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ABSTRACT
In this paper we study the fault tolerance of gene networks.
We assume single gene knockouts and investigate the effect
this kind of perturbation has on the communication between
genes globally. For our study we use directed scale-free net-
works resembling gene networks, e.g., signaling or protein-
protein interaction networks, and define a Markov process
based on the network topology to model communication.
This allows us to evaluate the spread of information in the
network and, hence, detect differences due to single gene
knockouts in the gene-gene communication asymptotically.

Keywords
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1. INTRODUCTION
In recent years, networks have been studies numerously [2,

1, 14, 15, 16, 18]. In contrast to classical approaches deal-
ing mainly with random networks [8, 9] the last decade was
dedicated to the study of small-world [21, 20] and scale-free
[2, 11] networks or combinations thereof [19]. The rapid in-
crease in interest studying complex networks in general can
be explained by the fact that many real world phenomena
can be modeled within the frame of either of these non-
random network topologies. For example, the World-Wide
Web, the Internet or biological networks are examples these
networks are playing key roles [2, 1, 14, 19].

Recently, Alberts et al. [3] studied the error and at-
tack tolerance of complex networks and compared random
and scale-free networks, e.g., the World-Wide Web or the
Internet. By using purely graph theoretical measures they
found that scale-free networks are much more robust against
random errors than random networks but more vulnerable
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against directed attacks. In this paper we extend this anal-
ysis regarding two important points. First, we use directed
scale-free networks because we are interested in the fault tol-
erance of gene networks, e.g., transcriptional regulatory, sig-
naling or protein-protein interaction networks, which are di-
rected. Second, we introduce a measure that aims to capture
the perturbed communication abilities of directed scale-free
networks information theoretically [4, 22] due to structural
modifications of the network [5, 7].

2. MOTIVATION
In this paper we are interested in the analysis of the ef-

fect single gene knockouts, which are a special form of net-
work perturbation, have on the communication abilities of
directed scale-free networks resembling gene networks. More
precisely, we are interested to study the global effect of these
perturbations on a systems level. The information we want
to gain from this investigation is twofold. First, we want to
learn if there are genes that are more vulnerable regarding
single gene knockouts than others and, second, what does
this mean in terms of local properties of these genes with
respect to the network topology. The second question ad-
dresses a connection between global and local properties be-
cause we measure the perturbed communication regarding
all genes whereas locally we consider only a small neighbor-
hood around genes sending signals.

3. METHODS

3.1 Generate directed scale-free network
The algorithm we use to generate a network that has scale-

free in- and out-degree distribution is very similar to an al-
gorithm that has been recently introduced [10].

1. Start with n0 unconnected nodes.

2. Add one new node to the network.

3. Connect it to e (≤ n0) nodes from the existing network.
A node is chosen based on the out-degree distribution

pout
i =

kout
i

P

j
kout

j

. (1)

The direction of a new edge is ’to’ the new node.

4. Connect the new node to e nodes in the existing net-
work. A node is chosen based on the in-degree distri-
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Figure 1: Cumulative Out-degree (left) and in-degree distribution (right) of a scale-free network with |V | = 200
nodes and ed = 0.03. The straight line in both figures corresponds to a power-law P (k) ∼ k−γ with exponent
γ = 2.3.
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The direction of a new edge is ’from’ the new node.

5. If the number of nodes in the networks is N stop, oth-
erwise go to step (2).

The algorithm to generate a directed scale-free network has
several free parameters. The total number of nodes in the
network |V |, the number of initial nodes n0 in the uncon-
nected network and the number of edges e that are added
each iteration step. Because e has to be ≤ n0 [10] there
is a trade-off between the resulting edge density (ed) and
the mean number of nodes that is in the final network un-
connected. Choosing n0 = e = 1 would lead to a fully
connected network, however, the edge density is very low
compared to real networks. Because we are aiming to study
gene networks we choose these parameters higher to obtain
a more realistic edge density. To ensure connectedness we
search in the final network the nodes with zero in- and zero
out-degree and connect them with one connection to a node
randomly chosen from the remaining network. Because the
mean number of unconnected nodes for |V | = 200 is of or-
der O(1) these additional edges do not destroy the overall
degree distributions for the out- and in-degrees.

We want to point out that the property of a network be-
ing scale-free does not determine other network properties,
e.g., < kin >, < kout > or the edge density. That means,
if one has additional requirements one needs to define an
appropriate stochastic process that produces a growing net-
work with the desired properties correspondingly. Fig. 1
shows the cumulative out- (left) and in-degree (right) distri-
butions for one scale-free network with |V | = 200 nodes and
ed = 0.03 (3% of all possible connections). The straight line
in both figures corresponds to a power-law P (k) ∼ k−γ with
exponent γ = 2.3. As previous studies indicate, many real
networks have a scaling exponent between 2 and 3 [1, 14].

3.2 Markov process
We define a Markov process by using a given network

topology G and the plausible assumption that all possible

interactions are equal likely. Plausible in this context does
not necessarily mean that this corresponds best to the real
situations of, e.g., protein-protein interaction or signaling
networks, but to the most simple assumption one can make.
Because G is a directed graph it is possible that the resulting
Markov process is not ergodic despite the connectedness of
G. This means that not all nodes in the network can be
reached via a path from other nodes. For simplicity, we
assume the Markov process to be of first-order

T (Xn+1 = j|Xn = in, ..X1 = i1) = T (Xn+1 = j|Xn = in).

Definition 1. A Markov process of first-order for a net-
work G = (V, E) is defined by

T (Xn+1 = j|Xn = i) =

 1

kout

i

: kout
i > 0 & Eij = 1

0 : else
(3)

for all i, j ∈ V .

3.3 Global effect of the perturbation
In this paper we study the effect single gene knockouts

have on the information processing in gene networks. To
detect this influence we define a global information theo-
retic measure. By global effect we define the deviation of
the unperturbed (or normal) state from the perturbed state
caused by deletion of gene k. Concretely, we measure this
effect as the relative entropy also known as Kullback-Leibler
(KL) distance D [13, 12] between the stationary distribution
of these two states given by

Definition 2.

Dik = D(pp,∞
i,k ||pn,∞

i ) =
X

m

pp,∞
i,k (m) log

pp,∞
i,k (m)

pn,∞
i (m)

. (4)

The stationary distribution for pp,∞
i,k and pn,∞

i is obtained
by

p∞ = lim
t→∞

T tp0
i . (5)

We want to remark that we start for both distributions from
the same initial distribution which depends on i as explained
below. Here pp,∞

i,k is the stationary distribution of the per-
turbed (p) network obtained by knocking out gene k and
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Figure 2: Results for a directed scale-free network with |V | = 200 nodes. Left: Color-coded Dik values. Blue
corresponds to low and green to high values. Right: Histogram of the Dik values.

starting from the initial distribution p0
i = δi,m

2 (∀m ∈ V ).
The interpretation for the unperturbed distribution pn,∞

i is
correspondingly. It is important to use |V |−1 (starting from
k is excluded) different initial distributions p0

i because the
underlying Markov process T might not be ergodic, hence,
different initial distributions might give different asymptotic
results. That means Eq. 4 is a matrix whose components
Dik correspond to deletion of gene k and initial distribution
p0

i = δi,m. The diagonal elements of Dik are not defined.

4. RESULTS
In Fig. 2 we show the obtained results for a directed scale-

free network with |V | = 200 nodes. The left figure shows
the components of Dik color-coded, whereas blue represents
a low and green a high relative entropy. Apparent patterns
in this figures are the vertical strips. They indicate that
starting from gene i, that has such a vertical strip, a per-
turbation of almost any other gene will heavily perturb the
resulting stationary distribution. This can be interpreted
as fragility of gene i regarding general single gene pertur-
bations. The number of fragile genes in dependence of a
thresholding parameter β corresponding to the severity of
the perturbation is shown in Fig. 3. Here the number of
effected genes Ne is defined by

Ne(β) =
X

i

Θ
“

X

k

Θ(Dik − β) −
1

2|V |

”

. (6)

The thresolding β parameter is in [0, 1] and Θ() corresponds
to the theta-function. The term 1

2|V |
indicates that we con-

sider only genes as effected if at least half of all possible
knockouts k perturb the system in a way that Dik > β.
From Fig. 3 one can see that about 20 genes are very vul-
nerable (for β = 0.1) against gene knockouts. That means,
about 10% of all genes seem to be the bottlenecks regarding
communication failures in the system.

2Kronecker delta.

Now we want to investigate if the number of single gene
perturbations that has significant influence on a gene is cor-
related to the in- and out-degrees of the gene. For this reason
we determine

Ni =
X

k

Θ
`

Dik − β
´

, (7)

for β = 0.1 and compare it with a corresponding in- and
out-degree vectors. We use Spearman’s rank correlation co-
efficient [17] and test for correlation between the ranked vec-
tors. For the in- and out-degree vectors we obtain p-values
below a significance level of α = 0.05 indicating that, e.g.,
high degrees correspond to many perturbed genes. These
results seem plausible considering the following situation:
Suppose we have a gene that is connected to all other genes
(outgoing edges). It is clear, that an arbitrary knockout of
a single gene effects with probability one an outgoing edge
of this gene. Hence, this knockout will have an influence on
the information processing of this gene. The strength of this
influence can not be easily predicted given just this informa-
tion, however, the point is that we have an influence with
probability one. Instead, a gene having very few outgoing
connections has a lower probability that a single knockout
effects one of its outgoing edges (Pr = kout/Np with Np

the number of genes that can be perturbed). However, it
is possible that the knocked out gene destroys some com-
munication paths (secondary- or even higher-order effect if
measured as Dijkstra distance [6]) and, hence, can still have
a strong impact on the information processing. It seems to
be reasonable to assume that the further away the knockout
gene is from the starting gene (in Dijkstra distance [6]) the
less the impact will be. This is a strong indicator that in-
formation processing on a systems level (that means global)
depends crucially on the information processing in a local
environment of the gene that sends the information. We
want to remark that in our analysis the number Ni, given
in Eq. 7, of single gene perturbations that has significant
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Figure 3: The number of fragile genes in dependence
of a thresholding parameter β corresponding to the
severity of the perturbation.

influence on a gene is a global measure, whereas the in- and
out-degree vectors are local measures.

5. CONCLUSIONS
In this paper we analyzed the influence single gene per-

turbations have on the global communication abilities of di-
rected scale-free networks resembling gene networks. We
defined an information theoretic measure to quantify differ-
ences between perturbed and unperturbed communication
as relative entropy between the corresponding stationary
distributions resulting from Markov processes. We found
that there are about 10% of the genes in the network that
are very sensitive against single gene perturbations. Further,
we showed by a statistical test that there is a correlation be-
tween the grade of sensitifity of genes and their in-and out-
degrees. This result estabishes a connection between global
(the grade of sensitifity against perturbations) and local (in-
and out-degrees) properties regarding the communication of
information within networks and, hence, suggests that the
effects of perturbation detectable globally might be under-
stood by studying the local environment, corresponding to
a subgraph, of the gene that sends the information initially.
Regarding the fault tolerance of gene networks our results
raise the question of the importance of genes with high in-
and out-degrees. In future studies we will investigate the in-
terplay between local and global effects perturbations have
on the communication within the network in more detail to
shed further light on this important problem.
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