
Autonomic Reliable Multicast

Application-Level Group Communication Using Self-Organization Principles

Edzard Höfig
Fraunhofer Institute for Open Communication Systems

Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
edzard.hoefig@fokus.fraunhofer.de

ABSTRACT
We present a mechanism for reliable multicast based on au-
tonomic principles (AutoRM). So-called Beamon nodes ex-
change information in a peer-to-peer manner, deriving a sub-
jective view of the environment. Applications connect to a
Beamon network to participate in reliable communication
within groups they declare to be joined to.
This short paper describes the general AutoRM concepts,
the architecture and protocols used between application and
Beamon, as well as between the nodes themselves.

Keywords
Multicast, Group Communication, Autonomic Communica-
tion, Self-Organization

1. INTRODUCTION
Group Communication (GC) is a major concept when

dealing with situations that require the exchange of data
in a 1-to-many fashion, for example service discovery, load-
balancing, or distributed control purposes. It is often im-
plemented using standard UDP-based IP multicast, which
matches most underlying transport mediums well, but ex-
hibits unfavourable properties, e.g. packets may disappear
or appear out of order. The size of a UDP packet is also
limited to the Maximum Transmission Unit (MTU) of the
transport technology, e.g. making it impossible to trans-
mit more than 1 1

2
Kbyte of consecutive data over Ethernet.

There are several solutions to cope with the limitations but
these are either implemented on network-level [5, 4], limited
to only a certain language [1], or configured in a way that
contradicts autonomic design concepts [6, 3]).

2. CONCEPTS
A major characteristic of autonomic systems is their abil-

ity to properly operate on their own accord in a changing
environment (often referred to as homeostasis). It also dic-
tates that a system needs to be able to infer its specific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Bionetics ’07, December 10-13, 2007, Budapest, Hungary
Copyright 2007 ICST 978-963-9799-11-0.

view of an operational context in a dynamic and continuous
manner. We therefore refrain from employing principles that
rely on a universally consistent, shared global state. Instead
autonomic systems should communicate to reach a common
agreement or goal, always subjecting exchanged information
to an interpretative analysis. Enabling an active exchange of
information forms another cornerstone of the design princi-
ples: autonomic systems are assumed to be communicating
constantly. If a system does not participate in the exchange
of information it is considered non-existent. Together, these
principles lay the foundation for a self-organization of the
AutoRM components.

2.1 Architecture
Our implementation of an AutoRM infrastructure con-

sists of three main components: A shared communication
medium, several so-called Beamon nodes and several ap-
plications (also referred to as frontends). As depicted in

Application

Application

Application Application

ApplicationApplication

Shared
Medium

Beamon
Nodes

Figure 1: General Architecture

Fig.1 the application components are connected to the Bea-
mon nodes in an 1-to-many manner: normally only a sin-
gle Beamon is deployed at a host, which is then facilitated
by several local applications. The nodes themselves are ex-
changing information via a shared communication medium.
Applications may connect to any reachable Beamon – in
most cases we envision this to be a local one – and partici-
pate in message transmission using groups.

2.2 Autonomic Group construction
Following autonomic principles, groups are a purely lo-

cal concept: A Beamon declares membership in a group by
including it in a list that is repeatedly broadcasted on the
shared medium. The group declaration messages serve as

a heartbeat mechanism, enabling other Beamons to decide
upon the dead of a node by absence of the regular heart-
beats. Every Beamon not only tracks timestamps for ev-
ery incoming message, but also membership declarations of
every node in its environment1, forming a subjective view
of the environment. By performing analysis on the history
of timestamps it is decided if another Beamon is still ac-
tive. Currently we are only employing a comparison of the
last timestamp value against a so-called stale-time (pro-
portional to the number of nodes in the environment), but
we plan to adapt this to more sophisticated means, e.g. sta-
tistical analysis.
The frequency with which a node sends heartbeat messages
is determined by the number of overall nodes in the envi-
ronment: the more Beamons in an environment, the lower
the frequency, the more inaccurate the subjective views of
each Beamon. Without this frequency adaptation, an envi-
ronment would be swamped with heartbeat messages. An
approximation of the overall number of nodes is calculated
by using the local node tracking table and an average of the
number of nodes as reported by each Beamon as part of its
heartbeat. A node uses a so-called trust value to decide the
ratio with which both values (local and global average) are
combined to give the approximation of overall nodes in the
environment.

2.3 Group Communication
An application manages group participation by sending a

join or leave command to a certain Beamon, identifying a
group by name. After joining a group, the Beamon will start
to announce the group in its next heartbeat message (if not
already part of the groups it announces) and the application
will be subsequently informed of any information exchanged
within the group.
There are two ways for an application to send messages to a
group: either by sending to everyone, or by sending to some-
one. In the former case, a message will be send to the whole
group. In the later case, the Beamon responsible for send-
ing picks a single node of that group (currently at random)
from its tracking table and directly transmit a message. The
target Beamon subsequently selects a single registered ap-
plication and dispatches the message. Similar GC primitives
have also been implemented in the Group Event Notification
Protocol [2].

2.4 Reliability
Messages may be larger than the current MTU and the

sending of messages is done in a reliable fashion, whereas
the reliability model for GC in autonomic system is differ-
ent than existing ones used for traditional distributed sys-
tems [6], as we postulate that no universal global state may
be used. Reliability is defined as follows: As long as a re-
ceiver is participating in a group some messages are send to,
it is guaranteed that the messages will be delivered to the
receiver and that they arrive in the order they were sent. If
transmission of a message is not possible (for example due
to excessive packet loss on the shared medium) the receiver
will be dropped from the senders tracking tables and there-
fore vanish from the sender’s environment; in other words:
the Beamon implementation guarantees that either a mes-
sage arrives completely and in order at a destination or the

1The environment is understood as consisting of all hosts
reachable via the shared medium

destination node is removed from the sender’s environment
tables. The determination of a node’s reachability is de-
pendent on the numbers of re-transmissions, employing the
timestamping mechanism as discussed in section 2.2.

3. IMPLEMENTATION
Decomposing the AutoRM architecture in a so-called back-

end (a Beamon node) and frontend (a lightweight compo-
nent bound by an application) enables the employment of
different implementation languages for the separate parts.
In our case the backend is designed as a UNIX daemon
and currently implemented in C++, whereas the frontend
is currently implemented using three Java classes. Develop-
ing new language bindings for Beamon is done by creating
new frontend implementations in a language of choice, al-
lowing many potential applications access to the AutoRM
GC facilities. This two-level architecture lead to the de-
sign of two different communication protocols: the protocol
between frontend and backend, and the protocol for infor-
mation exchange between Beamons.

3.1 Frontend-Backend Protocol
Communication between front- and backend follows a cli-

ent-server paradigm, employing TCP for reliable, connection-
oriented data transfer. Messages that are transmitted using
this protocol are following a simple common layout as shown
in Fig. 2. The diagram shows the packet layout on a byte

Command Group Name

Message
Message cont'd

Group Name Size

Message Size

Type A

Type B

Figure 2: Layout of Frontend-Backend Protocol

level: Fixed size values are depicted in a lighter shade of
gray, variable size values are shown in a darker colour and
without gridlines. There are two types of packets: Type A,
consisting of a 4 byte command name in ASCII, followed by
a one byte value for the size of the group name and the vari-
able length group name itself (encoded in UTF-8). Type B
extends this structure by adding a 32bit message size field2

and a variable number of bytes containing a message.
The protocol itself is stateless and simple: A type A packet
with the command JOIN send from the front- to the backend
instructs the Beamon to join a group, the command LEAV
does the opposite. Using type B packets, the Beamon is
directed to send messages with either the SNDE (send to
everyone) or SNDS (send to someone) commands. The only
packet transmitted from the Beamon back to the application
is type B RCVE containing a message that the application
ought to receive.

3.2 Beamon Protocol
Communication that adheres to the inter-Beamon proto-

col follows a peer-to-peer paradigm, utilising the 1-to-many
broadcasting capabilities of the shared medium. In our cur-
rent implementation the shared medium is a single IPv4

2Wire format: all values are encoded in network byte order

multicast group, joined at the start of each Beamon and
left when a node exits. Addressing of packets is based on
non-persistent Universally Unique Identifiers (UUID) which
each node assigns to itself. The protocol is stateful, em-
ploying a binary format to encode information in a tightly
manner, and consists of only three packet types: heartbeats,
data packets, and acknowledgements. The layout of heart-
beat packets is shown in Fig. 3. Packets of this type are

1
Group Name Group Name

Number of overall
nodes in environment

Number of
group
names Group Name Size

Source UUID (16 byte)

Figure 3: Layout of Heartbeat Packet

continuously send by each Beamon. They consist of a sin-
gle byte packet type identifier with the value 1, a 16 byte
source node address, a two byte value containing the num-
ber of nodes in the sending Beamon’s environment table, a
one byte value indicating the number of group names trans-
mitted in this heartbeat, and a list of declared groups for
the node in question. The group list is structured by us-
ing single byte values indicating the size of the group name,
followed by the name itself, encoded in UTF-8. When a

Payload

2

Group Name

Group
Name Size

Sequence
ID

Number of Packets
in Sequence

Packet
Number

Payload
Size

Pay'ld

Re
se

rv
ed

LSB

MSB

Confirmation

OneOf

Flag bits
Source UUID (16 byte)

Destination UUID (16 byte)

Figure 4: Layout of Data Packet

node wants to send a message it uses data packets, as shown
in Fig. 4. Following the type identifer (2) these contain a
source and a destination address. The destination might be
set to all zeros, indicating that the packet is addressed to a
group and not a single node. Besides containing a sequence
identifier3, the overall number of packets in the sequence,
the current packet number, a group name, and the payload
itself, the packet contains a set of flags. Currently only two
of them are used: the OneOf flag instructs a receiver to
choose exactly one application to forward the message to
and the Confirmation flag requests an acknowledgement
packet (see Fig. 5) from the receiver. Besides carrying in-
formation that enables the sender to identify the proper se-
quence, the acknowledgement packet transports all packet
numbers missing in the receiver, limited by the number of
the last received packet, so the sender will not re-transmit
packets that had not arrived as the acknowledgement request
was processed in the receiver. The last packet of a sequence
always has to be confirmed, but a sender might introduce

3which needs to be unique in regard to the sending node

3

Sequence
ID

Last Received Packet
 in Sequence

Overall Number
of Missing
Packets

Missing
Packet
Number

Source UUID (16 byte)
Destination UUID (16 byte)

Figure 5: Layout of Acknowledgement Packet

additional confirmation requests in any packet it sends, op-
timising confirmation traffic load when transmitting large
messages.

4. CONCLUSIONS
We are currently employing a predecessor of the presented

architecture as underlying infrastructure for the manage-
ment of a distributed testbed using virtualization, enabling
us to start or stop virtual machines on several hosts and to
distribute runtime data to all participating hosts in parallel.
Due to the autonomic principles used, the configuration on
a per-host basis is obsolete, making testbed set-up trivial.
The new protocols presented here are bound to replace the
old version, because former lacked the reliability concepts
and was not been implemented in a language agnostic way.
There are several open issues that we would like to study
in greater detail: For example we don’t know how to con-
trol congestion at the shared medium, we are also using a
fixed MTU which may not work well with transport medi-
ums different than Ethernet or Wireless LAN, and we have
no experience regarding robustness or scalability of the new
protocol. Nonetheless, the current version is a matching
solution for the requirements we have and – hopefully – a
small, but valuable contribution to the Autonomic Commu-
nication (AC) community at large.

5. REFERENCES
[1] B. Ban. Javagroups – group communication patterns in

java. Technical report, Cornell University, 1998.

[2] C. Reichert and D. Witaszek. An implementation of the
group event notification protocol. Technical Report
TR-2002-0301, Fraunhofer FOKUS, 2002.

[3] Sally Floyd et al. A reliable multicast framework for
light-weight sessions and application level framing.
IEEE/ACM Transactions on Networking, 5(6):784–803,
1997.

[4] Sanjoy Paul et al. Reliable multicast transport protocol
(RMTP). IEEE Journal of Selected Areas in
Communications, 15(3):407–421, 1997.

[5] T. Speakman et al. PGM Reliable Transport Protocol
Specification. RFC 3208 (Experimental), 2001.

[6] Yair Amir et al. Secure spread: An integrated
architecture for secure group communication. IEEE
Transactions on Dependable and Secure Computing
(TDSC), 2(3):248–261, September 2005.

	Introduction
	Concepts
	Architecture
	Autonomic Group construction
	Group Communication
	Reliability

	Implementation
	Frontend-Backend Protocol
	Beamon Protocol

	Conclusions
	References

