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ABSTRACT
The idea of Organic Computing is a trend to counter the problems
arising from the fact that computing systems are getting smaller and
smaller, and we will soon be surrounded by large numbers of little
computers which will be hard to configure, maintain, and control.

We reintroduce an organic middleware - the artificial hormone
system (AHS) which can map tasks onto a grid of heterogeneous
processing elements while providing the system with self-X proper-
ties and even guaranteeing upper bounds for the self-configuration
and self-healing.

This paper investigates the quality of task mappings on a grid of
heterogeneous processing elements.

An algorithm is proposed to measure the quality of such task
mappings. Experiments with randomly generated configurations
will show results of mappings done by our artificial hormone sys-
tem and compare them with ordinary load balancing.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose And
Application-Based Systems—Real-time and embedded systems;
D.2.8 [Software Engineering]: Metrics—complexity measures,
performance measures; D.2.10 [Software Engineering]: De-
sign—Methodologies

General Terms
Algorithms, Measurement

Keywords
artificial hormone system, real-time task mapping, decentralized
control loops

1. INTRODUCTION
Today’s computational systems are growing increasingly com-

plex. They are build from large numbers of heterogeneous pro-
cessing elements with highly dynamic interaction. Middleware is a
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common layer in such distributed systems, managing the coopera-
tion of tasks on the processing elements and hiding the distribution
from the application. It is responsible for seamless task interaction
on distributed hardware. All tasks are interconnected by the mid-
dleware layer and are able to operate beyond processing element
(PE) boundaries as if they would reside on a single hardware plat-
form. To handle the complexity of today’s – furthermore tomor-
row’s – distributed systems, self-organization techniques are nec-
essary. The idea to autonomously achieve this desired behaviour
is introduced in several papers [10, 15, 11]. Such a system should
be able to find a suitable initial configuration by itself, to adapt or
optimize itself to changing environmental and internal conditions,
to heal itself in case of system failures or to protect itself against
attacks.

Middleware is well-suited to realize such self-X features (self-
configuration, self-optimization, self-healing) by autonomously
controlling and adapting task allocation. Especially for self-healing
it is important that task allocation is decentralized to avoid single
points of failure.

In earlier publications we introduced our artificial hormone sys-
tem (AHS) for task mapping on heterogeneous processing elements
[3, 4]. The term "artificial hormone system" was chosen, because
our approach was highly inspired by the hormone system of higher
animals. Several comparable properties are between the hormone
system in biology and our technical system. However it has to be
stated that our "artificial hormone system" is not a copy of the bio-
logical hormone system, but rather inspired by nature and its strate-
gies. In biology, hormones are chemical objects transmitted via
chemical processes and reactions. In our approach, the messengers
are messages transferred via communication links. However, the
effects and principles are similar, hence we dubbed the messengers
in our approach "hormones" as well.

A striking problem is that of measuring the behavior of non-
deterministic task-scheduling algorithms such as our proposed
hormone-based approach. Starting with common metrics, we
present quality metrics for such algorithms. The paper is struc-
tured as follows: we begin with the related work in Section 2. Then
we introduce our quality measurement in Section 4. In Section 5
we present and discuss the test series. The paper finishes with a
conclusion in Section 6.

2. RELATED WORK
Several approaches for clustered task allocation in middleware

exist. In [2], the authors present a scheduling algorithm distributing
tasks onto a grid. It is implemented in the Xavantes Grid Middle-
ware and arranges the tasks in groups. This approach is completely
different from ours because it uses central elements for the group-
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ing: the Group Manager (GM), a Process Manager (PM) and the
Activity Managers (AM). Here, the GM is a single point of fail-
ure because, if it fails no possibility exists to get group information
from this group any more. Our approach does not apply a central
task distribution instance and therefore a single point of failure can
not occur.

Another two approach are presented in [12]. The authors present
two algorithms for task scheduling. The first algorithm, Fast Criti-
cal Path (FCP), ensures time constrains are kept. The second one,
Fast Load Balancing (FLB), schedules the tasks so that every pro-
cessor will be used. Using this strategy – especially the last one
– it is not guaranteed that related tasks are scheduled nearby each
other. In contrast to our approach, these algorithms do not regard
failing of processing elements.

In [9], a decentralized dynamic load balancing approach is pre-
sented. Tasks are considered as particles which are influenced by
forces like e.g. a load balancing force (results from the load po-
tential) and a communication force (based on the communication
intensities between the tasks). In this approach, the tasks are dis-
tributed according to the resultant of the different types of forces. A
main difference to our approach is that we are able to provide time
bounds for the self-configuration. Besides, our approach covers
self-healing which is not considered by this decentralized dynamic
load balancing.

[13] presents a load balancing scheme for task allocation based
on local work piles (of PEs) storing the tasks to be executed. The
authors propose a load balancing algorithm applied to two PEs to
balance their workload. The algorithm is executed with a proba-
bility inversely proportional to the length of the work pile of a PE.
Although this approach is distributed it does not consider aspects
like self-healing or real-time constraints.

In [5], several heuristics for dynamic task mapping are proposed.
They start with simple heuristics like First Free and Nearest Neigh-
bour and go on to more powerful heuristics like Minimum Average
Channel Load and Path Load. The authors evaluate the heuristics
only considering link load whereas we evaluate our AHS consid-
ering more aspects like CPU share, suitability and communication
distance.

[14] describes an AHS for self-organization of Networked
Nodes. So called digital hormones are used to optimize the task
("service") distribution on nodes and they are piggy-backed on the
outgoing communication. Other aspects of organic computing like
self-healing which are included in our approach are not addressed
here.

Other approaches of load balancing are presented in [1, 6, 7, 8,
16]. None of them cover the whole spectrum of self-X properties,
task clustering, and real-time conditions like our approach.

Our artificial hormone system maps the tasks on the processing
elements paying attention to the following three aspects: the load
of the processing elements, the suitability of a processing element
to execute a task and the minimal communication distance between
tasks which heavily communicate with each other. The last aspect
inspired us to name such tasks which heavily communicate with
the term: related tasks.

Because none of the aforementioned task mapping algorithms
addresses all 3 aspects of load, suitability and communication dis-
tance we therefore cannot perform a proper comparison with our
artificial hormone systems. To properly rate the quality aspects, we
developed a new way of rating task mappings which will be pre-
sented in the following section.

3. THE ARTIFICIAL HORMONE SYSTEM
This chapter gives a short introduction to the Artificial Hormone

System (AHS). Its function as well as functionality will be ex-
plained.

Given is a grid of heterogeneous processing elements (PEs). The
AHS is used to distribute the upcoming tasks to all available pro-
cessing cells. As the task requirements as well as the PEs are typ-
ically not identical, the quality of the assignment of a task on a
processing element also differs. This assignment quality can be
measured by e.g. the execution time of the task, the consumption
of energy or the possibility of the task to be executed on the pro-
cessing element at all. The execution time e.g. can be influenced
by the number of tasks that are executed on the processing element
- therefore a good and even distribution of the tasks on the process-
ing elements is also necessary.

To be able to decide where to place the tasks on the processing
cell grid, messages have to be exchanged between the processing
elements. Messages are used to exchange the information which
is necessary for each PE to decide if it is the best suited PE for a
special task.

For task allocation, three types of hormones are used:

Eager value: This hormone determines, how suited a PE is to ex-
ecute a task. The higher the hormonal value, the better a PE
can execute the task.

Suppressor: A suppressor represses the execution of a task on a
PE. Suppressors are subtracted from eager values. They can
be used to limit task execution and to indicate a degrading
PE state.

Accelerator: An accelerator favors the execution of a task on a PE.
Accelerators are added to eager values. They can be used to
cluster related or cooperating tasks in the neighborhood (thus
forming organs) or to indicate an improved PE state.

Figure 1 sketches the basic control loop used to assign a task
Ti to a processing element. This closed control loop is executed
for every task on every processing element. It determines based on
the level of the three hormone types, if a task Ti is executed on a
processing element PEγ or not.
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Figure 1: Hormon based control loop

The local static eager value Eiγ indicates how well task Ti ex-
ecutes on PEγ . From this value, all suppressors Siγ received for
task Ti on PEγ are subtracted and all accelerators Aiγ received
for task Ti on PEγ are added. The result of this calculation is a
modified eager value Emiγ for task Ti on PEγ . The modified ea-
ger value is send to all other PEs in the system and compared to the



modified eager values Emiγ received from all other PEs for this
task. Is Emiγ greater then all received eager values Emiγ , task Ti

will be taken by PEγ (in case of equality a second criterion, e.g.
the position of a PE in the grid, is used to get an unambiguous deci-
sion). Now, task Ti on PEγ sends suppressors Siγ and accelerators
Aiγ to the others. This procedure is repeated periodically.

In this point, we emphasize that the initial strength of the hor-
mone values is set by the applicants who want to influence the task
allocation. The organic middleware evaluates the hormones to al-
locate the different tasks, but it does not set their initial strength.

3.1 Notations
Now we will define some basic indices and sets which will be

used frequently in the following sections. To allow an easy dis-
tinction, we use Latin lower case letters for task indices and Greek
lower case letters for processing element indices (like already used
in figure 1). Accordingly, we use upper case Latin letters for task
sets and upper case Greek letters for sets of processing elements.
Let

Ω be the set of all processing elements in the system.

ω be the number of all processing elements in the system.

ω = |Ω|

IΩ be the set of indices of all processing elements.

IΩ := {1, ..., ω}

Thus, we obtain the set of all processing elements as

Ω = {PE1, ..., PEω} = {PEγ | γ ∈ IΩ}.

Φγ be the set of processing elements which are neigbored to pro-
cessing element PEγ . Notice that this relation is reflexive.
Neigbored processing elements are able to communicate di-
rectly (hop count=0 or 1).

Φγ := {PEδ | δ ∈ IΩ and PEδ neighbored to PEγ}

ϕγ be the number of processing elements neighbored to PEγ .

ϕγ := |Φγ |

M be the set of all tasks in the system.

m be the number of all tasks in the system.

m := |M |

IM be the set of indices of all tasks.

IM := {1, ..., m}

Thus, we obtain the set of all tasks in the system as

M = {T1, ..., Tm} = {Ti | i ∈ IM}.

Vi be the set of all tasks related to task Ti. Related tasks work on
common problems and therefore have to cooperate closely.

Vi := {Tj | j ∈ IM and Tj related to Ti}

vi be the number of all tasks related to task Ti.

vi := |Vi|

Eγ be the set of tasks executed on processing element PEγ .

Eγ := {Tj | Tj ∈ M and Tjexecuted by PEγ}

eγ be the number of all tasks executed on PEγ .

eγ := |Eγ |

In the following sections, we describe the hormones in more de-
tail. Several kinds of eager values, suppressors and accelerators
have to be distinguished. Therefore, we use an extended notation
compared to figure 1 to specify the hormones:

Hjδ
iγ : Hormone from task Ti running on PEγ to be sent to task Tj

running on PEδ .

Hormones can be also sent to several tasks or PEs simultaneously.
In that case, indices are replaced by the associated sets, e.g.:

HMΩ
iγ : Hormone from task Ti executed on PEγ to be sent to all

tasks on each processing element.

3.2 Different Kinds of Hormones
Using the notation introduced above we now describe the used

hormones and their function in detail.
We begin explaining the eager values:

Local eager value Eiγ: This value states the initial suitability of
PEγ for task Ti. It takes care that the task allocation is ori-
ented on the capabilities of the PEs.

Modified eager value EiΩ
iγ : This value is calculated by adding the

received accelerators for task Ti on PEγ and subtracting the
received suppressors for task Ti on PEγ from the local eager
value Eiγ . It is sent to task Ti on all other PEs.

We used the following suppressors for the artificial hormone sys-
tem:

Acquisition suppressor SaiΩ
iγ : This suppressor is sent to task Ti

on all other PEs in the system, as soon as PEγ has taken task
Ti. Therefore, this suppressor determines how often task Ti

will be allocated in the overall system. A very strong ac-
quisition suppressor enforces that task Ti is taken only once,
while a weaker suppressor enables a multiple allocation of
this task.

Load suppressor SlMγ
iγ : This suppressor is sent only locally to

that PEγ which has taken task Ti. It affects not only task
Ti, but all tasks on this PE. Therefore, the load suppressor
determines how many tasks can be taken by a PE. A very
strong load suppressor enforces, that a PE can take only one
task, while a weaker suppressor allows multiple tasks to be
allocated on this PE.

Monitoring suppressor SmMγ
Mγ: This suppressor is sent locally to

a PE by local monitoring and affects all tasks on this PE.
Thereby, the common state of a PE influences task allocation.
As lower e.g. the energy level or as higher the temperature
of a PE, as stronger gets this suppressor.

We also used different kinds of accelerators for the artificial hor-
mone system:

Organ accelerator Ao
ViΦγ

iγ : This accelerator is sent to all tasks
Vi related to task Ti on the PEs Φγ neighbored to PEγ , if
PEγ has taken task Ti. Thereby, this accelerator attracts
tasks related to task Ti to settle on the same or neighbored
PEs. As stronger the accelerator as stronger is the attrac-
tion. The basic idea behind this is that related tasks work
on common problems and have to communicate frequently.
Therefore, short communication distances are useful. Re-
lated tasks form kind of a virtual organ which works on a
bigger problem.



Stay accelerator Asiγ
iγ: As soon as PEγ has taken task Ti, this

assignment is initially fixed. It is not questioned any more
in the beginning. This leads to a stable task allocation in the
context of self-configuration. But to allow self-optimization,
the possibility of changes in the task allocation is necessary.
Therefore, a task assigned to a PE can offer itself periodically
for reallocation. To achieve this, the task suspends the trans-
mission of its acquisition suppressor SaiΩ

iγ and starts sending
its modified eager value EiΩ

iγ again. This enables other PEs
to take this task, if they are more suitable meanwhile. But,
a task migration introduces costs. The stay accelerator ex-
presses these costs by favoring the stay of task Ti on PEγ .
It is sent from task Ti on PEγ to itself (i, γ). As stronger the
stay accelerator, as better another PE must be suited for task
Ti to be able to take it from PEγ .

Monitoring accelerator AmMγ
Mγ: This accelerator is sent locally

to a PE by local monitoring and affects all tasks on the PE. It
is the opponent of the monitoring suppressor. Therefore, the
local monitoring can strengthen a PE if it is currently very
powerful, e.g. due to a high energy level (solar cell in plain
sun).

The described approach is completely decentralized, each PE is
responsible for its own tasks, the communication to other PEs is
realized by a unified hormone concept. Furthermore, it realizes the
described self-X properties:

• The approach is self-organizing, because no external influ-
ence controls the task allocation.

• It is self-configuring, an initial task allocation is found by
exchanging hormones. The self-configuration is finished as
soon as all modified eager values become zero meaning no
more tasks wants to be taken. This is done by sending sup-
pressors. Of course, these suppressors have to be chosen
strong enough to inhibit an infinite task assignment (the sup-
pressors must be stronger then the accelerators), otherwise
the system would become instable.

• The self-optimization is done by offering tasks. The point of
time for such an offer is determined by the task respectively
the PE itself. It can be done periodically or at a point in time
where the task or the PE is idle. Furthermore, an offered task
continues its operation on the old PE as long as it is not taken
by a new PE.

• The approach is self-healing, in case of a task or PE failure
all related hormones are no longer sent, especially the acqui-
sition suppressors. This initiates an automatic reassignment
of the task to the same PE (if it is still active) or another PE.
The only additional requirement is a hormone Hjδ

iγ sent from
task Ti on PEγ to task Tj on PEδ has an expiration time. If
task Tj on PEδ receives no new hormone value within this
expiration time, the old value is discarded. This enables the
detection of missing hormones after the expiration time.

A detailed discussion of the real-time behavior, especially of up-
per time bounds for self-configuration, self-optimization and self-
healing can be found in the next sections. The communication over-
head introduced will be analyzed there, too.

4. QUALITY MEASURE TO RATE THE
TASK MAPPING

To measure the quality of a task mapping the following three
aspects have to be combined:

• the load of the single processing elements

• the suitability of the processing element to execute a certain
task

• the communication distances between related tasks (i.e. tasks
which need to communicate with each other)

We will first define quality measures for single tasks and how
suitable they are on a certain processing element. As an outcome
of this we will then define a quality for a processing element and
afterwards the quality of the task mapping for the whole system.

4.1 Quality measure for tasks, processing ele-
ments and the whole system

To rate the mapping of a task Ti on a processing element PEγ

we defined the following quality measure:

QUiγ =
wSH ∗ SHiγ + wEV ∗ EViγ + wCD ∗ CDiγ

wSH + wEV + wCD

with :

QUiγ quality of ti on PEγ , range [0 . . . 1]

SHiγ cpu share of PEγ available to ti,
range [0 . . . 1]

EViγ suitability of ti on PEγ , ratio of the
EagerValue of this PE for task ti to
best EagerValue of a PE for task ti,
range [0 . . . 1]

CDiγ communication distance of Ti on PEγ

to all related tasks, range [0 . . . 1]

wSH weight of SHiγ

wEV weight of EViγ

wCD weight of CDiγ

The weights wSH , wEV and wCD were included to be able to shift
the importance of single quality attributes. Normally these weights
are chosen equal hence all quality attributes are rated equally.
Based on this quality measure for a task Ti on a processing ele-
ment PEγ it is possible to calculate an average mapping quality
for all tasks on a processing element:

QUγ =

∑
Ti∈Eγ

QUiγ

eγ

with :

QUγ quality of PEγ

QUiγ quality of Ti on PEγ

Eγ set of all tasks running on PEγ

eγ number of all tasks running on PEγ

Finally we can define an overall quality for the whole system by
averaging out the qualities of all tasks on all processing elements.
It is not recommendable to use the average quality of all process-
ing elements for the overall quality of the system as this would
eliminate the information of the number of tasks on the different
processing elements. The following example will illustrate this:

100 tasks are mapped onto 10 processing elements in such a way
that one processing element executes 91 tasks and the remaining
9 processing elements each execute one task. With this mapping



configuration one processing element has a very bad quality while
the other 9 processing elements have an ideal quality. The average
quality of the processing elements would be quite good although
the quality of 91 tasks would be very bad and only 9 tasks would
have a good quality. Since our interest lies on the quality of the task
execution this result would be incorrect. The following formula
will accommodate this by averaging the qualities of all tasks in
the system and not the qualities of the processing elements. In
our example the overall quality results to a bad mapping which is
correct.

QU =

∑
PEγ∈Ω

∑
Ti∈Eγ

QUiγ

m
=

∑
PEγ∈Ω

eγ ∗QUγ

m

with :

QU overall quality of the task mapping
QUγ quality of PEγ

QUiγ quality of Ti on PEγ

Ω set of all PEs in the system
m number of all tasks running in the system

In the following we will show how to calculate the three different
quality parts: SHiγ - the CPU share of a task, EViγ - the suitability
of a task, and CDiγ - the communication distance of a task to all
its related tasks.

4.2 Calculating the part of the CPU share
To calculate the CPU share which is available to a task, we first

have to determine the load produced by a task running on a process-
ing element. This is necessary as a task will not always fully load a
processing element, but will only need a part of the full capacity to
run optimally. If e.g. two tasks both only need 50% of the comput-
ing capacity of a processing element then these two tasks can run
simultaneously without reducing their quality. The overall load of
a processing element PEiγ results as the sum of all loads LDiγ of
all tasks Ti running on the processing element. The average share
of PEγ which is available to a running task can be calculated as
follows:

SHiγ =


1∑

Ti∈Eγ

LDiγ

, for
∑

Ti∈Eγ

LDiγ ≥ 1

1, otherwise

with :

LDiγ load of Ti on PEγ

Eγ set of all task running on PEγ

(SHiγ is limited to a maximum of 1 as a task
running on a processing element maximally
has one processing element available.)

As a measurement for the load of task running on a processing
element we can e.g. use the quotient of the local eager value and
the load suppressor, as the eager value symbolizes the suitability
of processing element to execute this task and the load suppressor
symbolizes the load produced by its execution. The load of a PEγ

caused by a task Ti can be stated as follows:

LDiγ =


SlMγ

iγ

Eiγ
, for SlMγ

iγ ≤ Eiγ

1, otherwise

with :

LDiγ load of PEγ executing Ti

SlMγ
iγ load suppressor of Ti on PEγ

Eiγ local eager value of PEγ for Ti

(LDiγ is limited to a maximum of 1 as a task
running on a processing element will, in a worst
case scenario, fill up a processing element.)

One very simple possibility is to assume that each task will fill
up the processing element completely. This means:

LDiγ = 1

The share of a PEγ which is available to Ti can be easily calcu-
lated as follows:

SHiγ =
1∑

Ti∈Eγ

LDiγ

=
1∑

Ti∈Eγ

1
=

1

eγ

with :

eγ total number of task running on PEγ

It is left to note that the share SHiγ is always equal for all tasks
Ti running on PEγ and therefore is independent from i. This
simplifies the calculation of the quality of a processing element.

For the calculation of the formula QUγ =

∑
Ti∈Eγ

QUiγ

eγ
the term∑

Ti∈Eγ
SHiγ can be simplified to eγ ∗ SHiγ .

4.3 Calculating the part of the suitability
This part is quite easy to calculate, it results from the ratio of the

eager value for the task Ti on PEγ to the best possible eager value
of a processing element for this task.

EViγ =
Eiγ

max
PEδ∈Ω

(Eiδ)

with :

Eiγ local eager value of PEγ for Ti

Ω set of all PEs in the system

4.4 Calculating the part of the communica-
tion distance

The quality of the communication results from the communica-
tion distance between a task Ti running on a processing element
PEγ and all its related tasks. For this purpose the communication
distance will be defined as follows:

KDiγj = 1 + number of PEs between PEγ executing Ti

and the PE executing Tj

with :

KDiγj communication distance between Ti on PEγ

and Tj



For two tasks on the same processing element as well as on pro-
cessing elements directly next to each other there will be a com-
munication distance of 1. If an additional processing element is
between the processing element executing Ti and the processing
element executing Tj the communication distance will be 2 and so
on.

Furthermore, the degree in which the two tasks are related acts
a part as the communication load and frequency will increase with
this degree. It is sensible to weigh the communication distance with
the degree of relationship. As a result we get a weighted commu-
nication distance where the best value however will limited to 1:

GKDiγj =


KDiγj ∗ V Gij , for

KDiγj ∗ V Gij ≥ 1

1, otherwise

with :

GKDiγj weighted communication distance
between Ti on PEγ and Tj

KDiγj communication distance between Ti on
PEγ and Tj

V Gij degree of relationship between Ti and Tj

The outcome of this we receive a quality measure for the com-
munication distance of task Ti on processing element PEγ :

CDiγ =
vi∑

Tj∈Vi

GKDiγj

with :

vi number of task that are related to task Ti

Vi set of tasks that are related to task Ti

GKDiγj weight communication distances
between Ti on PEγ and Tj

4.5 Finding an upper bound for the quality
measure of the task mapping

The upper bound of the quality measure will of course be 1 as
an optimum. If however there are more tasks to be mapped than
there is computing capacity available the optimal mapping will not
be able to reach the value 1. This will always happen if and only if
the sum of the load caused by all tasks is greater than the number
of processing elements:

∑
PEγ∈Ω

∑
Ti∈Eγ

LDiγ > ω

How to calculate the load LDiγ can be found in 4.2. Using the
simplified version LDiγ = 1 as stated there the condition above
will become:

∑
PEγ∈Ω

∑
Ti∈Eγ

LDiγ =
∑

PEγ∈Ω

∑
Ti∈Eγ

1 = m > ω

In this case it is possible to calculate an upper bound for the
quality measure which is smaller then 1:

If the load is as balanced as possible the processing load will
be minimal. With an as balanced as possible load and a bottom
estimation of the load (upper bound of the quality) the load of a
processing element is between:

Lmin =

 ∑
PEγ∈Ω

∑
Ti∈Eγ

LDiγ

 div(ω)

and

Lmax = Lmin + 1

With this distribution (also an bottom estimation of the load)

ωmax =

 ∑
PEγ∈Ω

∑
Ti∈Eγ

LDiγ

 mod(ω)

processing elements will have the load Lmax and

ωmin = ω − ωmax

processing elements will have the load Lmin.
Transferred to tasks, the share of processing elements which is

available to a task will be between

SHmin =
1

Lmax

and

SHmax =


1

Lmin
, for Lmin ≥ 1

1 , otherwise

(Keep in mind that the minimal load Lmin will produce the maxi-
mal share of SHmax and vice versa.)

The number of tasks with the share of SHmin can be calculated
to

mmin = ωmax ∗ Lmax

The number of tasks with the share of SHmax hence is:

mmax = m−mmin

With the quality parts EV and CD set to their maximum of
1, the following equation of an upper limit of the overall quality
results:

QUmax =
mmin ∗ wSH∗SHmin+wEV∗EV +wCD∗CD

wSH+wEV+wCD

m

+
mmax ∗ wSH∗SHmax+wEV∗EV +wCD∗CD

wSH+wEV+wCD

m

=
mmin ∗ (wSH ∗ SHmin + wEV + wCD)

wSH + wEV + wCD

+
mmax ∗ (wSH ∗ SHmax + wEV + wCD)

wSH + wEV + wCD

5. SIMULATIONS AND RESULTS
Having created a quality measure, we started testing different

scenarios. As a first step we wanted to check by using this quality
measure, how good the mapping of the artificial hormone system
would be compared to an ordinary load balancing approach. We
analyzed mappings from our artificial hormone system and map-
pings from an ordinary load balancing approach in regard to the
quality over time. The ordinary load balancing worked as follows:
all tasks are mapped on the processing elements in such a way that
every processing element would execute the same number of tasks
(respectively one less, if the number of tasks cannot be divided
equally on all processing elements). All tasks had the same load



and were started one after another on the system. For the system
configuration we chose a grid of 4 x 4 processing elements as 16
processing elements are a quite realistic number of nodes to map
the tasks on and also as our later underlying hardware will also be
somewhere around the same size. On this grid 50 tasks had to be
mapped. Each task was related to 3 other tasks i.e. each 4 tasks will
work and communicate heavily with each other. Although our arti-
ficial hormone system would be able to map the tasks on different,
heterogeneous processing elements, we wanted to keep it simple
and chose all processing elements to be equal hence equally quali-
fied to execute any task. The hormone values were simply chosen
in the manner that it would result in a stable outcome with each
task being mapped exactly on time onto one processing element.
Though we plan to do this in the future, we for now did not use any
sophisticated method to chose the hormone values nor did we try
to optimize them.

Figure 2: Quality evaluation: 50 tasks on 4x4 PEs

The result can be seen in Figure 2. The line on the top represents
the quality of our artificial hormone system. The quality runs from
0 to 100 which represents the percentage (compared to the calcu-
lated possible maximum). The line right beneath it is the quality
line for the simple load balancing algorithm. The line on the bot-
tom is the difference between these two quality lines. At the end of
the simulation, when all task have been mapped on the processing
cell grid, the quality of the artificial hormone system is about 15%
better than the simple load balancing one.

In the next test series we have investigated how the number of
tasks that have to be mapped on the system influences the quality
difference between the mapping of our artificial hormone system
and the simple load balancing. Once again we used a simulated
system with a grid size of 4x4 processing elements. This time we
mapped 16, 32 and 64 tasks on this system.

Figure 3 shows the result. To be able to compare the values of
the final configuration - when all tasks have been mapped - we con-
tinued the lines horizontally. In the scenario with only 16 tasks the
quality difference between the mapping of the artificial hormone
system and the simple load balancing is a bit over 12% (which can
be seen in the bottom line). The line in the middle represents the
quality difference with the mapping of 32 tasks which comes to an
improvement of about 15%. The mapping of 64 tasks brought an
improvement of about 17% as shown by the top line. The more
tasks the system had to map the better the quality of the artificial

Figure 3: quality over time

hormone system compared to the simple load balancing algorithm
became.

In the last test series which will be presented in this paper we
varied the number of related tasks. We chose 3 configurations with
2, 4 and 8 related tasks. In each test series we let the system map
different numbers of tasks starting from 5 tasks up to 50 tasks in
steps of 5 tasks. We then only plotted the final value of the quality
difference between the artificial hormone system and the simple
load balancing.

Figure 4: quality over tasks

The results can be seen in Figure 4. The line at the top is the
result for the test series with 4 related tasks. It ranges from 10%
quality increase up to around 15%. With increased number of tasks
to be mapped the quality also rises. As we suspected the line that
represents the results of the test series with 2 related tasks did not
bring any quality improvement. The simple load balancing algo-
rithm even manages to have a slightly better mapping on 2 occa-
sions. As the load balancing places the tasks evenly onto the pro-
cessing elements and as related tasks were directly next to each
other in the list of tasks that had to be mapped, the simple load
balancing algorithm placed these related tasks right next to each
other. What came as quite a surprise was the result of the test series



where always 8 tasks were related. With less than 20 tasks the load
balancing hat a better performance and the quality improvement of
the artificial hormone system compared to the simple load balanc-
ing was only between 5 to 10%. We would have suspected that the
quality improvement would be at least equally if not a little bit bet-
ter than the mapping with 4 related tasks. Never the less there is
still an improved quality and with a sophistication of the hormone
values we hope to achieve improved results.

6. CONCLUSION AND FUTURE WORK
We presented a quality measure to evaluate the mapping of tasks

on a grid of processing elements. With this new quality measure
we established a mapping measurement which not only evaluates
the simple equal distribution of the mapped tasks but also the re-
lationships between the different tasks and the requirements of the
tasks combined with the suitability of the processing elements. We
presented test results which show that our artificial hormone sys-
tem is able to achieve a good task mapping and also most of the
time a better mapping than a simple load balancing technique. Up
to nearly 20% better mapping results compared to the simple load
balancing were achieved and at an average still an improvement
over 10%.

With this quality measurement we plan to refine our artificial
hormone system. With its help we can compare and evaluate differ-
ent task mappings. Further and more detailed test series will help us
improving the adjustments of hormone values for better task map-
pings. In the near future we want to be able to predict what kind of
hormone values for a given system configuration will result in the
best possible mapping of the artificial hormone system.
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