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ABSTRACT
For decades, the size of silicon CMOS transistors has de-
creased steadily while their performance has improved. As
the devices approach their physical limits, the need for al-
ternative materials, structures and computation schemes be-
comes evident. This paper considers a computation scheme
based on an abstract model of gene regulatory networks
called Random Boolean Networks. Our interest in Random
Boolean Networks is due to their attractive fault-tolerant
features. The parameters of a network can be tuned so that
it exhibits a robust behavior in which minimal changes in
network’s connections, values of state variables, or associ-
ated functions, typically cause no variation in the network’s
dynamics. A computation scheme based on random net-
works also seems to be appealing for emerging technologies
in which it is difficult to control the growth direction or pre-
cise alignment, e.g. carbon nanotubes.

Keywords
Random Boolean Network, attractor, Boolean function, fault-
tolerance, carbon nanotubes

1. INTRODUCTION
A living cell could be considered as a molecular digital

computer that configures itself as part of the execution of
its code. The core of a cell is the DNA. DNA represents the
information for building the basic components of cells as well
as encodes the entire process of assembling complex compo-
nents. By understanding how cells direct the assembly of
their molecules, we can find ways to build chips that can
self-organize, evolve and adapt to a changing environment.

The gene regulatory network is one of the most important
signaling networks in living cells [1]. It is composed of the
interactions of proteins with the genome. The major discov-
ery related to gene regulatory networks was made in 1961
by French biologists François Jacob and Jacques Monod [24].
They found that a small fraction of the thousands of genes
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in the DNA molecule acts as tiny ”switches”. By exposing
a cell to a certain hormone, these switches can be turned
”on” or ”off”. The activated genes send chemical signals to
other genes which, in turn, get either activated or repressed.
The signals propagate along the DNA molecule until the cell
settles down into a stable pattern.

Jacob and Monod’s discovery showed that DNA is not
just a blueprint for the cell, but rather an automaton which
allows for the creation of different types of cells. It answered
the long open question of how one fertilized egg cell could
differentiate itself into brain cells, lung cells, muscle cells,
and other types of cells that form a newborn baby. Each
kind of cells corresponds to a different pattern of activated
genes in the automaton.

In 1969 Stuart Kauffman proposed using Random Boolean
Networks (RBN) as an abstract model of gene regulatory
networks [25]. Each gene is represented by a vertex in a
directed graph. An edge from one vertex to another im-
plies a causal link between the two genes. The ”on” state
of a vertex corresponds to the gene being expressed. Time
is viewed as proceeding in discrete steps. At each step, the
new state of a vertex v is a Boolean function of the pre-
vious states of the vertices which are the predecessors of
v. Kauffman has shown that it is possible to tune the pa-
rameters of an RBN so that its statistical features match
the characteristics of living cells and organisms [25]. The
number of cycles in the RBN’s state space, called attractors,
corresponds to the number of different cell types. Attrac-
tor’s length corresponds to the cell cycle time. Sensitivity
of attractors to different kinds of disturbances, modeled by
changing network connections, values of state variables, or
associated functions, reflects the stability of the cell to dam-
ages, mutations, or virus attacks.

Later RBN were applied to the problems of cell differenti-
ation [23], immune response [27], evolution [10], and neural
networks [3, 2]. They have also attracted the interest of
physicists due to their analogy with the disordered systems
studied in statistical mechanics, such as the mean field spin
glass [17, 15, 16].

In this paper, we investigate how RBN can be used for
computing logic functions. Our interest to RBNs is due,
one one hand, to their attractive fault-tolerant features. It
is known that parameters of an RBN can be tuned so that
the network exhibits a robust behavior, in which minimal
changes in network’s connections, values of state variables,
or associated functions, typically cause no variations in the
network’s dynamics.

On the other hand, random networks are an appealing



mathematical model for emerging nano-scale technologies
in which it is difficult to control the growth direction or
achieve precise assembly, e.g. carbon nanotubes. It has been
demonstrated that random arrays of carbon nanotubes are
much easier to produce compared to the ones with a fixed
structure [31]. Random arrays of carbon nanotubes can be
deposited at room temperature onto polymeric and many
other substrates, which makes them a promising new ma-
terial for macroelectronics applications. Macroelectronics is
an important emerging area of technology which aims pro-
viding inexpensive electronics on polymeric substrates. Such
electronics can be ”printed” onto large-area polymeric films
by using fabrication techniques similar to text and imaging
printing, rather than conventional semiconductor fabrica-
tion technology. Applications of macroelectronics include
lightweight flexible displays, smart materials or clothing,
biological and chemical sensors, tunable frequency-selective
surfaces, etc. Conventional semiconductors are not suitable
for such applications because they are too expensive and re-
quire a crystalline substrate. The effort to develop organic
semiconductors has achieved only moderate success so far,
mostly because of the low-quality electron transport of or-
ganic semiconductors. Random arrays of carbon nanotubes
provide a high-quality electron transport and therefore can
be a much better alternative.

The paper is organized as follows. Section 2 gives a defini-
tion of RBNs and summarizes their properties. Section 3 de-
scribes how we can use RBNs for computing logic functions
and addresses fault-tolerance issues. Section 4 presents a
new algorithm for computing attractors in RBNs. Section 6
concludes the paper and discusses open problems.

2. RANDOM BOOLEAN NETWORKS
In this section, we give a brief introduction to Random

Boolean Networks. For a more detailed description, the
reader is referred to [2].

2.1 Definition of RBN
A Random Boolean Network (RBN) is a synchronous Boolean

automaton with n vertices. Each vertex v has k predeces-
sors, assigned independently and uniformly at random from
the set of all vertices, and an associated Boolean function
fv : {0, 1}k → {0, 1}. Functions are selected so that they
evaluate to values 0 and 1 with given probabilities p and
1− p, respectively. Time is viewed as proceeding in discrete
steps. At each step, the next value of the state variable xv

associated with the vertex v is a function of the previous
values of the state variables xui

associated with the prede-
cessors of v, ui, i ∈ {1, 2, . . . , k}:

x
+
v = fv(xu1

, xu2
, . . . , xuk

),

The state of an RBN is defined by the ordered set of values
of the state variables associated with its vertices.

An example of an RBN with n = 10 and k = 2 is shown
in Figure 1. We use “·”, “+” and “′” to denote the Boolean
operations AND, OR and NOT, respectively.

2.2 Frozen and chaotic phases
The parameters k and p determine the dynamics of an

RBN. If a vertex controls many other vertices, and the num-
ber of controlled vertices grows in time, the RBN is said to
be in a chaotic phase [29]. Typically such a behavior oc-
curs for large values of k ∼ n. The next states of the RBN
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Figure 1: Example of an RBN with n = 10 and k = 2.
The next state of each vertex v is given by x+

v =
fv(xu1

, xu2
), where u1 and u2 are the predecessors of

v, and fv is the function associated to v.

are random with respect to the previous ones. The dynam-
ics of the network is very sensitive to changes in the values
of state variables, associated Boolean function, or network
connections.

If a vertex controls only a small number of other vertices
and their number remains constant in time, the RBN is said
to be in a frozen phase [21]. Usually, independently on the
initial state, after a few steps, the network reaches a stable
state. This behavior usually occurs for small values of k,
such as k = 0 or 1.

There is a critical line between the frozen and the chaotic
phases, when the number of vertices controlled by a vertex
grows in time, but only up to a certain limit [4]. Statistical
features of RBNs on the critical line are shown to match
the characteristics of real cells and organisms [25, 26]. The
minimal disturbances typically create no variations in the
network’s dynamics. Only some rare perturbations evoke
radical changes.

For a given probability p, there is a critical number of
inputs kc below which the network is in the frozen phase
and above which the network is in the chaotic phase [17]:

kc =
1

2p(1 − p)
. (1)

2.3 Attractors
An infinite sequence of consecutive states of a network is

called a trajectory. A trajectory is uniquely defined by the
initial state. Since the number of possible states is finite, all
trajectories eventually converges to either a single state, or a
cycle of states, called attractor. The basin of attraction of A

is the set of all trajectories leading to the attractor A. The
attractor length is the number of states in the attractor’s
cycle.

It is possible to reduce the state space of an RBN by
removing vertices belonging to its stable core. The stable
core is defined by Flyvbjerg [20] as the set of vertices whose
output value develops in time to a constant value that is
independent of the initial state of the RBN. Bastola and
Parisi [6] have observed that the state space can be further
reduced by removing vertices which have no outputs. They
introduced a notion on relevant vertex, which is a vertex
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Figure 2: Reduced network GR for the RBN in Fig-
ure 1.
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).

which has an influence on RBN’s dynamics. Exact and ap-
proximate bounds on the size of the set of relevant vertices
for different values of k and p have been given [20, 21, 4, 29,
6]. In the infinite size limit n → ∞, in the frozen phase, the
number of relevant vertices remains finite. In the chaotic
phase, the number of relevant vertices is proportional to n.
On the critical line, the number of relevant vertices scales as
n1/3 [32].

Let GR be the reduced network obtained from G by re-
moving non-relevant vertices. The reduced network for the
example in Figure 1 is shown in Figure 2. Its state transition
graph is given in Figure 3. Each vertex of the state transi-
tion graph represents a 5-tuple (xv2

xv3
xv6

xv8
xv10

) of values
of states on the relevant vertices v2, v3, v6, v8, v10. There are
two attractors: {01111, 01110, 00100, 10000, 10011, 01011},
of length six, and {00101, 11010, 00111, 01010}, of length
four.

A number of algorithms for computing attractors in RBNs
have been presented. Most of them are based on an explicit
representation of the set of states on an RBN and there-
fore are applicable to networks with up to 32 relevant ver-
tices only [32, 5, 36, 7]. The algorithm presented in [19]
uses an implicit representation, namely Binary Decision Di-
agrams (BDDs) [11], and can handle larger RBNs. It is a
very efficient algorithm which finds the set of states of all
attractors simultaneously without computing the rest of the
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Figure 4: Example of a network computing the 2-
input AND.
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Figure 5: (a) Reduced network for the RBN in Fig-
ure 4. (b) Its state transition graph. Each state is a
pair (xv4

xv5
). There are two attractors: A1 = {01, 10}

and A2 = {11}.

states. The algorithm presented in this paper is intended to
complement the algorithm from [19] for the cases when the
complete state space is necessary, e.g. if we want to compare
dynamics of two RBNs.

For very larger RBNs, the median instead of the exact
results are computed by simulation using the following tech-
nique [32]. Repeatedly, an initial state is chosen at random
and the attractor reachable from this state is computed. If
1000 consecutive attempts yield no new attractor, the algo-
rithm terminates. The resulting number is used as a lower
bound on the number of attractors in the network.

In [18], it was shown that attractors of an RBN can be
computed compositionally from the attractors of the con-
nected components of the reduced network GR. Two ver-
tices are defined to be in the same component if and only if
there is an undirected path between them.

3. COMPUTATIONAL SCHEME BASED ON
RBNS

In this section we discuss how RBNs can be used for com-
puting logic functions. One possibility is to use state vari-
ables of relevant vertices of a network to represent variables
of the function, and to use attractors to represent the func-
tion’s values.

To be more specific, suppose that we have an RBN G with
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Figure 6: An alternative reduced network for the
2-input AND.

r relevant vertices v1, . . . , vr and m attractors A1, . . . , Am.
The basins of attractions of Ai’s partition the Boolean space
{0, 1}r into m connected components via a dynamic process.
Attractors constitute stable equilibrium points. We assign a
value i, i ∈ {0, 1, . . . , m− 1} to the attractor Ai and assume
that the set of points of the Boolean space corresponding to
the states in the basin of attraction of Ai is mapped to i.
Then, G defines the function f : {0, 1}r → {0, 1, . . . , m− 1}
of variables x1, . . . , xr, where the value of the variable xi

corresponds to the state variable of the relevant vertex vi.
The mapping is unique up to the permutation of m values
of f . If m = 2, then G represents a Boolean function.

The technique described above assumes that we have a
way to access relevant vertices of an RBN and initialize them
to given values (equivalent to assigning values to variables
of a function), as well as that we have a way to recognize
which logic value is assigned to an attractor (equivalent to
reading output values of the function).

As an example, consider the RBN G shown in Figure 4.
The vertices v4 and v5 are relevant vertices, determining
the dynamic of G according to the reduced network in Fig-
ure 5(a). The state transition graph of the reduced network
is shown in Figure 5(b). There are two attractors, A1 and
A2. We assign the logic 0 to A1 and the logic 1 to A2. The
initial states 00, 01 and 10 terminate in the attractor A1

(logic 0) and the initial state 11 terminates in the attractor
A2 (logic 1). So, G represents the 2-input Boolean AND.

As another example, consider the RBN in Figure 2 and
its state transition graph in Figure 3. If we assign the logic
0 to the left-hand side attractor and the logic 1 to the right-
had side one, then we get the following 5-variable Boolean
function:

f(x1, x2, x3, x4, x5) = x2x
′

3x
′

5 + x
′

2x3x4(x1 + x5).

A computation scheme based on RBNs inherits their at-
tractive fault-tolerant features. Many experimental results
confirm that RBNs are tolerant to faults, i.e. typically the
number and length of attractors are not affected by small
changes (see [2] for an overview). The following types of
fault models are usually used:

• a predecessor of a vertex v is changed, i.e. an edge
(u, v) is replaced by an edge (w, v), v, u, w ∈ V ;

• the value of a state variable is changed to the comple-
mented value;

• Boolean function of a vertex is changed to a different
Boolean function.

v5v3
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A0
x
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v3
+ xv5

xv3
+ x

′

v5

Figure 7: (a) Reduced network for the RBN in Fig-
ure 4, after three mutations described in Section 3
have been applied. (b) Its state transition graph.
Each state is a pair (xv3

xv5
). There are two attrac-

tors: A1 = {01, 10} and A2 = {00, 11}.

On one hand, the stability of RBNs is due to the large per-
centage of redundancy in the network. On the other hand,
it is due to the non-uniqueness of the network representa-
tion. The same dynamic behavior can be achieved by many
different RBNs. For instance, the 2-input AND gate can
be implemented in many other ways than the one shown in
Figure 4. For example, the reduced network in Figure 6 has
the same state transition graph as the one in Figure 5.

Another interesting feature of RBN is their capability to
evolve to a predefined target function. For example, suppose
that the following three mutations are applied to the network
in Figure 4:

1. edge (v4, v5) is replaced by (v3, v5);

2. edge (v2, v3) is replaced by (v3, v3);

3. edge (v7, v3) is replaced by (v5, v3).

After removing redundant vertices from the resulting mod-
ified network, we obtain the reduced network shown in Fig-
ure 7. Its state space has two attractors, A1 and A2. If we
assign the logic 0 to A1 and the logic 1 to A2, then the initial
states 00 and 11 terminate in 1, while 01 and 10 terminate in
0. So, the modified network implements the 2-input Boolean
XNOR.

4. COMPUTATION OF ATTRACTORS
In order to realize a Boolean function using the method

described above, attractors in the states space of an RBN
have to be computed. In this section, we show that this
can be done by using a technique similar to the fixed point
computation during reachability analysis in model checking.

The main idea can be summarized as follows. Starting
from an arbitrary state, forward reachability analysis is ap-
plied to find a state in some attractor A. Then, using this
state as a final state, backward reachability analysis is per-
formed to find the remaining states in the basin of attraction
of A. The process in repeated starting from a state not pre-
viously visited until the complete state space is covered.

4.1 Transition relation
To be able to compute attractors in a large RBN, it is

important to use an efficient representation for its set of
states, and for the transition relation on this set. implemen-
tation, we use Reduced Ordered Binary Decision Diagrams
(BDDs) [11].

A transition relation defines the next state values of the
vertices in terms of the current state values. We derive



the transition relation in the standard way [13], by assign-
ing every vertex vi of the network a state variable xvi

and
making two copies of the set of state variables: s = (xv1

,

xv2
, . . . , xvr

), denoting the variables of the current state,
and s+ = (x+

v1
, x+

v2
, . . . , x+

vr
), denoting the variables of the

next state. Using this notation, the characteristic formula
for the transition relation of an RBN is given by:

T (s, s+) =
r∧

i=1

(x+
vi

↔ fi(xvi1
, xvi2

)),

where r is the number of relevant vertices, fi is the Boolean
function associated with the vertex vi and vi1 and vi2 are
the predecessors of vi.

As an example, consider the reduced RBN in Figure 2 and
its state transition graph in Figure 3. We have s = (xv1

, xv2
,

xv5
, xv7

, xv9
) and s+ = (x+

v1
, x+

v2
, x+

v5
, x+

v7
, x+

v9
). The transi-

tion relation is given by:

T (s, s+) = (x+
v1

↔ x′

v7
) ∧ (x+

v2
↔ xv9

) ∧ (x+
v5

↔ xv2
)

∧ (x+
v7

↔ (xv1
+ xv9

)) ∧ (x+
v9

↔ x′

v5
).

4.2 Forward reachability
In traditional forward reachability, a sequence of formulas

Fi(s) representing the set of states that can be reached from
a given set of initial states Init in i steps is computed as:

F0 = Init,

Fi+1(s
+) = ∃s.(T (s, s+) ∧ Fi(s)).

The sequence generation is terminated when the fixed point
is reached for some p:

p∨

i=1

Fi(s) →

p−1∨

i=1

Fi(s).

In an RBN, any state in the state space can be an initial
state. We cannot start the reachability analysis from all
states as the set of initial states, because then the fixed point
is reached immediately. Instead, in our approach, forward
reachability is started from a single state selected at random:

Init =
r∧

i=1

(xvi
↔ initi(xvi

)),

where initi(xvi
) is the initial value of the state variable xvi

,
i ∈ {1, . . . , r}.

A sequence of consecutive states from Init to an attractor
can be quite long (up to 2r). Thus, it is not efficient to
compute Fi(s) for each value of i. To reduce the number
of steps needed to reach an attractor, we use the iterative
squaring technique [12]. Let T i(s, s+) denote the transition
relation describing the set of next states s+ that can be
reached from any current state s in i steps. For i = 2,
T 2(s, s+) is computed as follows:

T
2(s, s+) = ∃s

++
.(T (s, s++) ∧ T (s++

, s
+)). (2)

By applying squaring iteratively, we can obtain T 2
m

(s, s+)
in m steps for any m.

One one hand, it cannot take more than 2r steps to reach
an attractor from any state. One the other hand,“overshoot-
ing” is not a problem because, once entered, an attractor is
never left. Therefore, for any initial state s, the next state
s+ obtained by the transition defined by T 2

r

(s, s+) is a state
of an attractor.

We terminate the iterative computation of T 2
m

(s, s+) if
either m becomes equal to r, or if

T
2

m

(s, s+) → T
2

m−1

(s, s+),

for some m ∈ {1, . . . , r − 1}.

Using the resulting transition relation T 2
m

(s, s+), m ∈ {1,

. . . , r}, we compute the set of states reachable from Init in
2m steps as:

F2m(s+) = ∃s.(T 2
m

(s, s+) ∧ F0(s)). (3)

Note that, with such an approach, we always reach a single
state.

4.3 Backward reachability
The state given by F2m(s+) in equation (3) belongs to

some attractor A. Next, we perform backward reachability
to find the remaining states in the basin of attraction of A.

In traditional backward reachability, a sequence of formu-
las Bi(s) representing the set of states from which a given set
of final states Final can be reached in i steps is computed
as:

B0 = Final,

Bi+1(s) = ∃s+.(T (s, s+) ∧ Bi(s
+)).

In our case, the set of final states consists of a single state
Final = F2m(s+) (given by the equation (3)).

The sequence of consecutive states leading to Final can
be quite long (up to 2r). Thus, it is not efficient to compute
Bi(s) for each value of i. To reduce the number of steps
needed to reach Final, we compute a transition relation
T0...2t(s, s+) which defines the set of all next states s+ that
can be reached from any current state s in up to 2t steps.
This transition relation is used to obtain the the basin of
attraction of A by backward reachability. For t ∈ {0, . . . , r},
T0...2t(s, s+) is computed as follows:

T0(s, s
+) =

∧r
i=1

(x+
vi

↔ xvi
),

T0...1(s, s
+) = T (s, s+) ∨ T0(s, s

+),

T0...2t(s, s+) = T 2

0...2t−1(s, s
+),

where T 2

0...2t−1(s, s
+) is computed using the equation (2),

and T0 is the transition relation which assigns the next state
of any state to be the state itself.

We terminate the iterative computation of T0...2t(s, s+) if
either t becomes equal to r, or if

T0...2t(s, s+) → T0...2t−1(s, s
+),

for some t ∈ {1, . . . , r − 1}.
Using the resulting transition relation, we compute the set

of states from which the state Final is reachable in up to 2t

steps as

B0...2t(s) = ∃s
+

.(T0...2t(s, s+) ∧ B0(s
+)),

where B0(s
+) = Final. The resulting set B0...2t(s) is the

basin of attraction of A.
The whole process is repeated starting from a state not

belonging to any previously computed basin of attraction.
The algorithm terminates when the complete state space is
covered.

The pseudo-code of the algorithm described above is sum-
marized in Figure 8.



algorithm FindAttractors (T (s, s+))
number of attractors = 0;
C(s) = ∅; /* set of states in computed basins of attraction */

T 1(s, s+) = T (s, s+);
m = 0;
while m < r do

m++;

T 2m

(s, s+) = ∃s++.(T 2m−1
(s, s++) ∧ T 2m−1

(s++, s+));

if T 2m

(s, s+) = T 2m−1
(s, s+) then

break ;
end while

T0(s, s+) =
∧

r

i=1
(x+

vi
↔ xvi

);

T0...1(s, s+) = T (s, s+) ∨ T0(s, s+);
t = 0;
while t < r do

t++;
T

0...2t (s, s+) = T 2

0...2t−1 (s, s+);

if T
0...2t (s, s+) = T

0...2t−1 (s, s+);
break ;

end while

while C(s) 6= U do /* U is the complete state space */
Pick up an initial state F0(s) ∈ C′(s);

F2m (s+) = ∃s.(T 2m

(s, s+) ∧ F0(s));

B
0...2t (s) = ∃s+.(T

0...2t (s, s+) ∧ F2m (s+));
C(s) = C(s) ∪ B

0...2t (s);
number of attractors++;

end while

return (number of attractors)
end

Figure 8: Pseudocode of the presented algorithm for
computing attractors in RBNs.

Note that, when searching for a state in an attractor by
forward reachability, T0...2t(s, s+) can be used instead of
T2m(s, s+). In this way, the calculation of T2m(s, s+) can be
avoided without changing the overall procedure. The only
difference is that, instead of a single state in an attractor,
F2m(s+), a set of states is obtained.

As an example, consider the reduced RBN in Figure 2 and
its state transition graph in Figure 3. We have s = (xv1

, xv2
,

xv5
, xv7

, xv9
) and s+ = (x+

v1
, x+

v2
, x+

v5
, x+

v7
, x+

v9
). The transi-

tion relation is given by:

T (s, s+) = (x+
v1

↔ x′

v7
) ∧ (x+

v2
↔ xv9

) ∧ (x+
v5

↔ xv2
)

∧ (x+
v7

↔ (xv1
+ xv9

)) ∧ (x+
v9

↔ x′

v5
).

After the first iteration of squaring, we get

T 2(s, s+) = ∃s++.((x++
v1

↔ x′

v7
) ∧ (x++

v2
↔ xv9

)

∧ (x++
v5

↔ xv2
) ∧ (x++

v7
↔ (xv1

+ xv9
))

∧ (x++
v9

↔ x′

v5
) ∧ (x+

v1
↔ (x++

v7
)′)

∧ (x+
v2

↔ x++
v9

) ∧ (x+
v5

↔ x++
v2

)

∧ (x+
v7

↔ (x++
v1

+ x++
v9

)) ∧ (x+
v9

↔ (x++
v5

)′).

Similarly, we compute T 4(s, s+), T 8(s, s+), and T 16(s, s+).

None of T 2
m

(s, s+) equals to T 2
m−1

(s, s+) for m ∈ {1, . . . , 4}.
So, T 32(s, s+) is computed and the iterative squaring is ter-
minated.

Suppose that the initial state is (11000), i.e.

Init = (xv1
↔ 1) ∧ (xv2

↔ 1) ∧ (xv5
↔ 0) ∧ (xv7

↔ 0)

∧ (xv9
↔ 0).

Then, by substituting T 32(s, s+) and F0(s) = Init in (3)

total average average
number number of number

of relevant of
vertices vertices attractors

10 5 2.69
102 25 11.3
103 93 24.1∗

104 270 89.7∗

105 690 -
106 1614 -
107 3502 -

Table 1: Simulation results. Average values for 1000
RBNs with k = 2 and p = 0.5. ”∗” indicates that the
average is computed only for successfully terminated
cases.

and simplifying the result, we get

F32(s
+) = (xv1

↔ 1) ∧ (xv2
↔ 1) ∧ (xv5

↔ 0)

∧(xv7
↔ 1) ∧ (xv9

↔ 0),

i.e. the state (11010).
Backward reachability analysis gives us the remaining states

in the basin of attraction, namely (11000), (10111), (01010),
(00101), (00111), (10101), (01000). By repeating the process
starting from, say (00001), we compute the second attrac-
tor. Since the complete state space is covered, the algorithm
terminates.

5. SIMULATION RESULTS
This section shows simulation results for RBNs of sizes

from 10 to 107 vertices with the parameters k = 2 and p =
0.5 (Table 1). Column 2 gives the average number of relevant
vertices computed using the algorithm from [19]. Column
3 shows the average number of attractors in the resulting
networks.

The simulation results show that, on random graphs, BDDs
blow up more frequently than on sequential circuits. Cur-
rently, we cannot compute the exact number of attractors
in most networks with 103 vertices and larger. The number
of attractors shown in column 5 for networks with 103 and
104 vertices is the average value computed for successfully
terminated cases only. We did have occasional blow ups
for networks with 100 vertices as well. The number of at-
tractors shown in column 5 for networks with 100 vertices is
the average value computed for 1000 successfully terminated
cases.

6. CONCLUSION AND OPEN PROBLEMS
In this paper, we describe a computation scheme in which

states of the relevant vertices of an RBN represent variables
of the function, and attractors represent function’s values.
Such a computation scheme has attractive fault-tolerant fea-
tures and it seems to be appealing for emerging nanotech-
nologies in which it is difficult to control the growth direction
or achieve precise assembly.

We also present a new algorithm for computing attractors
in RBN which uses Binary Decision Diagrams for represent-
ing the set of states of an RBN and the transition relation on
this set. However, BDD representation runs out of memory
for most networks with 103 vertices and larger. We plan to



investigate possibilities for implementing the algorithm pre-
sented in [19] using Boolean circuits [9], rather than BDDs,
and combined approaches [30, 35]. An Boolean circuit is a
representation for Boolean formulas in which basic functions
are restricted to AND, OR and NOT and all common sub-
formulas are shared. Contrary to BDDs, Boolean circuits
are not a canonical representation. Therefore, they nor-
mally take less memory to be stored, but need more time to
be manipulated. We will also try reducing the state space
of an RBN by detecting equivalent state variables [34] and
by partitioning the transition relation [22].

In our future work, we will also investigate possibilities
for enhancing RBNs as a model. RBNs have a number of
drawbacks. First, input connectivity of gene regulatory net-
works is much higher than k = 2. For example, it is more
than 20 in β-globine gene of humans and more than 60 for
the platelet-derived growth factor β receptor [2]. We will
consider networks with a higher input connectivity k and a
smaller probability p, satisfying the equation (1)).

Second, using Boolean functions for describing the rules
of regulatory interactions between the genes seems too sim-
plistic. It is known that the level of gene expression depends
on the presence of activating or repressing proteins. How-
ever, the absence of a protein can also influence the gene
expression [2]. Using multiple-valued functions instead of
Boolean ones for representing the rules of regulations could
be a better option.

Third, the number of attractors in RBNs is a function of
the number of vertices. However, organisms with a similar
number of genes may have different numbers of cell types.
For example, humans have 20.000-25.000 genes and more
than 250 cell types [28]. The flower Arabidopis has a similar
number of genes, 25.498, but only about 40 cell types [8]. We
will investigate which other factors influence the number of
attractors.

Another interesting problem is investigating networks with
different types of connectivity. In RBNs, each vertex has an
equal probability of being connected to other vertices. Alter-
natively, in cellular automata [14], each vertex is connected
only to its immediate neighbors, and all connections are ar-
ranged in a regular lattice. Intermediate cases are possible,
for example, in small-world networks [33] some connections
are to distant vertices and some are to neighboring vertices.
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