
Asynchronous Team Algorithms for Boolean Satisfiability
Carlos Rodríguez
Politechnical School

National University of Asuncion
San Lorenzo, P.O. Box 2169

Paraguay
Tel: +595-(21)-585-599

crodriguez@cnc.una.py

Marcos Villagra
Science and Technology School-DEI

Catholic University of Asuncion
Asuncion, P.O. Box 1683,

Paraguay
Tel: +595-(21)-334-650

marcos_villagra@uca.edu.py

Benjamín Barán
Politechnical School

National University of Asuncion
San Lorenzo, P. O. Box 2169,

Paraguay
Tel: +595-(21)-585-599

bbaran@pol.una.py

ABSTRACT
The Boolean Satisfiability Problem or SAT is one of the most
important problems in computer science. Nowadays, there are
different types of algorithms to solve instances with thousands of
variables, and much research is being carried out looking for more
efficient algorithms to solve larger and harder instances. This
work proposes the utilization of a Team Algorithm (TA) strategy
combining different local search algorithms for SAT as
WalkSAT, R-Novelty+, Adaptive Novelty+, RSAPS, IROTS and
SAMD. TAs allow the combination of different algorithms that
interact with each other searching for a good global solution.
Experimental results show that the proposed TA is a general
strategy capable of obtaining promising results for a variety of
instances.

Keywords
SAT, MAX-SAT, Team Algorithms, Asynchronous Team, Local
Search.

1. INTRODUCTION
Boolean Satisfiability or SAT is the problem of finding an
assignment of values to Boolean variables for a propositional
logic formula, in such a way that it is evaluated as true. SAT is a
NP-Complete problem and it was the first proved to belong to this
class [2], and as such it is considered to be one of the most
important problems in computer science.

There are many algorithms for SAT (usually known as solvers)
for different varieties of the problem. These algorithms are
divided in two strategies: the Davis-Putnam method (DP) and
Local Search [3]. Algorithms based on DP are backtracking
search algorithms with heuristics to quickly cut-off the search
tree. On the other hand, local search techniques for SAT work
with complete assignments and there is no guaranty of finding
satisfying assignments if one exists or proving the unsatisfiability
of the formula.

Since the appearing of SAT, there has been a lot of progress in the
development of solvers. Nowadays, there are many methods that
turned out to be very fast to solve hard instances of the problem,
and there is a great demand for better algorithms that could solve

even larger and harder problems. Sequential solvers dominate the
field. This is mainly justified by the performance improvements in
modern sequential computers [11]. However, there is an important
challenge concerning parallel solvers, since there are SAT
instances that are out of the reach of state-of-the-art sequential
algorithms. In practice, most of the sequential algorithms can be
mapped to parallel computers resulting in parallel algorithms for
SAT. This is the approach used in most parallel implementations
[11]. There are parallel implementations for different
multiprocessing hardware architectures, as there are also
distributed implementations. Most of these implementations are
based on selecting some efficient sequential algorithm and
parallelizing it according to the target architecture [11].

On the other hand, this work proposes the application of a Team
Algorithm (TA) strategy [1] for SAT. This bio-inspired strategy is
based on the accomplishment of animal societies working as a
team, as ants, bees, and other insects which cooperatively achieve
considerable objectives using simple mechanisms. TAs allow the
combination of different algorithms that interact with each other
in the process of searching for the global solution to a problem.
This strategy can be naturally implemented in parallel, assigning
different parts of a problem to processors of an asynchronous
distributed system, like a computer network, in which case it is
known as Asynchronous Team (A-Team) [1]. TAs have been
applied to many important and difficult problems such as
multiobjective optimization, topological optimization of reliable
networks, hydroelectric optimization, to name a few.

The remainder of this work is organized as follows. Section 2
presents the SAT problem. TAs and A-Teams are introduced in
section 3. In section 4, the main proposal of this work is
presented. Experimental results proving the advantages of using
TAs are given in section 5. Conclusions and future work are left
for section 6.

2. THE SAT PROBLEM
SAT is defined by a set of Boolean variables X={x1,…,xn} and a
Boolean formula or sentence ø:{0, 1}n {0, 1} where n denotes
the number of variables. The objective is to find a variable
assignment m=‹x1,…,xn›∈{0, 1}n (i.e., a model) where ø(m)=1.
The formula is called satisfiable if such a model exists, and
unsatisfiable otherwise. A literal is a variable (also called atom or
symbol) or its negation. A clause is a disjunction of literals, i.e.,
literals connected by an ∨ operator. The formula ø is in
conjunctive normal form (CNF) if ø(m)=c1(m)∧…∧cp(m), where
each ci is a clause and p is the number of clauses. The family of k-
CNF sentences has exactly k literals per clause. SAT can be
assumed having CNF formulae without loss of generality, and k-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
BIONETICS’07, December 10-13, 2007, Budapest, Hungary.
Copyright 2007 ICST 978-963-9799-11-0

SAT only contains sentences in k-CNF. While 2-SAT is solvable
in polynomial time, k-SAT is NP-complete for k 3.

MAX-SAT is an optimization variant of SAT. Given a set of
clauses, MAX-SAT is the problem of finding a model m that
maximizes the number of satisfied clauses f(m). In weighted
MAX-SAT each clause ci has a weight wi assigned to it, while
unweighted MAX-SAT uses wi = 1 for all i. The following
equation defines the MAX-SAT objective function:

f(m)= j∈{1,…,p}wj·cj(m) (1)

where ci(m) = 1 if the clause ci is satisfied under the assignment
m, and 0 otherwise. Thus, when searching for a solution to MAX-
SAT, one is actually looking for models to SAT formulae.
Therefore, solutions refer to models and vice versa. There are only
some differences between particular cases of SAT and MAX-
SAT, where MAX-k-SAT is NP -hard for k 2.

3. TEAM ALGORITHMS
It is well known that a given algorithm may be better than others
in a subset of problems; however, the “No Free Lunch” theorems
state that any two good algorithms are equivalent when their
performance is averaged across all possible problems. In SAT, it
is mainly due to the structures in instances what penalizes some
kind of algorithms while favoring others [3]. As a consequence, it
is common that, when searching for solutions to some subsets of
the problem, the selection of algorithms is restricted to the most
suited and convenient [3]. Even though, there are cases in which
the utilization of some algorithms for solving a specific instance
of the problem gives an unacceptable performance and poor
execution times [3].

There are many SAT solvers available for public access [13].
Therefore, the question about which are the best alternatives and
the possibility of combining them in some way to face hard
problems emerges. There is a technique that combines different
algorithms that interact with each other in the search process. This
strategy is known as Team Algorithms (TA) [1]. Solving
problems with TAs can be naturally implemented in parallel,
assigning different parts of the problem to processors in an
asynchronous distributed system, such as a computer network, in
which case it is known as Asynchronous Team (A-Team) [1].

In a distributed system, an A-Team consists in a collection of
processors to which sub-problems are assigned in such a way that
each processor executes the most suited algorithm for the given
sub-problem. An A-Team is always paying attention to the
progress in the resolution of the sub-problems, in order to find a
global solution to the problem [1]. It is important to notice that the
main feature of A-Teams (with respect to TAs) is asynchronism,
i.e., different processors communicate with each other avoiding
any kind of central clock or blocking communication protocol. In
this manner, it is assured that each processor of the network is
used efficiently, avoiding idle times and computational resource
wastes.

4. A-TEAM FOR SAT
This work proposes the application of the A-Team strategy with
overlapping [1] to SAT. Since there are a great number of
algorithms with very efficient heuristics, there is a valuable
foundation to build an A-Team with these methods.

The A-Team for SAT is proposed as a Master/Slave model. The
Master is in charge of coordinating the activities of the slaves,

which effectively solve the problem. It is also responsible for
launching the slave processes with a default algorithm, indicating
the problem to solve. Each Slave executes the algorithm assigned
to it, and reports the results asynchronously to the Master
delivering the solution found so far. Solutions obtained from the
Slaves are stored in the Master process, in a pool of global
solutions with an arbitrary maximum size. The A-Team is
executed until the number of unsatisfied clauses equals zero (i.e.,
a model was found), or until a maximum execution time is
reached reporting the best approximation and the algorithm which
found it.

The model used by the A-Team is the overlapping solution with
independent runs, i.e., each Slave will solve the whole problem
independently and report the results to the Master. Also, a
technique to promote synergy among algorithms is implemented,
in which the Master starts sharing solutions from the global pool
among the algorithms of the A-Team after some fixed execution
time. This scheme is used to refine the solutions of the algorithms.

The algorithms implemented for the Slave processes are all based
in local search techniques. Most of these algorithms are available
for public access, and they have been optimized in various stages
with very efficient executions. This work proposes to take
advantage of these implementations, and adapt them to the
framework of the proposed A-Team.

A total of six local search algorithms were selected for the A-
Team, which merges traditional algorithms of the state of the art.
The implementations of these algorithms where selected from
UBCSAT [13]. For this work, the following were selected:

• WalkSAT [10].
• R-Novelty+ [6].
• Adaptive Novelty+ [5].
• RSAPS [8].
• IROTS [12].
• SAMD [4].

Since all these algorithms are prepared to solve MAX-SAT, the
resulting A-Team will be able (in principle) to work with any type
of instance, obtaining this way a general strategy. This way, the
proposed A-Team constitutes a framework for solving MAX-SAT
problems using algorithms based on local search strategies. Due to
the diversity of algorithms composing the A-Team, it is expected
that the proposed parallel solver will be able to solve any kind of
SAT instance, regarding the structure present in the problem. This
is an important advantage, especially when there is a need for
exploring new instances with unknown characteristics.

5. EXPERIMENTAL RESULTS
5.1 Environment
The environment in which the experiments were performed
consists of a computer network with seven personal computers,
each having 3.0 GHz Intel Pentium processors, 512 MB of RAM
and 100 Mbps Network Interface Card (NIC). The computers
were connected in a star topology using a switch of 100 Mbps
forming a Local Area Network (LAN). The operating system
running in each computer was Linux Fedora Core4 with a kernel
version 2.6.11-1.

The algorithms were implemented with ANSI C programming
language, using a GCC version 4.0.0 compiler. Libraries of

Parallel Virtual Machine (PVM) version 3.4 were used for
communications.

To compare the performance of the different algorithms, a
benchmark with a variety of instances from SATLIB [7] was
chosen, considering mainly hard instances as detailed in Table 1.

Table 1. Instances used for experiments.

ID Instance #Var #Cla Sat
1 par32-1-c 1315 5254 S
2 ewddr2-10by5-1 21800 118607 S
3 4blocsb 540 34199 S
4 bf1355-075 2180 6778 S
5 ssa6288-047 10410 34238 N
6 g250.15 3750 233965 S
7 hanoi5 1931 14468 S
8 qg5-13 2197 125464 N
9 bmc-ibm-11 32109 150027 S
10 bmc-galileo-9 63624 326999 S
11 ais12 265 5666 S
12 logistics.d 4713 21991 S
13 ii32e5 522 11363 S
14 bw_large.d 6325 131973 S
15 g250.29 7250 454622 S
16 par16-5 1015 3358 S
17 3bitadd_31 8432 31310 S
18 f3200 3200 13600 S
19 f6400 6400 27136 S
20 jnh310 100 900 N

The experiment consisted in executing the algorithms mentioned
above, as well as the A-Team combining all of them. For each
instance, the A-Team was executed ten times for a period of 300
seconds for each run. It was also established that the Master
process would start distributing solutions from the global pool at
120 seconds since the beginning of the run.

To compare the performance of the A-Team with the six different
algorithms (each one on a different Slave process), parallel
versions of WalkSAT [10], RNovelty+ [6] and RSAPS [8] were
implemented. For these implementations, the same framework of
the A-Team was used, running the same algorithm on each slave
process but avoiding the solution sharing scheme. This allowed
the comparison of the effect of combining different algorithms in
the process of solving a given problem with respect to the
different algorithms individually parallelized.

The configuration parameters of the algorithms which were used
for the runs are the ones predefined in UBCSAT [13]. A restart
parameter of 106 flips was established as a general parameter for
all algorithms. When a model is found or when this number of
flips is reached, the best solutions found by the Slaves are sent to
the Master which keeps a global solutions pool. The maximum
size for this pool is fixed to Z=50 solutions.

5.2 Comparative Results
Table 2 presents the results of several runs. The following metrics
were used for comparisons purposes:

• Mean of unsatisfied clauses (mean): This is the mean of
unsatisfied clauses obtained as results of the runs.

• Success Rate (SR): This is the proportion of runs in which
a model was found (0 SR 1).

• Mean Execution Time (sec.): This is the mean execution
time measured in seconds, for those runs in which a model
was found. For this metric, is used to denote an
execution time lower than 0.005 seconds.

Among the presented metrics, sec and SR are used only in those
cases in which a model was found at least once. In all other cases,
the minimum number of unsatisfied clauses is reported instead.

The results presented in Table 2 show that the proposed A-Team
has obtained a very competitive performance with respect to the
other algorithms in terms of the mean metric. In most of the
instances the A-Team has achieved the lowest mean and,
particularly, it can be noticed that in instances 9 (bmc-ibm-11), 14
(bw_large.d), 15 (g250.29) and 16 (par16-5) the mean obtained by
the A-Team has defeated all other algorithms. Moreover, it is
important to notice that in those instances in which the A-Team
was defeated in terms of mean (1 (par32-1-c), 5 (ssa6288-047), 8
(qg5-13) and 19 (f6400)), the difference is relatively very small
considering the number of clauses. Table 3 presents a ranking of
the strategies considering the mean metric across all instances.
Here, it can be seen that the A-Team has achieved the best
performance in average.

6. CONCLUSIONS AND FUTURE WORK
This work presented a MAX-SAT solver based on the
Asynchronous Team Algorithms (A-Team) strategy, a bio-
inspired method based on the accomplishment of animal societies
working as a team, as ants, bees, and other insects which
cooperatively achieve considerable objectives. The algorithms
used are all based on local search methods, which were selected
among representative state-of-the-art algorithms and traditional
methods for MAX-SAT as WalkSAT, R-Novelty+, Adaptive
Novelty+, RSAPS, IROTS and SAMD. The A-Team was
implemented using the Master/Slave model, promoting this way a
synergy effect among algorithms by means of global results
sharing during the execution of the slaves.

Experimental results showed that the proposed A-Team has the
ability of solving efficiently a great variety of instances. Also, in
the majority of the studied instances, improved solutions were
obtained with respect to the parallel versions of the local search
methods. As it can be noticed in the experimental results, the
proposed A-Team can be used as a general strategy to face a great
variety of instances obtaining very competitive results. Therefore,
the A-Team turns out to be a very useful strategy when there is a
need for exploring new instances with unknown characteristics.

Directions for future work include the implementation of a
strategy for dynamically replacing algorithms, which may include
a scheme to rank those algorithms. This way, it would be possible
to replace different algorithms with lower performance with those
algorithms previously selected for their outstanding performance.
Also, an A-Team with a larger number of local search algorithms
mixing them with metaheuristics (e.g., GASAT [9], Ant Colony
Optimization [14]) could be implemented.

7. REFERENCES
[1] B. Barán, E. Kaszkurewicz, and A. Bhaya. Parallel

Asynchronous Team Algorithms - Convergence and
Performance Analysis. IEEE Transactions on Parallel and
Distribuited Systems, 7:677-688, 1996.

[2] S. Cook. The Complexity of Theorem-Proving Procedures.
In Proceedings of The 3th Anual ACM Symposium of the
Theory of Computing, pages 151-158. ACM, 1971.

[3] J. Gu, P. Purdom, J. Franco, and B. Wah. Algorithms for the
Satisfiability (SAT) Problem: A Survey. In DIMACS Series
on Discrete Mathematics and Theoretical Computer Science,
1997.

[4] P. Hansen, and B. Jaumard. Algorithms for the maximum
satisfiability problem. Computing, 44(4):279-303, 1990.

[5] H. Hoos, H. An adaptive noise mechanism for WalkSAT. In
Proceedings of the 18th National Conference in Artificial
Intelligence (AAAI-02), pages 655-660. 2002.

[6] H. Hoos. On the run-time behaviour of stochastic local
search algorithms for SAT. In Proceedings of the 16th
National Conference on Artificial Intelligence(AAAI-99),
pages 661-666. 1999.

[7] H. Hoos, and T. Stützle. SATLIB: An Online Resource for
Research on SAT. In Proceedings of SAT 2000, pages 283-
292. IOS Press, 2000.

[8] F. Hutter, D. Tompkins, and H. Hoos. Scaling and
probabilistic smoothing: Efficient dynamic local search for
SAT. In Proceedings of the 8th International Conference on
Principles and Practice of Constraint Programming (CP-
02), pages 233-248. 2002.

[9] F. Lardeaux, and F. Saubion. GASAT: A Genetic Local
Search Algorithm for the Satisfiability Problem.
Evolutionary Computation, 14(2):223-253, 2006.

[10] B. Selman, H. Kautz, and B. Cohen. Local Search Strategies
for Satisfiability Testing. In Proceedings of 2nd DIMACS
Challenge on Cliques, Coloring and Satisfiability. 1993.

[11] D. Singer. Parallel Resolution of the Satisfiability Problem.
A Survey. Technical Report: LITA 2007-101. Université Paul
Verlaine - Metz. 2007.

[12] K. Smyth, H. Hoos, and T. Stützle. Iterated Robust Tabu
Search for MAX-SAT. In Proceedings of the 16th Canadian
Conference on Artificial Intelligence (AI 2003), 129-144.
2003.

[13] D. Tompkins, and H. Hoos. UBCSAT: An Implementation
and Experimentation Environment for SLS Algorithms for
SAT and MAX-SAT. In 7th International Conference on
Theory and Applications of Satisfiability Testing (SAT2004).
2004.

[14] M. Villagra, and B. Barán. Ant Colony Optimization with
Adaptive Fitness Function for Satisfiability Testing. Logic,
Language, Information and Computation, volume 4576 of
Lecture Notes in Computer Science (LNCS), pages 352-361.
Springer, 2007.

Table 2. Experimental results.

A-Team WalkSAT RNovelty+ RSAPSID mean SR sec. mean SR sec. mean SR sec. mean SR sec.
1 6.2 (5 clauses) 101.8 (93 clauses) 5.7 (5 clauses) 5.6 (5 clauses)
2 0 1 0.1 0.9 166.5 15.8 (14 clauses) 0 1
3 0 1 0 1 0 1 27.34 0 1
4 1 (1 clause) 1 (1 clause) 1 (1 clause) 1 (1 clause)
5 44,6 (37 clauses) 102.6 (92 clauses) 38.7 (31 clauses) 47.6 (35 clauses)
6 0 1 0 1 0 1 0 1
7 1 (1 clause) 2.8 (2 clauses) 1 (1 clause) 1 (1 clause)
8 17.7 (14 clauses) 262.2 (257 clauses) 15.2 (14 clauses) 66.3 (51 clauses)
9 357 (322 clauses) 1028.4 (1014 clauses) 545.7 (538 clauses) 2676.2 (1524 clauses)
10 37.7 (28 clauses) 30.1 (24 clauses) 1269.8 (1235 clauses) 5229 (4465 clauses)
11 0 1 0 1 3.51 0 1 22.98 0 1
12 0 1 0 1 0 1 17.21 0 1
13 0 1 3 1 0.01 0 1 0 1
14 0 1 59.06 15.4 (10 clauses) 2.9 (1 clause) 0.2 0.8 137.95
15 0 1 11.45 31.6 (30 clauses) 16.3 (14 clauses) 9.9 (8 clauses)
16 0.9 0.1 148.4 16.2 (10 clauses) 0.9 0.1 261.23 0.9 0.1 182.3
17 0 1 0 1 4.7 (2 clauses) 9.2 (7 clauses)
18 0 1 25.64 0 1 3.08 0 1 9.70 14.2 (9 clauses)
19 4.4 (3 clauses) 3.5 (3 clauses) 3.2 (2 clauses) 45.3 (39 clauses)
20 3 (3 clauses) 3 (3 clauses) 3 (3 clauses) 3 (3 clauses)

Table 3. Ranking of strategies by mean metric.

Ranking Estrategy Average of mean metric
1 A-Team 23.68
2 WalkSAT 80.14
3 R-Novelty+ 96.20
4 RSAPS 405.47

