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ABSTRACT 

The sectioned genetic algorithm (hereafter denoted as sectioned 
GA), which is presented in this paper, represents a modification of 
the standard GA and deals with large scale problems (i.e. 
problems involving pattern spaces with high dimensionalities). 
Instead of increasing the size of the population searching the 
pattern space when the problem dimensionality increases, the 
sectioned GA approach divides each individual into smaller parts 
(sections) and subsequently applies the genetic operators on each 
of these parts. Results from the application of sectioned GA on 
the problem of automatic morphological analysis are also 
presented in this article. Morphological analysis is by nature a 
large scale problem since a great number of words need to be 
segmented into stems and suffixes. The proposed system 
improves the segmentation accuracy substantially in comparison 
to standard GA algorithms. 

Keywords 
Genetic algorithms, parallel distributed algorithms, stemming, 
input space dimensionality, masks. 

 

1. INTRODUCTION 
Genetic Algorithms (GAs) [5] are a widely used technique for 
solving problems whose solutions cannot be expressed in an 
analytical form. Morphological analysis, aiming at the 
identification of stems and suffixes from a list of words, is such a 
problem. 

Word segmentation is a key element in several information 
retrieval systems that search in huge databases of texts for 
documents relevant to a query. A suffix rarely introduces new 
meaning to a specific word. Therefore, when processing a query, 
it would be useful to include the stems of the words to broaden 
the search results, without deviating from the user’s initial 

request. 

Several methods have been proposed to deal with word 
segmentation. These methods fall into two large categories, 
depending on whether they are rule-based or not. Rule-based 
methods utilize a series of rules to examine whether certain 
suffixes, from a predefined list, are suitable for the word being 
processed [9], [10]. These methods are language dependent, since 
different rules apply for different languages, and thus lack 
generality. 

Systems that are not rule-based produce a number of solutions and 
subsequently choose the best one according to certain fitness 
criteria. Typical examples are Goldsmith’s Linguistica [6], where 
the criterion used is the minimum description length, and the 
AMP [12], where the final choice is made based on the 
frequencies of stems and suffixes. 

The method described in the present article also belongs to the 
category of non rule-based systems. It proposes a certain 
objective function that is shown by experimental results to be 
more efficient than other more general criteria that have been 
used (namely MDL – Minimum Description Length). Moreover 
the method addresses the task of simultaneously processing large 
corpora without experiencing loss in the precision accomplished 
or incurring an extreme increase in the execution times. 

2. METHOD DESCRIPTION 
The algorithm is based on maintaining an evolving population of 
N individuals, each corresponding to a single possible solution. 
The elements of an individual correspond to words extracted from 
a corpus (test set), and each word is represented by a 
segmentation boundary, i.e. the length of its proposed stem. 
Segmentation boundaries are integers ranging from zero to the 
length of the given word [7]. 

After initializing the population, the GA enters a continuous loop 
of applications of the genetic operators that ends only when 
certain termination criteria are met. During initialization, random 
numbers are chosen for every element of each individual. There 
are, however, three constraints, dictated by the Greek Language, 
regarding the values that randomly-generated segmentation 
boundaries are allowed take: 

i. The segmentation boundary cannot take a zero value or a 
value that is equal to the word length. This guarantees that 
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none of the two constituents (i.e. the stem or the suffix) will 
be null. 

ii. Certain two-letter combinations (i.e. “αι”, “ει”, “οι”, “αυ”, 
“ευ”, “ου” and “υι”) cannot be separated by a segmentation 
boundary [13]. 

iii. A potential suffix should begin with a vowel letter. 

These constraints apply whenever a new random variable is 
chosen for the element of an individual. After the GA has settled, 
the segmentation boundaries provided by a specific individual 
propose a suitable solution. 

The basic steps of a typical GA are depicted in Fig. 1. 
 

 
Fig. 1. Flow chart of a typical GA 

2.1 Evaluation 
After a population has been formed, it is evaluated according to a 
fitness function to associate fitness values to the individuals, 
indicating their quality as possible solutions to the problem. This 
fitness function defines the environment in which the population 
develops and encompasses all the knowledge that derives from 
the study of the problem. The function proposed here is based on 
an a-priori given set of correctly segmented words and is a 
variation of the function originally proposed in [3]. 

The fitness function proposed in [3] calculated a histogram that 
recorded suffixes as well as their frequencies of appearance in the 
a-priori given set, referred to as training set. When evaluating an 
individual from the GA population, a similar histogram was 
formed based on the proposed segmentation of the words from the 
corpus. The expected macroscopic resemblance of those two 
histograms was used by the system as a fitness function to guide 
them towards the optimum solution. That fitness function 
produced better results than the MDL when tested for a number of 
different corpora. 

The variation of the fitness function that is used in this paper lies 
in the way that the training set is utilized. Each word from the 
corpus to be processed is associated with the word from the set of 
correctly segmented words that mostly resembles it with respect 
to the matching last letters of the two words. This way, a revised 

and more suitable set is created containing entries from the 
original a-priori set, which now serves as the new training set.  

The mathematical formula of the fitness function is expressed in 
(1): 

          [ ]∑ = −−= s
1i iiihist _testf~f_trainf_trainGrade        (1) 

where s  is the number of suffixes present in the training set, 

if_train  is the frequency of the ith suffix in the training set and 

i_testf~  is the normalized frequency of the same ith suffix in the 
test set. The normalized frequency is given by: 

          ∑ == s
1i iii f_testf_test_testf~      (2) 

were if_test  is the frequency of the ith suffix as recorded in the 
corresponding histogram.  

It is obvious from (1) and (2), that only suffixes existing in the 
training set participate in the evaluation. If a suffix recognized in 
the training set is not present in the test set, then its corresponding 
frequency i_testf~  is set to zero. The reason for using the 
normalized values instead of the originals is that a large test set 
(larger than the training set) will most likely encompass a greater 
range of suffixes. Therefore the original frequencies will span 
over a larger ensemble, leading to smaller individual values. 

2.2 Selection 
When all individuals have been evaluated, pairs of parents need to 
be selected in order to combine and create offspring. N pairs of 
parents are selected, with N being the number of individuals in 
the population, and each pair produces two complementary 
offspring [11]. 
In nature, fitter individuals are more probable to recombine and 
pass on their good characteristics to the next generation. The 
probability kPr  of an individual being selected as parent is 
therefore linked in the GA to its evaluation grade as follows: 

              ∑ == N
j jkk Grade/GradePr 1      (3) 

According to this probability and using a roulette wheel selection 
scheme, the N pairs are formed. 

2.3 Crossover 
Each pair of parents produces two complementary offspring by 
recombination of the parents’ elements. A uniform crossover 
scheme [8] is used where the elements are swapped individually 
between the parents. When an element from one parent is 
transferred to one offspring, then the corresponding element of the 
other parent will pass on to the second offspring. 
Uniform crossover is more appropriate for the particular problem 
because there is no apparent link between neighboring elements 
and therefore no reason for swapping them in groups. In fact, 
experimental results have indicated that using other techniques 
like one-point or two-point crossover results in a slower progress 
through the iterations. 



The 2N individual offspring need to be reduced to N to substitute 
the parent generation on a one-to-one basis. In fact, because the 
best individual of a generation is directly transferred to the next 
generation, the offspring need to be reduced to N-1. The process 
of preserving the best individual is called elitism [1]. To 
implement the reduction, all offspring are evaluated according to 
the fitness function and then sorted in descending order of fitness. 
The N-1 first individuals of this sorted list will substitute the 
previous parents in the new generation. 

2.4 Mutation 
Before the substitution is made, the offspring are mutated by 
changing the values of a very small percentage of their 
characteristics. Mutation is intended to introduce to randomly 
selected elements new values that probably did not exist in the 
original population, thereby allowing a broader search toward an 
optimum solution. The new values for the elements chosen to be 
mutated need not only be different from their previous ones but 
also be in compliance with the three constraints mentioned earlier. 
Though mutation addresses the need to escape from local optima, 
it shouldn’t be applied to a large extent because in that case it 
might lead to a purely random search in the pattern space [14]. 
For the present application, mutation probability has been fixed to 
0.02%. 
After mutation is complete, the offspring substitute their parents 
and, together with the best individual of the previous generation, 
they form the new population. This marks the start of a new 
iteration that follows the exact same steps. After a certain number 
of iterations, the algorithm comes to an end with the best 
individual of that last population representing the final solution. 

3. INTRODUCTION OF THE SECTIONED 
GA APPROACH 
The population of a GA has two dimensions: the individual’s size, 
that is the number of elements of the individual, and the 
population size, that is the number of individuals constituting the 
population. These two dimensions are closely linked since, as the 
size of an individual grows, so must the population size. 
Otherwise, by keeping the population size fixed while the 
individuals grow, the GA would fail to approach the ideal solution 
before settling, since it would sample a very small portion of the 
pattern space. 
To avoid premature convergence and to accelerate the algorithm, 
the parallel distributed GA model (pdGA) [2] divides the 
population in several isolated subpopulations (referred to as 
islands), which, for most of the time, run independently from one 
another. A certain migration rate is set so that individuals from 
one subpopulation can interact with other subpopulations at fixed 
time intervals and exchange their genetic characteristics. 
The number of elements constituting the individual equals the 
number of distinct words in the corpus and is therefore defined by 
the problem.  Since large corpora contain a great number of 
distinct words, both dimensions of the corresponding populations 
will have to take very large values. 
The solution proposed in this paper is intended to keep the one 
dimension that is not outwardly defined (i.e. the population size) 
small, without degrading the performance of the GA. In contrast 
to pdGA, this approach uses one population instead of many sub-

populations and always operates on that. If a pdGA were to be 
applied to the specific problem, it would either have to split the 
existing population into smaller subpopulations or create several 
populations of the same size as the existing one. In the first case, 
taking into account the large size of each individual, the smaller 
subpopulations would converge even faster than the one in the 
standard GA, potentially resulting in sub-optimal solutions. In the 
second case, the pdGA would increase the size of the overall 
population, prolonging the execution time, which is exactly what 
the GA variant proposed in this paper attempts to avoid. 

3.1 Static Masks 
All individuals of the population are segmented into smaller 
identically-sized sections with the help of a group of mutually 
exclusive masks that collectively cover the entire set of elements. 
These masks hide all other elements except for the ones included 
in their associated section. Fig. 2 illustrates an example of an 
individual comprising 12 elements that is segmented in 4 parts, 
each of which consists of 3 elements. 

 
Fig. 2. Segmentation of an individual in four sections by a 

group of static masks 
After creating the group of masks, the genetic algorithm performs 
its operations on the smaller sections instead of on the whole 
individuals. In the example depicted in Fig. 2, each of the smaller 
sections has 3 instead of 12 elements and therefore the population 
size doesn’t have to be large. 
When processing a mask, all hidden elements of the individuals 
do not participate in the GA steps and are not affected by the 
genetic operators. That way, each individual is evaluated 
according only to the limited number of elements that are visible 
following the mask application. Also, the offspring substitute only 
the particular elements in the parents’ individuals for each mask, 
so crossover and mutation affect just the reduced section of the 
individual. 
Every mask is processed for a certain number m of iterations (this 
being set to 10 in our experiments), before the GA shifts to the 
next mask. After all masks have been processed, all the elements 
of the individuals have been updated, so a new circle of m 
iterations is initiated where the masks are yet again applied in 
succession to the population. Since the individuals in each 
population are sorted in descending fitness order, it is guaranteed 
that the best individuals according to one mask will have the 
highest fitness in accordance to all masks. 



3.2 Dynamic Masks 
In the approach described up to this point, the masks are created 
at the beginning of the GA simulation and remain static 
throughout all iterations. Therefore the elements don’t have the 
opportunity to interact with other elements that belong to different 
masks. The introduction of dynamic masks overcomes this 
obstacle, by allowing for a recombination of the elements in the 
smaller sections after the completion of a predefined number of 
iterations. Figure 3 illustrates the notion of the dynamic masks 
that are updated every m iterations. 
It should be noted that the masks depicted in Fig. 2 are static. 
Hence, the same spatial pattern could be used in each mask, being 
simply displaced by a different amount. On the contrary, in Fig. 3, 
the pattern of each mask is random (under the condition that all 
elements are covered exactly once), with the patterns of masks 
being altered at regular intervals. 

 
Fig. 3. Example of application of dynamic masks updated 

every 10 iterations 
The use of masks (either static or dynamic) has an additional 
beneficial effect on the implementation of the sectioned GA. 
Different masks from a group may run in parallel in different 
processors (PCs) and only need to interact after a certain number 
of m iterations to change the mask(s) they are assigned to and 
share the solutions found so far with the other processors. In this 
intuitive manner, the GA takes a distributed form that can further 
reduce the execution time. 

4. EXPERIMENTS 
The sets of words used in the GA for training and testing are 
extracted from various Greek corpora, corresponding to a number 
of registers such as the literary and journalistic registers. Each 
word is inserted to the set once, at the point of its first appearance, 
and is thereafter ignored whenever encountered in the texts. Since 
words are inserted to the set in order of appearance, less frequent 
words are more likely to be situated near the end of the set. 
The ideal segmentation, used as reference, is that provided by the 
ILSP morphological lexicon [4], which has been created to a large 
extent manually by linguists, over a period spanning several 
years. 

4.1 Standard versus Sectioned GA 
This series of experiments examines the method proposed in this 
paper for the problem at hand against the traditional GA 
approach. For this reason both versions of the GA – standard and 

sectioned – were applied to various sizes of corpora and the 
results were compared. For the sectioned GAs the sections created 
by the static masks have a size of 1,000, while the population size 
is 250 individuals in both the sectioned and standard GAs. 
Figure 4 illustrates comparatively the performance of the two 
types of GAs. A more detailed presentation of the results is 
provided by Table I that presents the initial and final values of 
segmentation precision in all cases as well as the execution time 
required for 50 iterations. 

 
Fig. 4. Segmentation precision of (a) the standard GA and (b) 

the sectioned GA for various sizes of individuals. 
The algorithm execution times depicted in Table I have been 
obtained using a PC with a single Intel Pentium processor 
operating at a frequency of 3.4 GHz. The initial precision is that 
of the best individual of the first population, which has been 
created by randomly choosing segmentation boundaries that 
adhere to the constraints described in Section 2. 

Table I. Detailed Comparative Results of the Standard and 
the Sectioned Genetic Algorithms 

Section 
size GA-type Initial 

Precision 
Final 

Precision 
Execution 

Time (secs) 

Standard 
GA 36.0 96.0 113.7 

1,
00

0 

Sectioned 
GA 36.0 96.0 115.5 

Standard 
GA 33.6 94.8 406.3 

5,
00

0 

Sectioned 
GA 33.6 96.3 356.4 



Standard 
GA 32.8 91.8 769.1 

10
,0

00
 

Sectioned 
GA 32.8 96.1 668.5 

Standard 
GA 31.4 84.2 1517.6 

20
,0

00
 

Sectioned 
GA 31.4 96.1 1323.3 

Standard 
GA 27.5 45.2 18480.3 

21
3,

00
0 

Sectioned 
GA 27.5 95.2 16665.5 

 
Figure 4a illustrates the fact that the individuals’ size (i.e. the 
number of words to be processed) affects not only the 
performance of the system but also the number of iterations 
needed for the GA to settle. This observation is even more evident 
as the individuals’ size increases, and, in the extreme case of 
213,000 words, the segmentation precision reaches less than 50% 
of the precision accomplished with the sectioned GA. Even 
though, in the experiments conducted with more than 1,000 
words, the standard GA has not fully settled in the first 1,000 
iterations, data from further iterations indicate that the maximum 
precision accomplished after settling is always below that of the 
sectioned GA. 
In contrast to the simple GA, the sectioned GA seems to be 
independent of the individual’s size (Fig. 4b) and thus is much 
more robust. The experimental data for one prove that regardless 
of the size, every sectioned GA has settled to a final segmentation 
solution after 500 iterations. It is therefore safe to set a 
termination point after the completion of 1,000 iterations. 
Moreover, Table I indicates that the final segmentation precision 
accomplished by the sectioned GA is virtually the same for all 
numbers of words.  
The small drop of 1% that occurs in the case of 213,000 words is 
attributed to the nature of the words being processed rather than to 
the algorithm itself. When processing larger sized sets, less 
frequent words are almost certainly included in a greater 
percentage. This is a result of the way in which the test set is 
created with the insertion of words according to their order of 
appearance in the texts. Less frequent words tend to have a more 
difficult morphology and are harder to analyze, thus leading to a 
small decline in the segmentation accuracy. 
The success of the sectioned GA resides in that it deals with 
smaller groups, instead of trying to find appropriate values for all 
variables simultaneously. It is always easier to determine the 
relation between a small amount of parameters (in our 
experiments 1,000 words) rather than larger sets of parameters 
(for instance the full set of 213,000 words). Moreover, the 
individual size poses no real limitations to the proposed method 
since a potential increase would only be translated into the 
formation of additional sections (and the generation of the 
corresponding masks). 
The last column of Table I indicates that the execution time of the 
sectioned GA is slightly smaller, even when executed on a single 
processor. This represents an additional bonus to the fewer 

iterations needed for the sectioned GA to settle, in comparison to 
the standard GA. 
Even if the population size grew (in accordance to the rate of 
growth of the individuals), the results of the standard GA would 
still be poor. Figure 5a illustrates the performance of a standard 
GA with individuals of 10,000 elements for various population 
sizes. As a comparison, Figure 5b depicts the results from the 
same experiments when the sectioned GA is used. 
The growth of the population size helps the standard GA to settle 
after a smaller number of iterations and achieve results equal to 
those of the sectioned GA. However, there seems to be a limit as 
to how fast the standard GA will settle and moreover the growth 
of the population comes at the expense of substantially longer 
execution times. 
On the other hand, the sectioned GA seems to be independent of 
the population size (as well as of the size of the individuals) and 
performs similarly in all cases. This supports the initial 
assumption that when using the proposed structure for the GA 
even small population sizes can be adequate. 

 
Fig. 5. Performance of (a) the standard GA and (b) the 

sectioned GA for various population sizes. 

4.2 Static versus Dynamic Masks 
As mentioned in paragraph 3, when a sectioned GA operates on 
static masks, parameters from one sub-section don’t have the 
chance to interact with parameters from other sub-sections. For 
the application on morphological analyses and the particular 
objective function used, this might not pose such an important 
problem, since every word is independent of its environment. 
However, when using dynamic masks the sub-sections are 
periodically updated following the completion of a certain 
number of iterations. The elements that constitute each sub-
section are chosen randomly and thus after a large number of 



iterations each particular word will have combined with almost all 
words in the training set, thus allowing the optimisation of the 
final solution. To compare the effectiveness of using static versus 
dynamic masks, a set of simulations has been performed, where 
the size of the smaller sections in the experiments conducted 
remains 1,000 in both cases. 
Figure 6 indicates that the segmentation error in the case of 
213,000 words is reduced by 11% when dynamic masks are 
applied (the error falling from 4.84% to 4.29%). Even though the 
problem parameters are independent of each other, the dynamic 
mask still enhances the GA’s performance. 
Apart from the recombination between different elements that 
promotes the exchange of genetic material, dynamic masks 
introduce a certain degree of randomness much like the migration 
in the pdGA, which makes the sectioned GA more stochastic and 
thus more likely to locate the optimal solution. 

 
Fig. 6. Segmentation precision of sectioned GAs when utilizing 

a static and a dynamic mask. 

5. CONCLUSIONS 
The experiments reported in this article indicate that the 
introduction of a sectioned structure on the individuals leads to 
superior performance in relation not only to the algorithm’s speed 
but also to the achieved segmentation precision. This sectioned 
structure can be readily implemented in GA applications 
involving a great number of variables, in order to maintain a fairly 
small population without affecting the system’s performance. In 
fact, experimental data prove that the GA might perform even 
better.  
Moreover, it has been shown that the concept of GAs can be 
successfully applied to the task of word segmentation. The system 
generates a segmentation accuracy of up to 96%, which is more 
than adequate for an application focusing on data mining. Even 
though the system described is language-dependent in terms of a 
small number of explicitly provided linguistic rules, as the 
segmentation boundaries adhere to restrictions that have been 
extracted from the study of the Greek language, results achieved 
even in the absence of those restrictions indicate that the system 
could be satisfactorily applied to other languages 
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