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ABSTRACT
To this day, there is little theoretical understanding on the
mechanics of local search algorithms and metaheuristics.
Therefore, this work studies the solution space of Random
MAX-SAT, which is a SAT variant. This analysis is focused
on the study of global convexity, which may be exploited
by some metaheuristics, as already observed in the litera-
ture. Understanding the structure of the solution space will
give more insight on metaheuristics effectiveness for MAX-
SAT. This paper presents experimental results suggesting
that Random MAX-SAT is not globally convex, except for
some overconstrained instances. Consequently, for the latter
case, it is possible to predict that a population-based meta-
heuristic would be able to defeat an efficient local search
algorithm, as experimentally proven in this work.
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1. INTRODUCTION
The satisfiability problem in propositional logic or SAT is

the problem of finding an assignment of values to Boolean
variables for a given propositional formula to make it true.
SAT was the first problem proved to be N P-complete [4],
and as such is among the most important problems in com-
puter science.

There exist several algorithms to solve SAT. These algo-
rithms can be divided in two classes: Complete and Incom-
plete. Complete algorithms state whether a given formula
is true or not and return an assignment of values to varia-
bles. Incomplete algorithms try to find an assignment that
approximates the satisfiability of the formula.

A new approach based on metaheuristics [11] is becoming
very popular. These algorithms are incomplete and include
methods such as Simulated Annealing, Evolutionary Algo-
rithms, Ant Colony Optimization to name a few. To this
day, SAT solvers based on metaheuristics cannot compete
against state-of-the-art local search algorithms [11].
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Research in the field of metaheuristics has evolved on the
basis of trial and error [2], often motivated by the com-
petition for improving the best known solutions for given
problems and not by identifying the reasons of success and
failure of these algorithms. Some researchers suggested a
new approach for the design of algorithms [2, 13], where the
problem is studied first and then an appropriate algorithm is
applied according to the characteristics of the search space.

Very little work has been done in the study of the SAT
assignments space. Dimitriou and Spirakis [6] gave evidence
that it is possible to tell in advance what neighborhood
structure will give rise to a good search algorithm analy-
zing the properties of the search space. Zhang [14] studied
the fitness-distance correlation in configuration landscapes,
where local optima form large clusters, wich could be ex-
ploited by local search algorithms.

This work presents a topological analysis of Random-SAT
assignments space. This analysis is focused on the study of
global convexity, which was observed on the traveling sales-
man problem [2, 1, 13] and other problems, and it may be
exploited by a class of ant colony algorithm [7]. The goal is
to provide a framework from which to explain the behavior
of metaheuristics in random SAT instances, and the design
efficient algorithms as suggested in ref. [2, 13]. This research
is complementary to the works of Zhang [14], who studied
only one aspect of the global convexity analysis.

The remainder of this work is organized as follows. Sec-
tion 2 explains the SAT problem. Section 3 presents global
convexity. Section 4 introduces the theoretical framework.
Section 5 and 6 present the experimental analysis. Finally,
conclusions and future work are left for section 7.

2. THE SAT PROBLEM
SAT is defined by a set of boolean variables {x1, . . . , xn}

and a boolean formula or sentence φ : {0, 1}n → {0, 1} where
n represents the number of variables. The objective is to
find a variable assignment m = 〈x1, . . . , xn〉 ∈ {0, 1}n (i.e.,
a model) where φ(m) = 1. The formula is called satisfiable
if such a model exists, and unsatisfiable otherwise. A literal
is a variable (also called atom or symbol) or its negation.
A clause is a disjunction of literals, i.e., literals connected
by an ∨ operator. The formula φ is in conjunctive normal
form (CNF) if φ(m) = c1(m) ∧ · · · ∧ cp(m), where each ci

is a clause and p is the number of clauses. The family of
k-CNF sentences has exactly k literals per clause. SAT can
be assumed having CNF formulae without loss of generality,
and k-SAT only contains sentences in k-CNF.

MAX-SAT is an optimization variant of SAT. Given a



set of clauses, MAX-SAT is the problem of finding an as-
signment m that maximizes the number of satisfied clauses
f(m). In weighted MAX-SAT each clause ci has a weight
wi assigned to it, while unweighted MAX-SAT uses wi = 1
for all i. There are only some differences between particular
cases of SAT and MAX-SAT.

In 3-SAT, rapid transitions in solvability can be observed
[3]. This phenomenon is called phase transition. If the prob-
lem has a very few number of clauses it is said to be under-
constrained and it is easy to find a model. If there is a
large number of clauses it is said to be overconstrained and
a good heuristic will be able to quickly cut-off most of the
search tree. Phase Transition occurs when going through in-
stances that are underconstrained to instances that are over-
constrained [5]. Hard instances are between these two kinds
of instances, when 50% of them are satisfiable with approx-
imately p

n
≈ 4.3 [5]. This point is known as the crossover

point [5].
This work deals with unweighted Random MAX-3-SAT,

which from now will be referred simply as RMS.

3. SEARCH SPACE PROPERTIES
Previous works found the existence of a topological struc-

ture for the traveling salesman problem known as Global
Convexity [2, 1, 13]. Global convexity is not convexity in
the strict sense [2], but may be used to denote the empiri-
cal observation that the best local optima are gathered in
a small part of the solution space, which hopefully includes
the global optimum.

In a minimization context, Boese [1] suggested an ana-
logy with a big valley structure, in which the set of local
minima appears convex with one central global minimum.
Even though there is no formal definition of global convexity,
figure 1 gives an intuitive picture. 

(a) in a minimization context

Figure 1: Intuitive picture of a big valley or globally

convex solution space structure.

Any assessment of global convexity only makes sense once
a topology (distance between solutions and surface cost) has
been established in the solution space [2]. Hence, a quality
metric and a neighborhood structure need to be defined on
the solution space.

The global convexity hypothesis is based on two assump-
tions [2]:

1. Convexity: Local optima are gathered in a relatively
small region of the solution space.

2. Centrality: The best local optima are located centrally
with respect to these local optima.

If both assumptions are valid, one should also expect that
local optima are gathered in a small region close to the best
local optimum [2].

A global convexity analysis for RMS with two different
topologies is presented in this work. These topologies use
the same objective function (number of satisfied clauses) and
differ only in the neighborhood structure, which are [6]:

1. GREEDY: two assignments are neighbors if and only
if one results from the other by flipping the truth value
of any single variable. Thus, any assignment has ex-
actly n neighbors.

2. WALKSAT: two assignments are neighbors if and
only if one results from the other by flipping the truth
value of a variable that belongs to an unsatisfied clause.
Note that the number of neighbors may be smaller
than n.

The motivation for studying these neighborhood struc-
tures is due to their popularity and to see how the solution
space is affected when using one or the other.

4. MEASURING THE SOLUTION SPACE
One important criterion for local search algorithms (and

metaheuristics) is that the neighborhood structure does not
have a tendency to create deceptive cost surfaces. This is
created if the global optimum is located far from local op-
tima [2]. Hence, a distance metric is needed to understand
the distribution of assignments in the search space, which is
defined as the Hamming distance between assignments mi

and mj , and denoted as δ(mi, mj).
In globally convex problems, good solutions are usually

found in the central region of the solution space [7]. Several
classes of population-based metaheuristics keep the best so-
lutions found during the optimization process to guide the
search towards the central region of the solution space [7].
Generally, in one way or another, most metaheuristics im-
plement some kind of elitism. Therefore, it is important
to know the distribution of assignments with respect to the
best solutions. Thus, two other metrics are introduced.

Definition 1. Let M∗ be the set of best solutions for a
sample set M (i.e., M∗ ⊂ M), m ∈ M an assignment, and
| · | denotes cardinality. The mean distance of an assignment
to the set of best solutions in the sample set is defined as:

δ(m, M
∗) =

1

|M∗|

X
mi∈M∗

δ(m, mi)

Definition 2. Let M∗ be the set of best solutions for a
sample set M and m ∈ M an assignment. The minimum
distance of an assignment to the set of best solutions in the
sample set is defined as [9]:

∆(m, M
∗) = min

mi∈M∗

{δ(m, mi)}

The following definition gives an idea of the convergence
degree for the best assignments in a sample set.

Definition 3. Let M∗ be the set of best solutions for a
sample set M . The mean distance of M∗ is defined as:

δ(M∗) =
2

|M∗|2

|M∗|−1X
i=1

|M∗|X
j=i+1

δ(mi, mj); mi, mj ∈ M
∗

Note that, the closer are the assignments in M∗, the
smaller is δ(M∗).



5. EXPERIMENTAL ANALYSIS

5.1 Studied Instances
Two classes of random instances from SATLIB [8] are

used: Satisfiable and Unsatisfiable. Table 1 shows all in-
stances with their corresponding number of variables and
clauses.

Table 1: Studied instances from SATLIB.
sat unsat n p 0.5p 1.5p

1 uf50-01 uuf50-01 50 218 109 327
2 uf100-01 uuf100-01 100 430 215 645
3 uf125-01 uuf125-01 125 538 269 807
4 uf150-01 uuf150-01 150 645 323 968
5 uf175-01 uuf175-01 175 753 377 1130
6 uf200-01 uuf200-01 200 860 430 1290
7 uf225-01 uuf225-01 225 960 480 1440
8 uf250-01 uuf250-01 250 1065 533 1598

All instances of table 1 are in the phase transition region.
It is also interesting to consider the underconstrained and
overconstrained cases. Hence, to transform each instance
to an underconstrained SAT problem, 50% of the clauses
are randomly deleted; and to transform each instance to an
overconstrained SAT problem, 50% more clauses are added,
following the rules given in [8]. Table 1 also shows the num-
ber of clauses for the underconstrained and overconstrained
cases considered in this paper.

5.2 Process Detail
For each of the 48 (8 × 2 × 3 = 48) instances in table 1 a

sample set was created with |M | = n2 randomly generated
assignments without repetition. Then, each assignment for
all sample sets was locally optimized using the neighborhood
structures GREEDY and WALKSAT, having this way 96
(48 × 2 = 96) new sample sets.

The following variables were measured: 1) number of sat-
isfied clauses f(m); 2) mean distance to sample set δ(m, M);
3) mean distance to the best solutions δ(m, M∗) (def. 1); 4)
minimum distance to the best solutions ∆(m, M∗) (def. 2).
Then, correlations between the above variables were calcu-
lated for each sample set considering: 1) number of satis-
fied clauses versus mean distance to the sample set, denoted
as ρf,M ; 2) mean distance to the set of best solutions ver-
sus mean distance to the sample set, denoted as ρB,M ; 3)
minimum distance to the set of best solutions versus mean
distance to the sample set, denoted as ρ∆,M ; 4) minimum
distance to the set of best solutions versus mean distance to
the set of best solutions, denoted as ρ∆,B . These correlations
are meant to study to what extend the assignments space
(for GREEDY and WALKSAT neighborhoods) is globally
convex.

5.3 Results
A summary of some experimental results are in table 2.

The column ρf,M shows the concentration of assignments in
a region of the search space. Note that the closer is ρf,M to
-1, the closer are the good assignments to each other, i.e.,
more globally convex is the search space. For both neighbor-
hoods, the underconstrained instances present small values
towards 0, indicating that assignments are disperse in the
search space. Hence, no global convexity property can be

seen on these instances. When looking at the overcons-
trained instances, the values for ρf,M are more negative
(towards -1) when compared to the underconstrained in-
stances. Although some cases exhibit low correlations, oth-
ers are larger. These results suggest that those overcon-
strained instances are more globally convex. The instances
at the phase transition region present correlations between
the underconstrained and overconstrained cases, i.e., they
are neither globally convex nor non-globally convex.

The fact that the best local optima are more close to each
other for the overconstrained instances is confirmed with
columns |M∗| and δ(M∗). When the problem is undercon-
strained there are a lot of global optima with large values of
δ(M∗). When going from underconstrained to an overcon-
strained instances, correlations become larger, suggesting a
concentration of good local optima in a central region of the
solution space for overconstrained instances.

An underconstrained instance presents the formation of
clusters in the set M∗, i.e., there exists local optima that
cannot be reached from other local optima by means of a
variable flip1. This fact shows the absence of global con-
vexity for an underconstrained instance. Particularly, for
the underconstrained cases, the values of ρB,M are close to 1,
because there exist a lot of assignments close to each cluster,
i.e., δ(m, M) and δ(m, M∗) have similar values; whereas the
values of ρ∆,M are close to 0, because there exists only one
cluster that is close to each assignment.

When going from underconstrained, through phase tran-
sition, to an overconstrained instance, the values of ρB,M

gets smaller; meanwhile, ρ∆,M gets larger. This is because
the number of clusters tends towards one.

The studies presented in [14] only examined the correla-
tions between f(m) and ∆(m, M∗), and not the distribution
of assignments with respect to each other. Therefore, all
these results suggest that RMS is not globally convex, ex-
cept for some overconstrained instances. As a consequence,
population-based metaheuristics are not completely success-
ful solving SAT when compared to local search algorithms.
However, according the experimental results of table 2, it is
possible to postulate that population-based metaheuristics
may be effective for overconstrained RMS given their global
convexity property.

As a final remark, there is not too much difference between
GREEDY and WALKSAT neighborhoods since correlations
were very similar for both. Hence, it is also expected that
population-based metaheuristics would not be able to find
better assignments using one or the other. This looks like a
contradiction, since algorithms based on WALKSAT neigh-
borhood proved to be a lot better than the ones based on
GREEDY [11]. However, previous works [6] suggested that
WALKSAT neighborhood is more suited for search with al-
gorithms that handle only one solution at a time. This may
also explain the advantage of local search algorithms and
single-solution metaheuristics, over population-based meta-
heuristics for RMS.

6. LOCAL SEARCH VERSUS METAHEU-
RISTICS: FIRST ANALYSIS

The obtained correlations suggest that RMS is non-glo-
bally convex when it is underconstrained or at the phase

1this was confirmed by the authors who studied instances
with eight variables not reported here.



Table 2: Results for instances optimized with GREEDY and WALKSAT neighborhoods.�
f,M

�
B,M

� �
,M

� �
,B |M*| � (M*)

�
f,M

�
B,M

� �
,M

� �
,B |M*| � (M*)

uf50-01 -0.37 0.94 0.362 0.453 875 22.522 -0.361 0.943 0.331 0.423 879 22.493
uf100-01 -0.412 0.931 0.325 0.406 1265 46.011 -0.408 0.933 0.322 0.401 1278 45.895
uf125-01 -0.386 0.955 0.322 0.365 857 57.191 -0.369 0.945 0.317 0.365 896 57.066
uf150-01 -0.348 0.908 0.326 0.395 549 68.136 -0.343 0.93 0.325 0.376 543 68.141
uf175-01 -0.347 0.948 0.333 0.377 527 80.249 -0.345 0.948 0.32 0.364 551 80.043
uf200-01 -0.333 0.909 0.35 0.408 227 92.941 -0.333 0.902 0.376 0.438 245 92.72
uf225-01 -0.336 0.926 0.332 0.383 310 103.621 -0.315 0.953 0.306 0.338 571 102.376
uf250-01 -0.343 0.927 0.325 0.377 466 113.330 -0.338 0.922 0.36 0.411 249 113.963
Average -0.359 0.93 0.334 0.395 634.5 73 -0.351 0.935 0.332 0.389 651.5 72.837
uuf50-01 -0.418 0.958 0.424 0.486 824 22.652 -0.462 0.961 0.446 0.498 821 22.529
uuf100-01 -0.398 0.935 0.347 0.418 873 45.108 -0.394 0.921 0.361 0.446 857 45.185
uuf125-01 -0.305 0.906 0.276 0.353 709 57.044 -0.305 0.923 0.276 0.339 681 57.039
uuf150-01 -0.39 0.95 0.319 0.358 667 69.46 -0.386 0.944 0.319 0.368 656 69.545
uuf175-01 -0.33 0.913 0.343 0.403 339 80.212 -0.328 0.918 0.337 0.391 344 80.476
uuf200-01 -0.307 0.842 0.382 0.478 93 93.21 -0.307 0.817 0.372 0.489 85 93.617
uuf225-01 -0.319 0.916 0.386 0.445 221 102.617 -0.323 0.926 0.383 0.434 234 102.969
uuf250-01 -0.334 0.894 0.422 0.491 106 115.352 -0.329 0.892 0.394 0.456 109 115.309
Average -0.35 0.914 0.362 0.429 479 73.207 -0.354 0.913 0.361 0.428 473.375 73.334

uf50-01 -0.565 0.746 0.764 0.983 5 19.7 -0.567 0.644 0.644 1 2 22
uf100-01 -0.456 0.643 0.606 0.82 4 41.833 -0.453 0.314 0.314 1 1 0
uf125-01 -0.471 0.339 0.339 1 1 0 -0.484 0.51 0.51 1 1 0
uf150-01 -0.527 0.554 0.554 1 1 0 -0.524 0.749 0.558 0.746 7 62.048
uf175-01 -0.392 0.347 0.347 1 1 0 -0.385 0.349 0.349 1 1 0
uf200-01 -0.542 0.47 0.47 1 1 0 -0.537 0.545 0.545 1 1 0
uf225-01 -0.497 0.763 0.6 0.772 8 97.643 -0.491 0.504 0.452 0.93 2 90
uf250-01 -0.555 0.551 0.551 1 1 0 -0.555 0.587 0.49 0.881 3 104.333
Average -0.501 0.552 0.529 0.947 2.750 19.897 -0.5 0.525 0.483 0.945 2.25 34.798
uuf50-01 -0.522 0.529 0.531 0.958 2 22 -0.541 0.614 0.577 0.946 4 19.167
uuf100-01 -0.539 0.502 0.502 1 1 0 -0.542 0.738 0.601 0.846 4 40.333
uuf125-01 -0.498 0.744 0.579 0.797 9 57.333 -0.516 0.688 0.598 0.883 5 55.4
uuf150-01 -0.533 0.615 0.602 0.971 2 67 -0.515 0.76 0.554 0.773 9 63.889
uuf175-01 -0.479 0.709 0.599 0.869 4 76.167 -0.485 0.512 0.462 0.929 2 94
uuf200-01 -0.421 0.519 0.519 1 1 0 -0.42 0.408 0.408 1 1 0
uuf225-01 -0.429 0.538 0.415 0.843 2 104 -0.43 0.371 0.371 1 1 0
uuf250-01 -0.477 0.504 0.504 1 1 0 -0.475 0.503 0.503 1 1 0
Average -0.487 0.582 0.531 0.93 2.75 40.813 -0.491 0.574 0.509 0.922 3.375 34.099

uf50-01 -0.771 0.883 0.871 0.944 67 17.158 -0.763 0.9 0.876 0.948 57 17.081
uf100-01 -0.487 0.574 0.533 0.946 2 42 -0.474 0.528 0.528 1 1 0
uf125-01 -0.662 0.597 0.597 1 1 0 -0.661 0.615 0.599 1 3 44.667
uf150-01 -0.528 0.633 0.633 1 1 0 -0.522 0.778 0.75 0.968 2 50
uf175-01 -0.567 0.58 0.58 1 1 0 -0.555 0.51 0.452 1 2 57
uf200-01 -0.547 0.525 0.525 1 1 0 -0.553 0.628 0.628 1 1 0
uf225-01 -0.5 0.447 0.447 1 1 0 -0.559 0.515 0.515 1 1 0
uf250-01 -0.542 0.623 0.623 1 1 0 -0.566 0.599 0.599 1 1 0
Average -0.575 0.608 0.601 0.986 9.375 7.395 -0.582 0.634 0.618 0.972 8.5 21.093
uuf50-01 -0.409 0.578 0.468 0.891 10 20.111 -0.427 0.61 0.502 0.899 8 21.25
uuf100-01 -0.475 0.543 0.543 1 1 0 -0.464 0.321 0.323 0.998 2 31
uuf125-01 -0.518 0.381 0.381 1 1 0 -0.534 0.543 0.5 0.953 2 50
uuf150-01 -0.553 0.525 0.476 0.899 4 65.667 -0.549 0.28 0.28 1 1 0
uuf175-01 -0.557 0.593 0.593 1 1 0 -0.556 0.595 0.595 1 1 0
uuf200-01 -0.481 0.58 0.58 1 1 0 -0.472 0.496 0.496 1 1 0
uuf225-01 -0.558 0.495 0.495 1 1 0 -0.558 0.494 0.494 1 1 0
uuf250-01 -0.57 0.596 0.596 1 1 0 -0.575 0.619 0.619 1 1 0
Average -0.515 0.536 0.517 0.974 2.5 10.722 -0.517 0.495 0.476 0.981 2.125 12.781

GREEDY WALKSAT

Underconstrained Underconstrained

Phase Transition

Overconstrained

Phase Transition

Overconstrained

transition region. When the problem is overconstrained it is
more globally convex, and population-based metaheuristics
may be competitive.

To prove this claim, two algorithms are compared: the
well-known Walksat [10] and an Ant Colony Optimization
(ACO) algorithm known as Omicron ACO [7], which was
renamed as Omicron SAT (OSAT). The instance uf125-01

was selected as benchmark given that correlations obtained
for it were the most significant.

For the two solvers the execution time was limited to five
minutes. Walksat (version v46) was run with a maximum
of 106 flips per try, and different noise ratios. OSAT was
experimentally tuned to the following parameters: 10 ants,

Omicron=600, α = β = 1, and a colony size of 15. Fig-
ure 2 shows a comparison between the solvers for the phase
transition and overconstrained cases.

Walksat finds better assignments than OSAT at the phase
transition region according to figure 2(a); meanwhile, OSAT
beats Walksat at the overconstrained region according to fig-
ure 2(b). The best noise ratio for Walksat was 0.5. OSAT
is more effective than Walksat at the overconstrained region
because it is an elitist algorithm that exploits global convex-
ity [7], and the selected instance presented good correlations.
The test was repeated several times, always obtaining the
same results. Therefore, efficient population-based meta-
heuristics may outperform local search algorithms at the
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Figure 2: Comparison between Walksat and OSAT

on instance uf125-01.

overconstrained region where large correlations were found.
The results for the underconstrained case showed that both
algorithms are very efficient solving it, but Walksat was able
to find a model faster than OSAT.

Note that OSAT and Walksat were selected to study to
what extend the established hypotheses holds in a very sim-
ple context. It remains to be studied how better heuristics
perform on larger overconstrained instances.

7. CONCLUSIONS AND FUTURE WORK
This work presented an experimental analysis of MAX-3-

SAT solution space. Several Random-3-SAT instances from
SATLIB were analyzed at the underconstrained, phase tran-
sition and overconstrained regions. Results suggest that
underconstrained and phase transition instances are non-
globally convex. However, some overconstrained instances
exhibit the property of global convexity.

Global convexity is an important property that popula-
tion-based metaheuristics can exploit in order to find good
quality local optima [7]. Thus, the claim that population-
based metaheuristics are effective compared to local search
algorithms for overconstrained Random MAX-3-SAT was es-
tablished. In that sense, a comparison between Walksat
and OSAT (a population-based metaheuristic) showed that
the previous hypothesis is true, at least experimentally in a
very simple context2. Therefore, research on finding good
population-based metaheuristics using the MAX-SAT ob-
jective function is, at first glance, discouraging for a general
SAT problem. However, this paper presents good experi-
mental results for overconstrained instances.

The generalization of these results to Constraint Satisfac-
tion Problems will allow the design of new metaheuristics

2A more systematic comparison was carried out in [12]

for this class of problems. Also, a global convexity analy-
sis for structured instances will give more insight into the
effectiveness of local search algorithms for SAT.
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