguity as to 
whether this insertion is done by the L node to the left or the 
enclosing P node (3rd row of table). In practice, whichever of the 
two has a smaller (in magnitude) score penalty for the insertion is 
the one that matters. The last column of the table shows the score 
reductions resulting from the insertion or deletion for the 
Cardiovirus CRE (RF00453) family when estimated using 
Infernal 0.55 (without Dirichlet priors). 

The insertion and deletion penalties in the last column of Table 5 
are substantial. The score of the consensus sequence for this 
family is 37.75 and the threshold used is 25.0 (called the 
gathering cutoff in Rfam), so the penalties for changes from the 
consensus sequence can not exceed 12.75 without the database 
sequence being rejected. The best score for a rejected sequence is 
19.44 (noise cutoff) and the worst score for an accepted sequence 
is 27.51 (trusted cutoff) for this family in Rfam, so the separation 
between accepted and rejected database sequences is rather small. 
Since there are no observed insertions or deletions in any known 
members of this family, all score penalties in Table 5 depend 
purely on priors (in this case uninformative priors, since Infernal 
0.55 is shown). It is entirely possible that actual family members 
with insertions and deletions have been missed because the 
estimated penalties for these insertions or deletions are so high 
based on the priors. More information on which insertions or 
deletions are reasonable and which are not might allow priors that 
could find such cases. 

Some of the score changes in the last column of Table 5 are 
forced to be the same by the current implementation. The four 
values associated with hairpin loops must be the same as the 
values for the 5'-bulge (with the exception of the L-P context) 
since the priors must be the same and no insertions or deletions 
are observed in either case. There is no mechanism to distinguish 
between hairpin loops, bulge loops, or internal loops. There is 
also no way to incorporate information about consensus loop 
lengths. Modification of the cmbuild program in the Infernal 
package to allow different priors would allow this. The cmbuild 
program already has access to the consensus structure, so 
determination of consensus loop types and lengths by the program 
would not be very difficult. 

4. CONCLUSIONS 
The presentation in this paper has been mostly conceptual, with a 
few illustrations from a real ncRNA family used to demonstrate 
the points discussed. The intent is to show that there is potential to 
improve covariance model based ncRNA gene search by 
including information contained in experimental thermodynamic 
data into the CM parameter estimation process. This 
thermodynamic data can be used as an independent source of 
information contained in current parameter estimation priors and 
therefore potentially reduce noise through averaging. The data 
also allows for the production of more specific priors that depend 
on neighbors in helices and on loop lengths. The current Infernal 
parameter estimation program (cmbuild) does not allow for such 
context dependence, but could with some moderate coding effort. 
No changes would be necessary to the database search program 
(cmsearch). 
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