
Behavior Learning via State Chains from Motion Detector
Sensors

Dietmar Bruckner
Institue of Computer

Technology
Vienna University of

Technology
bruckner@ict.tuwien.ac.at

Brian Sallans
Programm- und

Systementwicklung
Siemens AG Austria

brian.sallans@fin4cast.com

Roland Lang
Institue of Computer

Technology
Vienna University of

Technology
langr@ict.tuwien.ac.at

ABSTRACT
A method for the automatic discrimination of sensor and
system behavior and construction of symbols with seman-
tic meaning from simple sensor data is introduced - SCRS
(Semantic Concept Recognition System). The automated
method is based on statistical modelling of sensor behav-
ior. A model of a sensor’s value sequences is automatically
constructed. The model’s structure and parameters are op-
timized using an minibatch model merging and parameter
updating algorithm. Incoming sensor values are then con-
veyed to the model and the most probable path through
the model to some particular state is computed. That clas-
sification can be interpreted as a semantic symbol or con-
cept. The SCRS can be used as a security and care system
for observation of persons and interpretation of scenarios.
An example modelling a motion detector is discussed. The
SCRS’s method of representing scenarios can be also used
in autonomous agents for decision making processes. An
example is discussed.

Keywords
Hidden Markov models, behavior recognition, intelligent en-
vironment, intelligent sensor systems

1. INTRODUCTION
Embedded computer systems have seen their computing

po-wer increase dramatically, while at the same time minia-
turization and wireless networking allow embedded systems
to be installed and powered with a minimum of support in-
frastructure. The result has been a vision of “ubiquitous
computing”, where computing capabilities are always avail-
able, extremely flexible and support, entertain, and assist
people in their daily lives.

Up to now, advances in the electronics industry have driven
growth in several areas like home entertainment, surveil-
lance, home automation products (e.g. lighting, heating,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Bionetics ’07, December 10-13, 2007, Budapest, Hungary
Copyright 2007 ICST 978-963-9799-11-0.

and power), home appliances (e.g. laundry machines, fridges,
etc.), and ad-hoc wireless sensor networks (AWSN), which
promise to add a truly ambient intelligent component to the
home.

The future home clearly represents an opportunity for the
convergence of these different technologies far beyond the
level of integration seen today (like e.g. proposed in [1]). In
fact, the future smart-home will contain a collection of het-
erogeneous networked devices, capable of distributed com-
putation, dynamic reconfiguration, high-performance media
dissemination, and user/environment awareness.

Future building automation or assistance systems for care
and security applications - which is the main focus of this
work - will act based on their awareness of system status
(see [10], [7]) and user behavior and preferences. Therefore
efficient and reliable scenario detection, pattern recognition
and tracking systems and algorithms have to be designed.
Automation system awareness is a complex and interdisci-
plinary field. One step towards increasing the intelligence of
systems is to define and recognize simple recurring scenar-
ios with slightly different sensor values. In this context we
divide a scenario into semantic symbols or concepts. A se-
mantic concept represents a system or user event that caused
the automation system to change its beliefe about what is
happening. For example there could be different symbols for
a normal daily routine in an appartment, or an afternoon in-
terrupted by a visitor.

The goal of this work is to accomplish the task of reliably
inferring simple semantic concepts from sensor data with
probabilistic methods, without the need of pre-programmed
conditions or user-entered parameters. The system observes
sensor data over time, constructs a model of “normal se-
quences”, and compares and classifies newly arriving sensor
values. The result is a system that can produce concepts
with semantic meaning of sensor readings, with minimal
manual configuration of the system. Further, if sensor read-
ings vary or drift over time, the system can automatically
adapt itself to the new “normal” conditions, adjusting its
parameters accordingly.

For convenience we posit that the transitions between
events exhibit the Markov property - that the immediately
next temporally consecutive event depends only on the pre-
vious n one(s). If the current state depends only on the sin-
gle past state, we have a first order Markov process. HMMs
for system analysis have been used for automated process
discovery in software [5] and software self-awareness [6].

The system is part of the ARS project (Artificial Recog-



nition System) [8]. It was tested in a building automation
system consisting of various sensors installed in one appart-
ment of a retirement home. The sensors consist of motion
detectors, door contacts, and preasure sensors. The data
was collected over a time period of two months. This pa-
per presents the first results of this trial and suggests future
areas of improvement and application.

2. SYSTEM STRUCTURE
The goal of the SCRS model is to automatically discrim-

inate system behavior in a running dynamic system (in this
case an appartment in a retirement home). It does this by
learning about the behavior of the system and by observ-
ing data flowing through the system. The SCRS builds a
model of the sensor data in the underlying system, based on
the data flow. We use a set of statistical generative models
(SGMs) [2] to represent knowledge about the system under
consideration. A statistical generative model takes as in-
put a sensor value, status indicator, time of day, etc., and
returns a probability between zero and one. The model com-
prises not only statistical generative models describing the
possible sensor values, but also a model of the underlying
events that cause a change in system behavior. These un-
derlying dynamics are modeled by a hidden Markov model
(HMM) [9]. From this model, the system can identify re-
curring scenarios - patterns within the sensor values - with
slightly varying sensor values. The system is also capable of
launching an alarm in case of the occurrence of new scenar-
ios or variations within scenarios with very low probability
under the model. These could represent unusual or danger-
ous situations in an assisted living context (such as in the
retirement home). Additionally, the HMM can be queried
to deliver the most probable path through the model. In our
case the most probable path can be interpreted as a similar
(the best matching) situation compared to the current one,
which has already been learned.

Using SGMs has several advantages . First, because the
model encodes the probability of a sensor value occurring,
it provides a quantitative measure of “normality”, which can
be monitored to detect abnormal situations. Second, the
model can be queried as to what the “normal” state of the
system would be, given an arbitrary subset of sensor read-
ings. In other words, the model can “fill in” or predict sensor
values, which can help to identify the source of system (mis-
)behavior, (in our case, an unusual or dangerous situation).
Third, the model can be continuously updated to adapt to
sensor drift or to slightly changing operation conditions - for
example, if the daily rhythm of the user changes with the
season.

For the application described in this case study, HMMs
were used with Gaussian models as emission probability dis-
tributions. It is not necessary to use a mixture of Gaussians
for the emissions, because each Gaussian belongs to a cer-
tain state of the HMM. Under this point of view, the whole
system behaves like a set of mixtures of Gaussians, but the
priors of the mixture distribution - coming from the transi-
tions - vary with respect to the past.

The SCRS in this application is used to model daily rou-
tines in an elderly home with the use of binary motion de-
tector sensors. These values are then fed into the model and
during a procedure of 5 steps (see also [4], [3]) the parame-
ters of the model are updated:

1. Averaging motion information over 30 mins

2. Comparison of the chain’s beginning/end

3. Merging of identical states

4. Merging of consecutive states

5. Merging of nonrelevant states

These steps ensure the creation of a HMM with a fair num-
ber of states. Too many states make the model very specific
to particular situations and assign a very low probability for
previously unseen situations whereas too few states corre-
spond with a very general model structure that would not
be able to give reliable information about the probability of
the current situation.

3. HIDDEN MARKOV MODEL
There exists a variety of models for modelling a data

source which is beliefed to obey the Markov property - that
new values, discrete or continuous, somehow depend on old
values. In most cases a first order relationship - that the cur-
rent value depends somehow on the last one - is assumed.
HMMs in particular are used where it is not possible or use-
ful to directly model observation sequences, but rather to
model the underlying source for the change in observations.
The following sections give an introduction into HMMs and
their most useful algorithms.

3.1 Markov chain
The discrete time Markov chain of 1st order has the fol-

lowing property:
P (Qt+1 = qt+1|Qt = qt, Qt−1 = qt−1, ..., Q0 = q0)
= P (Qt+1 = qt+1|Qt = qt), where Qt is the random variable
at time t and qt is a variable for some state at time t. This
means that the probability for being in some state at some
time is only dependent on the previous state.

3.2 Hidden Markov model
Under some circumstances the process we want to model is

not described sufficiently by modeling sensor values directly.
Consider a situation where you can measure - or observe -
some value, but you would like to infer from those obser-
vations the driving force behind the values. In that cases,
Hidden Markov Models are used. In this case the states
cannot be directly observed, they are hidden. Each state
has a probability distribution over some or all possible out-
put symbols. The complete definition of a Hidden Markov
Model is given below:
A Hidden Markov Model is a variant of a finite state machine
having a set of states Q, a transition probability matrix A,
an output alphabet Σ, a confusion or emission probability
matrix B and initial state probabilities Π. The states are
not observable and therefore called hidden. Instead, each
state produces some output symbol according to the emis-
sion probability distribution (B). Characterizing for HMMs
are:

• The number of states N

• The number of output symbols in the output alphabet,
M

• The transition probability matrix A = {pij}



pij = p{Qt+1 = j|Qt = i}, 1 ≤ i, j ≤ N,

Qt being the current state at time t. The transition
probabilities of course must match the two normal sta-
tistical constraints

0 ≤ pij ≤ 1, 1 ≤ i, j ≤ N

and

N∑
j=1

pij = 1, 1 ≤ i ≤ N

• An emission probability distribution in each of the
states B = {bik}

bik = p(Ot = k|Qt = i), 1 ≤ i ≤ N, 1 ≤ k ≤M ,

Ot being the output symbol at time t. Again, normal
stochastic constraints have to be considered.

• Finally, the initial state distribution vector Π = {πi}

πi = p{Q0 = i}, 1 ≤ i ≤ N ,

which elements also have to be positive and sum to
unity.

3.3 Hidden Markov model algorithms
After having selected the HMM to model a specific pro-

cess, there are three possible tasks to accomplish with the
model.

1. Inferring the probability of an observation sequence
given the fully characterized model (evaluation).

2. Finding the path of hidden states that most probably
generated the observed output (decoding).

3. Generating a HMM given seuqences of observations
(learning).

In case of learning a HMM, structure learning (finding the
appropriate number of states and possible connections) and
parameter estimation (fitting the HMM parameters, such as
transition and emission probability distributions) must be
distinguished.

Forward algorithm.
Consider a problem where we have different models for

the same process and a sample observation sequence, and
we want to know which model has the best probability of
generating that sequence. This task is accomplished by the
Forward Algorithm in a recursive way.

Viterbi algorithm.
The Viterbi algorithm addresses the decoding problem.

We thereby have a particular HMM and an observation se-
quence and want to determine the most probable sequence
of hidden states that produced that sequence.
The solution is to define the Viterbi path probability, which
is the probability of reaching a particular intermediate state,
having followed the most likely path. The Viterbi path prob-
abilities give us the probability for the best path through the
model, but the aim is to find the best path and not only its
probability. The solution is to remember the predecessor of
each state that optimally provoked the current state, or in
other words to store a back pointer for each intermediate
state.

Forward Backward and Baum-Welsch Algorithm.
This algorithm addresses the third - and most difficult -

problem of HMMs: to find a method to adjust the model’s
parameters to maximize the probability of the observation
sequence given the model.

4. MODEL STRUCTURE CONSTRUCTION
In this work we present a system that learns semantic

symbols from a binary motion detector sensor. That sensor
- a wireless off-the-shelf motion detector sensor - sends a data
packet with value 1 and the sensor’s ID in case of detected
motion followed by a packet with value 0 and the sensor’s ID
right after no more motion is observed. In our elderly home
environment every motion detector sensor produces about
500 data packets per day. During a procedure of 5 steps the
structure of the model is learned:

1. Averaging motion information over 30 mins

2. Comparison of the chain’s beginning/end

3. Merging of identical states

4. Merging of consecutive states

5. Merging of nonrelevant states

These 5 steps produce HMMs with a manageable number
of states. The number of states of HMMs is a compromise
between generalization (low number of states, the model is
applicable for a wide range of different scenarios, but not
able to distinguish between particular ones) and specializa-
tion (rather high number of states, not every possible sce-
nario is depicted in the model and quite similar scenarios can
have different paths). [11] have shown that model merging
from very special models always ends up with better or equal
results than specializing very general models. They also in-
troduced a method for merging models and maximizing the
posterior probability of the model. The starting point for
model merging is to find an application specific heuristic to
reduce the number of states dramatically, because the com-
putational effort for their proposed best-first model merging
is relatively high. In our application we waive the best-first
model merging because the below stated application specific
heuristics work fine in case of our motion detector sensors.

4.1 Averaging motion information over
30 mins

We supply the SCRS not directly with the sensor values,
but with averaged sensor values. We divide the 24 hours of
a day into 48 time slots, each 30 minutes long. In those time
slots we compute the mean of the sensor values and round
them. If no value is available during 30 minutes we set the
mean to 0. An example of actual sensor data is given in Fig.
1. The chains of 48 values are then fed into the model and
used to create states.

4.2 Comparison of the chain’s beginning/end
This part of the algorithm is responsible for comparing the

“sensor values” at start and end of the chain (see Fig. 2). As
long as the new values match the emissions of the model, we
just update the weight of the state in the model. This pro-
cedure is accomplished for both the first states in the model
and the first new values and the last states of the model
and the last new values. This means that for learning the



Figure 1: Averaging of sensor values within 30 min
time frames. The averaged 48 values are used for
further processing.

~_PDD C t I

I F

I T"~ '_~ '~J;'\""_ '-J;j": I

'2~~"'~"~'"Y2

1"'0 ~ 1 / I

ny3

N

Tii=~ T iny1

TXliO=~TliTiYl=~

T iny2
1'2;0' 1<2; 5; T;Y2'~

T Iny3
Tx3io = Tx3 i T iy3 = -;:;--

Figure 3: Merging of a state chain part with n iden
tical states into one single state i. The original chain
has unity transitions. x's and y's being other states
in the HMM.

Figure 2: Comparison of chain borders. The top
sequence of sensor values is mapped into a chain
of states with appropriate emissions and transitions
with 100% from state to state. The next sequence of
sensor values is compared to the already seen emis
sions and in case of different values the model splits
and introduces a new path. This is done in forward
and backward direction.

structure of the model some completed sequences of whole
days have to be available. The aforementioned weight of the
state is important for later merging and will be explained in
depth later on.

4.3 Merging of identical states
It happens frequently that a sensor emits a sequence of

identical values, so that chains of identical states appear.
For modelling the events behind system behavior we can as
sume that either nothing or the same event happens when
a sensor continously emits the same value. E.g. in the case
of the averaged motion detector values a "I" means that
the person in the room is quite active. If this is contin
ued over the introduced borders of 30 min we can assume
the behavior of the person is continued. The same argu
ments can be used for merging states with emission of "0".
This considerations lead to the heuristic of merging identi
cal states. Thereby chains of states with 100% transitions
from one to the consecutive next state and identical emis
sions are sought. These states are then merged into a single
one as shown in Fig. 3. The "self-transition" is computed as
Tii = N / (N + 1), N being the number of states merged. It
is important to note that this way of creating the new state
produces a geometric duration probability distribution. If it
is desired to use a different duration probability distribution,
hidden semi-Markov models must be used.

4.4 Merging of consecutive states
In the model's learning phase a model with initial state,

final state and a number of paths in between is created.
Each of the paths has the potential to be a scenario and
each state has the potential to represent a semantic concept
describing a behavior. Each splitting in a path is interpreted
as a change in behavior. During model merging each of those
paths has to prove its value for the model. We assume that
scenarios can vary their order. This means that values in a

T<2~fr ...~ ... '.~~~":TmY2
T'3'0 ~ 1 N / T

ny

3

T ii= -;:;-- 21.l-
T)(liO=*T

1i
. T

iy1
= N~l

iny2
TX2iQ= TX2i Sj TiY2=~

E iny3
Tx3iO = Tx3 i I T i y3 = -;:;--

Figure 4: Merging of a state chain part with states
with unity transitions in between into one single
state i. The new Emissions Ei is computed as Emis
sions of original states times state's weight normal
ized to sum to unity.

chain can change their place with other values that happen
often in the same time frame during a day. These consid
erations lead to the third heuristic: states with transitions
of 100% are merged into a single state. In other words: if,
after the merging of identical states, chains of states with
unity transitions remain, then those chains are merged (see
Fig. 4).

4.5 Merging of nonrelevant states
Finally, after a model is constructed with principles that

compare the data, a last heuristic is applied that simply
looks for states with low weight. Those states are proba
bly not the result of earlier merging procedures neither part
of often appearing scenarios. Therefore we consider them
nonrelevant and merge them with neigbours. If the (nonrel
evant) state should be merged with its predecessor or suc
cessor depends on the number of possible transitions from
and to the state. Whichever number is equal to 1 is used as
the connection to merge. If the state has more than 1 prede
and 1 sucessor it keeps untouched because it is considered
as rather important splitting point in the model. In this ap
plication we used a weight of 3 as merging criteria. In this
case it is very unlikely for such a state to have at the same
time more than 1 prede- and 1 sucessor.



5. MODEL INTERPRETATION
In these models every path through the model represents

a particular daily routine. In this context we can talk of
a semantic concept for a whole day. But, moreover, some
of the states themselves also represent particular - by hu-
mans identifiable - parts of a daily routine. Examples for
states could be “lunch”, “time before getting up”, or “bath-
room visit after lunch” and for (sub-)paths something like
“afternoon with low activity”.

5.1 Models
Figures 5 - 9 show the models of various motion detector

sensors in the mentioned appartement. The drawings are to
be read in the following way:

• The circles represent the states of the model. They are
labelled with numbers from 0 to N, whereby states 0
is the “initial state” which is part of every chain and
state N is the “final state”, also part of each chain.
These two states have no meaning, except that they
“connect” the chains to form a comprehensive model.

• The lines represent possible transitions. Only the drawn
transitions are nonzero and learned during the above
mentioned procedures.

• The ellipses above some states represent states with
nonzero self-transitions. This means that these states
can be visited several times in a row.

Figure 5: Model of a motion detector sensor located
in the living room (right top corner); 29 states

Figure 6: Model of a motion detector sensor located
in the living room (left bottom corner); 40 states

5.2 Paths
The following figures 10 - 13 show 4 out of 16 different

averaged sensor value chains of whole days that lead to the
creation of the model in Fig. 9. The highlighted states mark
the most probable path for the value chain computed by the
Viterbi algorithm (see section 3.3). The diagram on bottom

Figure 7: Model of a motion detector sensor located
in the living room (right bottom corner); 28 states

Figure 8: Model of a motion detector sensor located
in the kitchen; 21 states

Figure 9: Model of a motion detector sensor located
in the bathroom; 23 states

of the figures shows the log-likelihood of the observation over
the Viterbi path, the value to the left bottom the overall log-
likelihood of the corresponding observation. Table 1 summa-
rizes the log-likelihoods of all the 16 observation sequences
used for model structure learning of the model in Fig. 9.
The second column gives the log-likelihood of the Viterbi
path. These range from -17,4 to -29,8 (a rough calculation
to get a feeling on these numbers is: if we assume emission
and transition probabilities to be equal for all 48 values we

can calculate PEmission=Transition = e
96
√

log(P ) = elog(P )/96

which give 83% for -17,4 and 73% for -29,8). The third col-
umn gives the worst matching path through the model1. The
log-likelihood of the worst paths ranges from -23,8 to -45,5
which translate to average transitions and emission proba-
bilities from 78% to 62%. The last column gives the number
of paths that have the possibility to produce the relevant
observation sequence. These range from only 3 to all 8.

The numbers above the averaged sensor values in the fol-

1The trick how to get these figures was to find out where
the actual Viterbi path splits from the other paths the last
time and set this transition probability temporary to zero.
E.g. in Fig. 10 this would be the transition from state 6 to
7. With this modification the Viterbi algorithm is applied
again and gives the next best path.



Figure 10: One particular day which was incorpo-
rated in the model. The colored states mark the
Viterbi path of that day in the model.

Figure 11: Another particular day for that model.

lowing figures depict the corresponding state in the model
on the (xth) Viterbi path. This information is given because
the model itself contains no information about time - just
implicit, in that states more to the right certainly are visited
earlier than those to the left.
One important aspect arising from merging is that not all
paths of the model will be Viterbi paths even of the value
chains that created them. In the case of the here presented
model all 16 value chains - the ones from which the model
is learned - produce one of the four presented Viterbi paths.

What can be seen immediately from the Viterbi paths is

• All paths start with state 1 which represents the time
until the first motion is detected. Because this motion
detector “looks” at the shower and the area in front of
it, we probably can deduce that the person is asleep in
this state and the next state, 2, represents the morning
toilet.

• The path on top in the drawings represents a day with
rather much activity around the middle of the day in
the bathroom.

• State 20 represents a rather long phase of no activity
in the bathroom in the evening while in case of shorter

Figure 12: Another particular day for that model.

Figure 13: Fourth prototype day for that model.



log-likeli- log-likeli-
hood hood number of

Day of best of worst possible
matching matching paths

path path
1 -23,8 -37,3 7
2 -20,5 -26,5 4
3 -19,9 -25,9 7
4 -19,5 -31,9 7
5 -17,4 -23,8 6
6 -25,9 -34,8 8
7 -22,6 -34,8 8
8 -29,8 -38,6 3
9 -23,7 -29,4 5
10 -26,5 -29,2 6
11 -27,2 -30,4 6
12 -23,1 -27,8 3
13 -23,3 -31,3 5
14 -28,7 -45,5 7
15 -22,4 -28,2 7
16 -25,1 -30,7 6

Table 1: Log-likelihood range and number of possi-
ble paths for the 16 observation sequences

periods state 16 is more probable(notice the flat pro-
gression of the log-likelihood in Fig. 12 while in state
20 compared to the “steeper” one in Fig. 10 while in
state 16).

• There is still potential for optimization in the model.
For example, the second half of the days drawn in Fig.
11 and Fig. 12 are quite similar, the difference of the
two days lays in the forenoon. In such a case it would
be of advantage to merge states 12 and 20 to have an
even better representation of the behavior.

Finally, the figures 14 - 16 show 3 of the seven paths with
the highest difference between best and worst matching path
from above. The first one has a quite flat progression over
the whole day without higher “steps” comming from tran-
sitions or emissions. The second takes the way over state
14, which has only low probabilities for representing “mo-
tion” but fair transitions. The third figure shows the worst
matching observation sequence of the model under investi-
gation. It takes the way over state 15 - which represents the
time with no activity very well but lacks an emission proba-
bility for activity. From there the only way to the final state
is via state 16, which also has low probability for missing
activity, therefore the log-likelihood decreases dramatically.

6. CONCLUSIONS AND OUTLOOK
The work presented in this paper describes a test of the

HMM approach for the automatic classification of daily rou-
tines with respect to already seen ones that serve as a kind
of prototypes. The SCRS system can automatically build a
model of situations during a pre-defined model constructing
phase. During operation afterwards the model can be ad-
justed with each new value either to adjust the parameters
in order to better fit the transitions to the ratios of real oc-
curing scenarios, or to even introduce new states or paths in

Figure 14: Day 8: Averaged sensor values and the
correpsonding Viterbi path in that model with a log-
likelihood of -28,4.

Figure 15: Day 8: Averaged sensor values and the
correpsonding 6th Viterbi path in that model with a
log-likelihood of -36,4.

Figure 16: Day 8: Averaged sensor values and the
correpsonding worst matching path in that model
with a log-likelihood of -45,5.

the model in the case the current seen situations has a very
low probability under the model to fit with the incorporated
prototypes. Each path through the model represents a par-
ticular daily routine in the scope of a motion detector sensor
and some of the created states can be labelled by a human.

This work shows that the SCRS is capable of differentiat-
ing between various daily routines on a top level view. The
system has shown its ability to give a quantitative measure
of the likelihood of how well the current situation fits the
prototypes stored in the model. The quite similar structure
of the various models of the motion detector sensors pre-
sented here give indications that it could be possible to fuse
all or some of the models to one comprehensive model of the
whole flat. Another envisaged future work is to introduce
overlapping models which give a better initial (in the begin-
ning of each day) guess on the path to choose in the model
based on the last day.

7. REFERENCES
[1] C. R. Baker, Y. Markovsky, J. van Greuen, J. Rabaey,

J. Wawrzynek, and A. Wolisz. Zuma: A plattform for
smart-home environments. In Proceedings of the 2th
IEEE International Conference on Intelligent
Environments, 2006.

[2] C. M. Bishop. Neural Networks for Pattern
Recognition. Oxford University Press Inc., New York



NY., 1995.

[3] D. Bruckner. Probabilistic Models in Building
Automation: Recognizing Scenarios with Statistical
Methods. Institute of Computer Technology, Technical
University of Vienna, Vienna, Austria, 2007.
Dissertation thesis.

[4] D. Bruckner, B. Sallans, and G. Russ. Probabilistic
construction of semantic symbols in building
automation systems. In Proceedings of the 5th IEEE
International Conference on Industrial Informatics,
2006.

[5] J. E. Cook and A. L. Wolf. Automating process
discovery through event-data analysis. In Proceedings
of the 17th International Conference on Software
Engineering (ICSE’95), pages 73–82, 1999.

[6] J. M. R. J. F. Bowring and M. J. Harrold. Tripewire:
Mediating software self-awareness. In Proceedings of
the 2nd ICSE Workshop on Remote Analysis and
Measurement of Software Systems (RAMSS’04), pages
11–14, 2004.

[7] G. Pratl. Symbolization and Prozessing of Ambient
Sensor Data. Institute of Computer Technology,
Technical University of Vienna, Vienna, Austria, 2006.
Dissertation thesis.

[8] G. Pratl and P. Palensky. Project ars - the next step
towards an intelligent environment. In IEE IE 2005,
2005.

[9] L. R. Rabiner and B.-H. Juang. An introduction to
hidden Markov models. IEEE ASSAP Magazine,
3:4–16, January 1986.

[10] G. Russ. Situation Dependent Behaviour in Building
Automation. Institute of Computer Technology,
Technical University of Vienna, Vienna, Austria, 2003.
Dissertation thesis.

[11] A. Stolcke and S. Omohundro. Hidden Markov Model
induction by Bayesian model merging. In S. J. Hanson,
J. D. Cowan, and C. L. Giles, editors, Advances in
Neural Information Processing Systems, volume 5,
pages 11–18. Morgan Kaufmann, San Mateo, 1993.


