Adaptable Model-based Component Deployment Guided
by Artificial Ants

Maté J. Csorba, Poul E. Heegaard, and Peter Herrmann
Norwegian University of Science and Technology (NTNU)
Department of Telematics
N-7491 Trondheim, Norway
{csorba, poulh, herrmann}@item.ntnu.no

ABSTRACT

We investigate a means for efficient deployment of distributed
services comprising of software components. Our work can
be viewed as an intersection between model-based service
development and novel network management architectures.
In a service engineering context, models of services embel-
lished with non-functional requirements are used as input to
our swarm intelligence based deployment logic. Mappings
between resources provided by the execution environment
and components are the results of our heuristic optimiza-
tion procedure that takes into account requirements of the
services. Deployment mappings will be used as feedback
towards the designer and the provider of the service. More-
over, our heuristic algorithm possesses significant potential
in adaptation of services to changes in the environment.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

Systems

General Terms

Management

Keywords

component deployment, cross-entropy ant system, QoS re-
quirements

1. INTRODUCTION

In the process of realizing a service system several impor-
tant decisions have to be made that will affect performance
of the system as well as the quality of service (QoS) perceived
by its user. A state-of-the-art method to develop distributed
services implemented as software systems is starting from a
platform independent model and realizing the service follow-
ing a top-down step-wise refinement approach. A significant
factor influencing the perceived QoS from the user’s per-
spective is the deployment model of the particular service,

Permissiorto makedigital or hardcopiesof all or partof this work for
personabr classroonuseis grantedwithout fee providedthatcopies
arenotmadeor distributedfor profit or commercialadvantagandthat
copiesbearthis noticeandthefull citationonthefirst page.To copy
otherwise o republish to poston serversor to redistributeto lists,
requiresprior specificpermissiorand/orafee.

AUTONOMICS 2008,SeptembeR3-25,Turin, Italy

Copyright© 2008ICST 978-963-9799-34-9

DOI 10.4108/ICST.AUTONOMICS2008.4581

in other words the configuration of the building-blocks of the
service and their mapping to run-time processing elements
and resources required for execution.

Nodes hosting a service may consist of heterogeneous hard-
ware and may provide a dynamic environment for the ser-
vices being executed, i.e. nodes can join and leave the net-
work in an unpredictable manner. The evolving nature of
the context of distributed services and mobility of clients
requires the capability of adaptation to satisfy QoS require-
ments while also considering costs on the service provider’s
side. The wide range of possible requirements against the
service makes the deployment and adaptation problem a
multi-faceted challenge demanding multi-dimensional opti-
mization. The methodology we apply to solve the deploy-
ment problem can be viewed as an intersection between sys-
tems development and novel network management solutions.

There have been a couple of promising developments pro-
viding platforms for adaptivity and dependability. Auto-
nomous replication management mainly for dependability is
targeted by Meling in a framework based on group commu-
nication systems [20]. A distributed dynamic middleware,
QuAMobile is presented in [18] that introduces independent
application variants and selects between them for context-
awareness and adaptation. Planning is based on service level
agreements (SLAs) and QoS-aware metadata in the service
model is used in the planning-based adaptation middleware
of the MUSIC project (cf. [22]). A peer-to-peer middleware,
CARISMA is utilizing an auctioning-like mechanism for con-
flict resolution and adaptation automatically triggered by
context changes [2]. In the QoS brokering approach from
Menasce and Dubey consumers can request services, after
which the broker uses analytic queuing models to predict
QoS of the services under various workloads, thus looking
for maximized utility [21].

Traditional techniques were applied for configuration of
server environments such as fuzzy learning, e.g. Xu et al.
applied a two-level control mechanism targeting efficient re-
source utilization in [26]. Layered queuing networks are em-
ployed for generating optimal configurations and policies by
Jung et al. in an offline framework [12]. Some existing ap-
proaches have addressed the improvement of perceived QoS
through changing the deployment of applications, however
due to the exact solution algorithms, complexity becomes
NP-hard already with more than 2-3 hosts or several QoS
dimensions restricting applicability of these methods. A re-
view of approximative solutions trying to overcome scaling
problems, such as greedy algorithms, genetic programming,
can be found in [19]. These approaches try to maximize util-

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AUTONOMICS 2008, September 23-25, Turin, Italy
Copyright © 2008 ICST 978-963-9799-34-9
DOI 10.4108/ICST.AUTONOMICS2008.4581

ity of a service purely from the users’ perspective, whereas
we aim to formulate and solve the deployment problem from
the providers perspective while also considering the users
perception of QoS. Besides, we aim to handle the deploy-
ment of multiple services at the same time.

We are building a logic that brings QoS-awareness into
the development cycle, and that can manage the deploy-
ment of services and adapt to the context once these ser-
vices are executed in a real environment. The application
of our approach should grant the same benefits that exist in
distributed management architectures, such as increased de-
pendability, better resource utilization, etc. Moreover, the
output of the logic presented is platform independent, thus
it can drive a suitable middleware platform and will even-
tually allow adaptation to the changing environment of the
modelled services that are executed.

It is an important design criteria that the deployment
logic should allow execution in a fully distributed manner,
thus it shall not be prone to deficiencies of existing central-
ized algorithms, such as performance bottlenecks and sin-
gle point of failures. Besides, it is desirable to omit the
burden of keeping a centralized decision logic updated and
synchronized and this way to achieve better reaction times
for context-awareness. Consequently, our aim is to develop
a method supporting run-time component (re-)deployment
that allows execution of services within the allowed region
of external parameters defined by the service requirements.
Considering all these aspects we approach the problem using
a distributed, robust and adaptive routing system called the
Cross Entropy Ant System (CEAS) [10, 8]. The CEAS is an
Ant Colony Optimization (ACO) system as introduced by
Dorigo et al. [6], which is a multi-agent system for solving a
wide variety of combinatorial optimization problems where
the agents’ behavior are inspired by the foraging behavior of
ants. Examples of successful application in communication
systems are load-balancing (Schoonderwoerd et al. [24]),
routing in wired networks by AntNet [3], and routing in
wireless networks by AntHocNet [4].

In [5] we presented our novel approach for the efficient
deployment of software components taking into account QoS
requirements captured during the modelling phase. The
procedure starts from high-level QoS goals and, through
requirement profiles, utilizes swarm intelligence to provide
solutions and to aid dynamic deployment. In [5] this dis-
tributed approach was tested on component deployment in
a static topology and compared with centralized deployment
approaches. In this paper, we extend the approach to allow
deployment of multiple service components simultaneously
that adapt to changing topologies.

The remainder of this paper is organized as follows. The
next section will present how the deployment logic fits into
the development cycle. In Sect. 3 an introduction to CEAS,
which is used throughout the paper as the basis of our heuris-
tic optimization method, will be given. Next, in Sect. 4 we
present our proposed solution giving the algorithm. After
that, Sect. 5 sets the example scenario of three concurrent
services. The results related to the examples are evaluated
in Sect. 6. Finally, in Sect. 7 we conclude and touch upon
our future work.

2. DEPLOYMENT CYCLE

The deployment approach we are proposing will extend
the development cycle SPACE. SPACE is devoted to the

rapid and correct engineering of distributed services [14].
The stepwise modelling and refinement of the models is de-
picted in Fig. 1. First, a purely functional service model
is created, which is collaboration-oriented meaning that the
service specification is not a composition of descriptions of
physical software components realizing the service. Instead,
the collaboration-oriented specification is built from mod-
els of distributed sub-functionalities fulfilling — in interac-
tion — the complete service behavior. The functional ser-
vice model is specified by UML collaborations and activities.
One of the advantages of this specification style is that it en-
ables service modelling by reusing building blocks from col-
lections of domain specific model libraries to a significantly
higher degree than it would be possible with component-
based descriptions [11].

capturing / synthesis
Design models

Dynamic / Code
deployment Implementation generation

Figure 1: Development with SPACE

, R
{ Execution '
. ,

Service models undergo correctness checks, as described in
[17], before they are transformed to a component-oriented
design model by model transformation [15]. Next, using
the component-oriented model, specified as UML state ma-
chines, code generators are used to create executable Java
code enabling automated transformation of collaboration-
oriented service models to executable implementations [16].

\Qeﬁnement

;"Requirement‘\I o Network
profiles < " profile

) " Highdevel
Capturing . goals .

NF-Requirements

Monitoring + execution

\ leploymem
Deployment Deployment logic
mapping

Feedback

Figure 2: Deployment Support for SPACE

The dynamic deployment of the generated implementa-
tion is the step where the logic we propose can interact
with the development cycle. The additional steps to sup-
port efficient deployment of the components that build up
the service is shown in Fig. 2. In our deployment support cy-
cle service models are amended by high-level non-functional
(NF) goals that define non-functional requirements (NFRs)
of the service being modelled in a rather abstract manner.
Refinement of NF goals can be done in parallel with the
transformation of service models to design models. Require-
ment profiles obtained in this step specify NFRs of the ser-
vice components. In addition, a metwork profile is added
representing provided properties describing the target envi-
ronment the service will be executed in. Our deployment
logic will be launched using these two profiles as input with

requirements specifying the search goals and the network
profile specifying the search space.

QoS requirements relevant to the service model are cap-
tured in a collaboration-oriented style design time, as a
translation of traditional service level agreements. In NFRs,
usually properties related to security, performance, availabil-
ity, portability, etc. are addressed. More importantly, our
view is that the deployment logic proposed will be able to
handle any non-functional property of the service, as long as
a suitable cost function is provided for the specific proper-
ties at hand. This feature will be provided by exploiting the
advanced scalability of CEAS and the method of pheromone
sharing.

Fig. 3 depicts a simple example of a collaboration between
two components. This collaboration is enriched with NFRs
for both the components and for the collaboration binding
them. This basic collection of requirements contains two
types of cost values, execution costs (f;;) and communica-
tion costs (fx;). The total number of cost values is equiva-
lent to the total number of components in the service (E),
plus the number of collaborations between them (K), i.e.
fe;yi=1...F and fi;,j =1... K. The execution cost is a
local cost imposed on the host node or resource executing the
particular component after deployment, whereas the com-
munication cost loads the communication link between the
two components involved in the collaboration. This simple
example of collaboration-oriented specification and require-
ment capturing will be illustrated in the examples in Sect. 5.

7/
Comp j —— Collab —— Comp |
/

Comm. Exec.
cost= 15 cost = 20

Figure 3: Collaboration with NFRs

Currently, existing deployment strategies and various ap-
proaches to aid deployment of software systems, e.g. ontology-
based and reasoning engines, apply centralized decision log-
ics based on centrally maintained databases. The disadvan-
tages of approaching the problem this way are the burden
of keeping a central database constantly updated and syn-
chronized and the single point of failure introduced to the
system. Accommodating the decision logic together with the
central database on a single node may introduce bottlenecks
both communication wise and storage wise.

In contrast to centralized approaches a distributed coop-
erative algorithm employs (semi-)autonomous agents, which
cooperate to achieve certain common goals. To avoid the
need for any type of global knowledge in deployment map-
ping, we employ autonomous agents operating in a distributed
environment with their decisions based solely on information
that is available locally to the place where they reside. At
every node under the provision of the deployment logic some
sort of shared memory is required that will be the vehicle
for cooperation between the agents. Accordingly, the infor-
mation required for optimization in our logic is distributed
across all participating nodes. This property of the deploy-
ment mapping system contributes to robustness, scalability
and fault tolerance. Furthermore, we intend to use the same
logic first to obtain initial, optimal mapping of service com-
ponents to hosts or resources, and second to guide necessary

changes during execution of a service to satisfy the require-
ments it was launched with.

The objective of each ant species is to find either the op-
timal deployment mapping of component instances ¢; onto
nodes n; or at least to find a mapping that satisfies the re-
quirements within reasonable time. A component, ¢; € C
(C is the set of components that together provide the ser-
vice the species is responsible for) can have various prop-
erties and restrictions can apply regarding it’s prospective
hosts. For example, deployment of ¢; can be restricted at
node n € N (N is the set of available nodes) as well as pre-
scribed binding is allowed. A component can be bound to
a node explicitly, this results in being excluded from the set
of components that are available for the logic to be freely
mapped to any available node. However, bound components
are also taken into account by the ants during calculation of
the resulting cost of a particular deployment mapping at a
given iteration.

The basis of the heuristics, guiding the ants towards an
optimized mapping, is the cost function F(M) that is used
to evaluate the resulting suggestion, M : C — N, for deploy-
ment mapping. The ants target to minimize the cost calcu-
lated using F'(M) at every iteration, while the constraints
given by the mapping scopes also have to be taken into con-
sideration, i.e. R; C N for each component instance i. R;
is characterized by the policies given by the service provider
(e.g. service level agreements of ISPs), as well as the access
restrictions, the provided and requested capabilities (soft
costs) and provided and requested capacity requirements
(hard costs, e.g. bandwidth limitations). Using R; com-
ponent binding can easily be expressed assigning a single
node to the set, thus restricting the search space.

Besides the requirement profiles, the service provider must
provide the net-map, N for the decision logic as well, speci-
fying the available nodes and links. T'wo types of constraints
that can influence the optimal mapping are distinguished in
the model. Constraints assigned to nodes and to links. For
the latter type, constraints generally represent the cost of
using the link for connecting two components, which have
a functionality in the model requiring interaction between
them. Constraints assigned to nodes or other resources re-
lated to execution of a component can, for instance, repre-
sent memory size limitations. Also, these constraints can be
interrelated in a way that, for example, placement of a com-
ponent on a node can lower the available amount of different
types of resources at once with an amount depending on the
available resources at the time of the mapping.

In the subsequent section the stochastic optimization back-
ground is introduced that is used throughout our logic to
specify an algorithmic solution for the deployment problem.

3. CROSSENTROPY ANT SYSTEM

The key idea is to let many agents, denoted ants, itera-
tively search for the best solution according to the problem
constraints and cost function defined. Each iteration con-
sists of two phases; the forward ants search for a solution,
which resembles the ants searching for food, and the back-
ward ants that evaluate the solution and leave markings,
denoted pheromones, that are in proportion to the quality
of the solution. These pheromones are distributed at differ-
ent locations in the search space and can be used by for-
ward ants in their search for good solutions; therefore, the
best solution will be approached gradually. To avoid getting

stuck in premature and sub-optimal solutions, some of the
forward ants will explore the state space freely ignoring the
pheromone values.

The main difference between various ant-based systems is
the approach taken to evaluate the solution and update the
pheromones. For example, AntNet [3] uses reinforcement
learning while CEAS uses the Cross Entropy (CE) method
for stochastic optimization introduced by Rubinstein [23].
The CE method is applied in the pheromone updating pro-
cess by gradually changing the probability matrix p, accord-
ing to the cost of the paths. The objective is to minimize
the cross entropy between two consecutive probability ma-
trices p, and p,—1. For a tutorial on the method, [23] is
recommended.

The CEAS has demonstrated its applicability through a
variety of studies of different path management strategies [8],
such as shared backup path protection, p-cycles, adaptive
paths with stochastic routing, and resource search under
QoS constraints. Implementation issues and trade-offs, such
as management overhead imposed by additional traffic for
management packets and recovery times are dealt with us-
ing a mechanism called elitism [7] and self-tuned packet rate
control [9]. Additional reduction in the overhead is accom-
plished by pheromone sharing [13] where ants with overlap-
ping requirements cooperate in finding solutions by (partly)
sharing information.

In this paper, the CEAS is applied to obtain the best
deployment mapping M : C — N of a set of components,
C, onto a set of nodes, N. The nodes are physically con-
nected by links used by the ants to move from node to node
in search for available capacities. A given deployment at
iteration r is a set M, = {mu,;}nen, where m, . C C is
the set of components at node n at iteration r. In CEAS
applied for routing the path is defined as a set of nodes from
the source to the destination, while now we define the path
as the deployment set M,. The cost of a deployment set
is denoted F'(M,). Furthermore, in the original CEAS we
assign the pheromone values 7;;,, to interface ¢ of node j at
iteration r, while now we assign Tmn,» to the component set
m deployed at node n at iteration r. In Sect. 4 we describe
the search and update algorithm in details.

In CEAS applied for routing and network management,
selection of the next hop is based on the random propor-
tional rule presented below. In our case however, the ran-
dom proportional rule is applied for deployment mapping.
Accordingly, during the initial exploration phase, the ants
randomly select the next set of components with uniform
probability 1/E, where E is the number of components to
be deployed, i.e. the size of C, while in the normal phase
the next set is selected according to the random proportional
rule matrix pr = {Pmn,r}, where

Tmn,r
= =" 1
Pmn,r g IEM,, Tin,r ()

A parameter 7, denoted the temperature, controls the up-
date of the pheromone values and is chosen to minimize the
performance function

H(F(M,),y) = e~ "M/)

which is applied to all » samples and the expected overall
performance satisfies

h(pmn,rs¥r) = Ep,_ (H(F(My), 7)) > p (3)

Ep, ,(X) is the expected value of X s.t. the rules in pr_1,
and p is a parameter (denoted search focus) close to 0 (typi-
cally 0.05 or less). Finally, a new updated set of rules, p-, is
determined by minimizing the cross entropy between p,_1
and p, with respect to v» and H(F(M;),~:). Minimized
cross entropy is achieved by applying the random propor-
tional rule in (1) for V., with

Tmn,r = Z I(l e Mn,r)ﬁzyr‘:k-u I(jEMk)H(F(Mk), Yr)

k=1

(4)

where I(z) =1 if x is true, 0 otherwise. See [23] for further
details and proof.

To avoid centralized control and synchronized batch ori-
ented iterations, in CEAS the cost value F'(M,.) is calculated
immediately after each sample, i.e., when all components
are mapped, and an auto-regressive performance function,
he(yr) = Bhr—1(yr) + (1 — B)H(F(M;),~-) is applied ap-
proximated by

hr(r) & 11_5 ZﬁT_ZH(F(Mr)v’Yr) (5)
i=1

where 8 €< 0,1 > is a memory factor weighting (geometri-
cally) the output of the performance function. The perfor-
mance function will smoothen variations in the cost function,
hence rapid changes in the deployment mapping and unde-
sirable fluctuations will be avoided. This mechanism helps
cooperation between the species.

As for the CE method, the temperature =, is determined
by minimizing it subject to h(y) > p. In [10] it is shown
that the temperature equals

r={7l 11:5. 2 BTHEM),) =p} (6)

However (6) is a complicated (transcendental) function that
is both storage and processing intensive since all observa-
tions up to the current path sample, i.e. the entire path cost
history F(M,) = {F(M,),---, F(M,)} must be stored, and
weights for all observations have to be recalculated. In an
on-line operation of a network node, such resource require-
ments are impractical. Instead it is assumed, given a 3 close
to 1, that the changes in 7, are typically small from one
iteration to the next. This enables a first order Taylor ex-
pansion of (6), and a second order Taylor expansion of (4),
see [10, 25] for more details.

4. DISTRIBUTED DEPLOYMENT LOGIC

Our deployment logic can be considered as a swarm of
independent ant-like agents executing an optimization task
continuously in the target network hosting the service we
model. This continuous behavior contributes to the advan-
tage of our approach, i.e. that the same logic provides an
initial static mapping and can be used for online redeploy-
ment. In this paper we extend the deployment approach
to handle multiple services deployed simultaneously by al-
lowing interoperation of artificial ant species, each of them
representing a particular service realized by distributed soft-
ware components. More importantly, beyond achieving a
scalable extension for multiple services we target other scal-
ability issues as well. By using a new cost function for eval-
uating solutions during the heuristical optimization process

we eliminate the need for any global knowledge, i.e. species
can now be launched and operate independently from each
other without having a global view on the requirements set
for all the services in the system. Another step towards scal-
ability is to limit the ants to visit only those nodes within the
network-map that are effectively used for deploying compo-
nents of the service represented by their species. This way,
we address significantly larger problem sizes, consisting of a
higher number of nodes and simultaneous services.

Initially, each ant is assigned a task of deployment of C
components stemming from the set of components of the ser-
vice represented by its species. After initialization the ants
start a random-walk in the network of nodes, described by
the net-map, selecting every next hop randomly. After an
ant arrives at a node its behavior depends on if it is a explorer
or a normal ant. The latter type of ant uses the correspond-
ing instance of the distributed pheromone database at the
node to select a subset, m,, ., of C for mapping and stores
this selection in a mapping list. The mapping list M, is
carried along by the ant during its search. On the contrary,
an ezplorer ant selects a subset m,, , based on a random de-
cision without using the pheromone values available at the
node. The ratio of explorer ants can be regulated and this
type of ants are used to initially explore the net-map and
also to cover up fluctuations, e.g. new nodes appearing, in
the network later on in the optimization process. This type
of exploration can be considered as random sampling from
the problem space and results in a random cost figure. The
number of iterations in the initial exploration phase depends
on the problem size, however, the end of this phase can be
detected by monitoring the pheromone database size as it
extends with the growing number of possibilities covered up
by the ants doing a random-walk in the problem space. Af-
ter the normal phase starts only a fraction of the ants, e.g.
5-10%, are flagged as explorers, allowing for the required re-
sponsiveness to changes in the environment, while normal
ants are focusing on finding the optimum.

To support finding the optimal deployment mapping for
multiple concurrent services a means of interoperation is
needed among the species responsible for the different ser-
vices being deployed. As we consider optimal deployment
of services from the provider’s perspective we target bal-
ancing of execution costs imposed on the nodes that are
used for execution of the services, or in other words load-
balancing, which generally requires global overview of the
system’s operating conditions. Nevertheless, we want to
avoid any centralized structure, and use a completely dis-
tributed optimization method. For this reason, we have
introduced a processing power reservation mechanism that
has to be implemented in every node in addition to the
pheromone database. The different ant species use this al-
location mechanism to indicate their latest resource usage
in a node at iteration r. As ants from every species use the
allocation in every node they actually use for deployment
mapping, this mechanism will provide interaction between
the components. Sampling the current sum of allocations in
every visited node can give a general overview for the ants,
thus load-levels in participating nodes can be incorporated
into the cost calculations at the end of each iteration. We
refer to load-level samples taken during an ant run with the
set NL,. Samples that suggest exceeding the capacity of
a node are quickly outranked by better solutions as a high
penalty is assigned to infeasible solutions. The actual imple-

mentation of sampling is left to the middleware. Allocation
entries that are outdated are invalidated to preserve consis-
tency.

After the forward search is over, i.e. an ant managed to
come up with a mapping for all the components it was as-
signed with, the resulting mapping can be found in the set
M, and will be evaluated using the cost function of the ser-
vice. How to formulate the cost function F'() depends on the
NFRs that the service model is extended with. Currently,
we use two parameters for the cost function, the deployment
mapping set M, and the load-level samples taken during an
iteration NL, and we consider execution and communica-
tion costs derived from the service model as introduced in
Sect. 2. Thus, our cost function consists of two components,
node related costs (NC) and link, i.e. collaboration related
costs (LC). The aim is to minimize the overall value of (7).

F(M,,NL,)=[Y NC(n;)]-(1+z-LC) (7)

Vn;E€H,

where z is a parameter. F(M,,NL,) is used by all species
the same way, and has a component strictly local to the
species, LC, which incorporates the collaboration costs

K
LC=> I fi, (8)

j=1

where [; is an indicator function to sum all the communica-
tion costs of the collaborations that happen between differ-
ent nodes

I — { 1, if k; external)
J 0, if k; internal to a node

The first component, ZaneHT NC(n;), of the overall
cost function is related to node local costs and aims to in-
corporate load-balancing among the nodes providing the ser-
vices being executed. Furthermore, it is important to note
that only those nodes that are visited during the search
phase in iteration r are included in the hop-list, H,.. The
node related cost is calculated individually for every visited
node according to

NLy, (1)

NCm) =1 Y ;

v 10
ZaneHT NL,, +1 - Z] (10)

Equation (10) calculates the execution costs for node n;
based on the load-levels sampled and it is the basis for coun-
teracting the cost component LC. On one hand, LC tries
to put weight on component mappings that have as much
as possible of the collaborations within the same node(s) by
favoring mappings that use less nodes for deployment with
a low cost value. This way minimizing external commu-
nication. On the other hand, Equation (10) has an effect
of distributing components, thus equalizing execution load
among the available hosts to the highest extent possible.
This way two counteracting requirement types are tackled
in the same cost function. The exponent y (in Equation
(10)) allows to focus more on load-balancing instead of min-
imization of collaboration costs by selecting a larger value,
while the multiplier x (in Equation (7)) can be used to scale
collaboration costs if needed. We generally use x = 0.1 and
y = 2, as well as with the cost values in the example scenario
presented in Sect. 5.

The cost function (7) is used at the end of an iteration to
evaluate the mapping found by the ant. Thereafter, the ant
travels backward along the path stored in the hop-list H,.
This mechanism is called backtracking. During backtracking
the pheromone values are updated according to Equation
(4). This ends the behavior of a single ant and unless a
stopping criteria is met a new ant can be initiated and emit-
ted. There are different options for constructing a stopping
criteria. One can be for example the observation of the mov-
ing average of the evolving cost value and detecting conver-
gence to a suggested solution. Another option is sampling
the size of the distributed pheromone database during an
iteration. Convergence can be detected by observing a very
strong pheromone value that will emerge in the database,
while inferior solutions will evaporate.

It is important to note that the same ant behavior can
be used for all the species, i.e. for all the services being de-
ployed simultaneously. The described process is summarized
in Algorithm 1.

Algorithm 1 Deployment mapping of C

1. Select the initial node n € N where the search will
start randomly.

2. Select a set of components m,,, C C which satisfies
n € R for every ¢; € my,,, according to the random
proportional rule (normal ant), Equation (1), or in a
totally random manner (explorer ant). If such a set
cannot be found, goto step 7.

3. Update the ant’s deployment mapping set, M,
M'r + {mn,r}-

4. Update the set of components to be deployed, C =
C—my,.

5. (Re-)allocate processing power at the current node, n
according to fe,;, Ve € my, .

6. Sample the estimated load-level, nl, , at the current
node n, and NL, = NL, + {nl, - }.

7. Select next node, n randomly and add n to the hop-list
H, =H, + {n}.

8. If C # () then goto 2., otherwise evaluate F(M,, NL,)
using the mapping set M, and the samples taken
(NL).

9. Update the pheromone values, Equation (4), corre-
sponding to the {m, .} € M, mappings going back-
wards along H,.

10. If stopping criteria is not met then start new iteration
(increment r), initialize and emit new ant and goto 1.

For optimization to be successful the pheromone values
have to be aligned with the sets of deployed components.
During an iteration each ant visits n C N nodes and will
form n discrete sets from the available components (C) car-
ried along. At the end of an iteration the suggested deploy-
ment mapping, M, is evaluated. The pheromone database
for each species is built by assigning a flag to every compo-
nent that is free for deployment mapping, i.e. which is not
bound to a specific node by requirements. Thus, the num-

ber of components available for the species will be E* C E,
and the size of the pheromone database becomes 27 *, equal
to the number of possible combinations for a set at a node,
which is specific for each service. Accordingly, the physi-
cal requirement for an execution platform supporting our
approach is to accommodate 2% : floating point numbers at
every node. If the pheromone database in a node is nor-
malized between 0...1 it can be observed as a probability
distribution of component sets mapped to that node by the
artificial ants. Once a converged state is reached the optimal
solution(s) emerge with probability one.

Indexing of the pheromone database can be done using
component set identifiers. For example, consider a basic set
of 5 components in a service, C = {c1,c2,c3,ca,¢5}, F = 5.
Then indexing is done using an E long binary bitstring. In
this case, e.g. element 17 of the pheromone database, which
is equivalent to ‘10001’ B, refers to the deployment of com-
ponents ci,cs at the current node. Besides, we propose to
use a dynamically allocated pheromone database based on
thresholds that can be used for evaporating pheromone en-
tries under a given significance level to achieve better scala-
bility. Currently, we apply a threshold of 1%, i.e. pheromone
values lower than 1% of the highest value are considered in-
significant and are eliminated from the database.

5. DESIGN EXAMPLES

In this section we introduce 3 different service models for
demonstrating the deployment logic. The first example has
been introduced originally in [14]. S1 has a component that
operates a security door and a card reader with a keycode
entry panel. The two latter components are bound to ni
by requirements. Besides, a central component administers
access rights by using an authentication and a authorization
server with corresponding databases as separate components
(Fig. 4).

Figure 4: S1 - The Access Control System

The second example, Fig. 5 models a video surveillance
system that has one surveillance camera component bound
to each of the five nodes by default. A central control and
a recording unit manages the system and uses a main and
a backup storage device for storing surveillance information
in a replicated database.

S3, the third service is a model of a process controller that
consists of 4 main stages of processing. In addition, S3 has a
main generator component that produces the input impulses
for the processing stages and a logging module monitoring
the output of the four stages. On top of that, a user interface
component can be used for direct human interaction with
the system (Fig. 6). In S3 all the components can freely
be mapped to any of the nodes in N, depending on current
availability of resources.

Figure 5: S2 - The Video Surveillance System

Exec. Com.
cost = 10 cost = 5 cost = “1
<‘<m .
cost = 10

S N Comm. [\
! Y cost=5
. .{, \' Comm. [N\

cost =20

: % STAGE3 F f STAGE-!
(' (

Figure 6: S3 - The Process Controller System

An ant species is assigned to each of the services and
deployment mapping is conducted on the underlying net-
work of hosts, which consists of 5 nodes with equivalent
capabilities in the example setting. The execution and col-
laboration costs assigned to each element of the models are
summarized in Table 1.

Table 1: Components and costs in the examples

S1 - Access Control S2 - Survelliance S3 - Process Contraol.

ci /K fc /fk ci / kj fc /fk ci / kj fc /fk
DOOR 15 CAM1.5 10 GENERATOR 5
PAMNEL 20 CONTROL 20 STAGE1 10
DOOR CTRL 20 REC./PLAY 25 STAGEZ 15
CENTRAL UNIT 35 STORAGE 25 STAGE3 20
AS1 10 BACKUP 20 STAGE4 10
AS2 15 LOGGING 15
DB1 25 Ul 10
DB2 10

d 5 0l1.5 15 gl.2 5
p 10 vl.h 20 ul 5
t 20 c 10 u2 10
al 10 s 20 f1 15
a2 15 b 20 2 15
1 20 3 10
r2 20 | 20

The behavior and the output of our artificial intelligence
approach will further be evaluated in the next section.

6. EVALUATING THE SCENARIO

The service deployment mapping problem with execution
and communication costs can be NP-hard even in case of a
single service (c.f. [5]). The example provided here has mul-
tiple optimal and near-optimal solutions with different sets
of components deployed on various nodes. However, it is

important to recall that we are interested in providing solu-
tions satisfying the requirements in reasonable time and not
necessarily in always finding the optimum. For demonstra-
tion a solution taken from the output of the logic is shown
in Table 2.

Table 2: Example deployment mapping

S1 52 S3
n1 | DOOR, PANEL CAMA STAGE4, LOGGING
n2 AS2 DB2 CAM2, REC/PLAY, STORAGE, BACKUP
nd | DOOR CTRL. CAM3 STAGE1, STAGEZ2, STAGE3
nd AS1.DB1 CAM4 ul
n5 | CENTRAL UNIT CAMS, CONTROL GENERATOR

To evaluate the algorithm we propose, first we compare
it to two different approaches. In the first one (denoted
globT, allnodes) ants use a simpler cost function, Equation
(11) that is easier to calculate, but requires the shared knowl-
edge of the sum of all offered execution costs, T

=> |n1M—T|+ZI I, (11)

vneN

That means that to apply (11) all of the species associated
to the multiple services being deployed simultaneously have
to be aware of each others total processing power demand
and incorporate it into 7. Knowing the global constant, T,
ants can calculate the deviation of the execution load from
a global average, i.e. share the load among the participating
nodes. This is included in the first part of (11). The second
part of this cost function includes collaboration costs the
same way as in Equation (8). For details see [5].

The second approach used for comparison (denoted globT)
uses the same cost function, i.e. Equation (11), with the ex-
ception that ants are not required to visit and sample all the
nodes available in the net-map, only those that are actually
used for deployment by their species, i.e. we use n € H,
instead of Vn € N. This is a significant difference with re-
spect to scaling as the set of available nodes, N can be high
thus putting a heavy burden on the ants that have to visit
and sample all of the nodes. Our approach, Algorithm 1,
aims to provide deployment mapping without requiring any
global prerequisite and also without driving ants to cover
Vn € N, which contributes to increased scalability. Algo-
rithm 1, that uses Equation (7) as cost function, is denoted
distF throughout this section.

Table 3: Number of iterations until convergence

avg | stdev
globT, all nodes |23679[14795
globT 18487 | 5469
distF, 5% 8234 {12800

First, in Table 3 we compare the amount of iterations,
i.e. ant runs executed before reaching a converged state.
The results are derived from the output of 100 runs of each
approach and we conclude that distF' requires significantly
less iterations to converge compared to the semi-global ap-
proaches. The 5% indicates the percentage of explorer ants
used during the normal phase that is standard procedure
to achieve context-awareness by constantly allowing some of
the ants randomly explore the net-map.

It can be noted that if adaptability to events such as
nodes appearing/disappearing or link fluctuations is not nec-
essary, hence an initial deployment mapping satisfying the

NF-requirements is sufficient, the search for a static map-
ping can even more be accelerated.

In Table 4 we compare the average and the deviation of
the converged cost values produced by the three different
approaches solving the simultaneous deployment mapping of
the example services S1, S2 and S3. For this comparison the
converged deployment mapping suggested by the different
approaches is observed and evaluated by applying the cost
function Equation 7.

Table 4: Average cost of mapping

51 52 53
globT, all nodes, avg 20246 | 41725 1.7251
globT, all nodes, stdev | 0.0513 0.1754 0.297

globT, avg 1.87 47977 | 1.7033
globT, stdev 01272 | 0.2275 0.1818
distF, 5%, avg 1.7945 | 4.3021 1.5932
distF. 5%, stdev 0.0943 | 04773 0.0588

We can see that the deviation of the costs values in distF
is at least as low as in case of the least scalable approach,
globT with all nodes sampled. Besides, the actual cost values
for distF' are the best for services S1 and S3, and for 52 it
is between the least scalable and the scalable globT versions.
Accordingly, our algorithm works without the requirement
for any global knowledge and using a more scalable sampling
of nodes while producing equivalent or better results for the
deployment problem.

To evaluate the capability of the logic to adapt to changes
in the context we have investigated two simple scenarios with
the example services. In the first scenario a single node
failure occurs and sometime later on the node is repaired
and operational again. However, we experiment with soft-
errors meaning that deployment to the selected node will be
disallowed for the species after the error event occurs, but
the node will still be operational for the components that
are bound to it by requirements. We allow this exception for
those services that would otherwise go down and hence the
deployment mapping would be meaningless for them (e.g.
S2, which has a component bound to each of the five nodes).
The second scenario introduces an additional new node to
the network after the species have converged to a solution
with 5 nodes.

6

i
5 WHHMI, HHHJMJ‘.J‘H L b b b L L, P

L
T T I T T T b e

100
600
1100
1600
2100 3
2600 3
3100
3600
4100
4800 3
5500 3
6100 3
7100
7600
8100
8500 3
o100 3
9600
10100
10800 3
11100 3
11600 3

Q Q
=1 a
= 1
o ©

iterations

Figure 7: Costs for S1 with node error and repair

The results of injecting a node error followed by a repair
of the same node later on can be seen in Figures 7, 8 and 9.
These figures show how the cost values found by the three
species evolve. The figures display the average (as dots) and
the deviation (as error bars) of results from 100 runs of the
same scenario. The first 2000 iterations represent the initial

exploration phase with considerably high costs, but as the
normal phase starts from iteration 2001 the costs of compo-
nent mappings start to decrease as species start to cooperate
and better and better solutions are found. Vertical markers
show the events of node ns going down and then coming
back to operation. We can see that the cost values increase
for every service after a node goes down, but interestingly
species for S1 and S3 are able to find an almost equally low
cost level by redeploying their components on the remaining
nodes. Species corresponding to S2 in turn remains at a
slightly higher cost level because it has a component bound
to the erroneous node thus it has to face degraded load-
sharing among the nodes. After ns is repaired components
of 52 can be re-mapped to achieve a lower cost level again
with 5 nodes, which happens within a few iterations.

8

-~

T
6 +++++

H{HT‘HHHHWH
114
7

iterations

Figure 8: Costs for S2 with node error and repair

mu +H“llm I , T
R I DL L T T TR YRR AT FEFNIRNN|

2 2 2 2 2 2 @ @ 2@ 2 2 2@ @ @ @ 2 2@ @ @ 2 o 9 2 o
5 &5 8 & & 58 5 &5 &8 & &8 58 &858 & 5 &85 & &5 &8 8 &8 &
- © T @ T © - @ Z @ = @ = @ - © - @ =— @ = © = @

- = N 8 M @ T F OO D O~ K B ©® » O 9 90 = =

iterations

Figure 9: Costs for S3 with node error and repair

It is also interesting to observe the control parameter 7,
i.e. the temperature that governs the performance func-
tion during a run with error and repair events. In Figure
10 we can observe the changes in the temperature and see
how species react to changes in the environment. First, the
node failure is detected very quickly and the temperature
increases as lower cost solutions disappear from the solution
space. The temperature increase is significant in S2 that is
mostly affected by the change but it is also noticeable for S3,
whereas S1 seems to be slightly influenced. After the repair
has been made the swarm reacts slower only after some iter-
ations can we observe decreasing temperatures. S3 notices
the better conditions first and S2 follows. More iterations
later all species converge to a stabilized state with lowest
temperatures.

Our second test scenario introduces a 6th node to the
environment of the services. The 3 species are already in a

212
422
632
842
052
262
472
682
892
123
2358
2682
2789

Q
F
3
&

3149
3461
3685
3903
4116
4331
4552
4771
4991
5198
5406
5528
5641
5814
6010
6223
6439

iterations

Figure 10: Temperature within the 3 species

Rl \ P TVIPSR BTV PP]'

25

/

3
=
-

7964
8020
8068
8119
B173
8273
8323
8376
8430
8484
8538
8569

o
g
@
o

iteration

Figure 11: Costs after a new node appears

8694
8746
BB57
o
8962
o1
9060
9114
9170
9325
9376
9427

7912
8221
8801
921
9271

converged state when the new node appears, indicated by
a vertical line in Figure 11. Some iterations later explorer
ants, which represent 5% of all ants in every species, start
to indicate that a better, lower cost solution exists in the
changed environment. Deployment mapping of services S1
and S2 is adapted to the changes giving a somewhat lower
cots value, while the cost level for S3 does not change with
an additional node.

Moreover, in Figure 12, the number of pheromone entries
in nodes n; ...ng corresponding to S1 can be seen over time.
As the problem space is explored initially the database size
tops somewhat below 2% as E* = 6 for S1 (cf. Section 4).
After exploration the swarm quickly converges to a low cost
solution so there is little variation in the pheromones. The
additional node is inserted at the iteration indicated by a
vertical line, before that node n¢ has an empty pheromone
table. Explorer ants discover the new node quickly, thus new
entries appear in the database pointing to mappings with a
lower cost. After a short period of fluctuation caused by
the re-reservation of processing power by the 3 species the
database contains a few pheromone entries until convergence
is completed and only the optimal mapping remains.

7. CONCLUSIONS

We presented a new swarm intelligence logic for the effi-
cient deployment mapping of software components to execu-
tion resources. A model-driven approach was presented that

h M —n2 —n3
nd na —n6

3936
4428
4920
5412
5775
62687
B759
7251
7743
8235
ara27
9219
a711

Figure 12: Database size for S1, with a 6th node

inserted

drives optimization of the component mapping using non-
functional requirements incorporated into the model during
the modelling phase. The deployment logic is executed in a
fully distributed manner, thus it is free of deficiencies of most
of the existing centralized approaches, such as performance
bottlenecks and single points of failure. The presence of a
central database or decision entity is not required to run the
logic, instead we use the analogy of pheromones distributed
across the network of execution hosts to store information.
All the intelligence is carried along by ant-like agents.

Besides, we have showed that using CEAS our deployment
logic is capable of handling multiple services simultaneously
and does not require global knowledge to achieve better load-
balancing among the nodes, while striving to minimize re-
mote communication at the same time. Our goal is to de-
velop support for run-time redeployment of components to
keep the services within an allowed region of parameters de-
fined by the requirements. With methods in CEAS an the
development cycle SPACE we target a robust and adaptive
service execution platform. Furthermore, we intend to ad-
dress scalability issues and consider larger network domains
within the deployment problem.

Considering convergence time we have a trade-off between
convergence speed and solution quality. Nevertheless, while
deploying services in a dynamic environment pre-mature
solutions satisfying both functional and non-functional re-
quirements often suffice. More importantly, ACO systems
have been proven to be able to find the optimum at least
once with probability close to one and as this happens con-
vergence to the optimum is secured in a finite number of
iterations. The optimal deployment mapping can be ob-
tained with high confidence since CEAS can be considered
as a subclass of ACO algorithms. Another advantage of
our approach is the capability to provide alternative solu-
tions weighted by their cost values, which can be selected for
deployment easily as the corresponding pheromones indicate
their proposed mapping. Currently, the deployment logic is
implemented in a simulator written in the Simula/DEMOS
language [1] for evaluation purposes.

Our work is conducted in cooperation with the ISIS (In-
frastructure for Integrated Services) project funded by the
Research Council of Norway. The algorithm and approach
presented are in-line with the objectives of ISIS that are to
create an established service engineering platform for col-

laboration-oriented models, covering the development cycle
from the requirements to seamless execution in a heteroge-
nous and dynamic environment.

Future work on the topic will investigate inclusion of a
wider range of QoS requirements and develop necessary im-
provements on the cost functions. It is an interesting topic
to look into how larger networks of nodes influence scala-
bility and convergence times. Similarly, introduction of a
new type of species corresponding to user demands towards
services targeting better resource utilization possesses chal-
lenges. Besides, we plan to experiment with distributed op-
timization methods other than the CE method guiding the
ant-based deployment logic and also to do more extent com-
parison between state-of-the-art optimization methods and
our work.

8. REFERENCES

[1] G. Birtwistle. Demos - a system for Discrete Event
Modelling on Simula. 2003.

[2] L. Capra, W. Emmerich, and C. Mascolo. Carisma:
Context-aware reflective middleware system for mobile
applications. IEEE Trans. on Software Engineering,
29(10):929-945, 2003.

[3] G. D. Caro and M. Dorigo. Antnet: Distributed
stigmergetic control for communications networks.
Journal of Artificial Intelligence Research, 9, 1998.

[4] G. D. Caro, F. Ducatelle, and L. M. Gambardella.
Anthocnet: An adaptive nature-inspired algorithm for
routing in mobile ad hoc networks. Furopean Trans.
on Telecomm. (ETT) - Special Issue on Self
Organization in Mobile Networking, 16(5), 2005.

[5] M. J. Csorba, P. E. Heegaard, and P. Herrmann.
Cost-efficient deployment of collaborating
components. In Proc. of the 8th Int’l Conf. on
Distributed Applications and Interoperable Systems
(DAIS), LNCS 5053, Oslo. IFIP, June 2008.

[6] M. Dorigo et al. The ant system: Optimization by a
colony of cooperating agents. IEEE Trans. on
Systems, Man, and Cybernetics Part B: Cybernetics,
26(1), 1996.

[7] P. E. Heegaard et al. Distributed asynchronous
algorithm for cross-entropy-based combinatorial
optimization. In Rare Event Simulation and
Combinatorial Optimization, Budapest, 2004.

[8] P. E. Heegaard, B. E. Helvik, and O. J. Wittner. The
cross entropy ant system for network path
management. Telektronikk, 104(01):19-40, 2008.

[9] P. E. Heegaard and O. Wittner. Self-tuned refresh rate
in a swarm intelligence path management system. In
Proc. of the EuroNGI Int’l. Workshop on
Self-Organizing Systems, LNCS 4124, 2006.

[10] B. E. Helvik and O. Wittner. Using the cross entropy
method to guide/govern mobile agent’s path finding in
networks. In Proc. of 8rd Int’l Workshop on Mobile
Agents for Telecommunication Applications, 2001.

[11] P. Herrmann and F. A. Kraemer. Design of trusted
systems with reusable collaboration models. In Proc.
of the Joint IFIP iTrust and PST Conferences on
Privacy, Trust Management and Security, Moncton,
2007.

[12] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D.
Schlichting, and C. Pu. Generating adaptation policies

(13]

(14]

(17]

(18]

(19]

20]

(21]

for multi-tier applications in consolidated server
environments. In Proc. of the Int’l. Conf. on
Autonomic Computing (ICAC), 2008.

V. Kjeldsen, O. Wittner, and P. E. Heegaard.
Distributed and scalable path management by a
system of cooperating ants. In Proc. of the Int’l. Conf.
on Communications in Computing (CIC), 2008.

F. A. Kraemer and P. Herrmann. Service specification
by composition of collaborations - an example. In
Proc. of the 2006 Int’l Conf. on Web Intelligence and
Intelligent Agent Technology, Hong Kong.
IEEE/WIC/ACM, 2006.

F. A. Kraemer and P. Herrmann. Transforming
collaborative service specifications into efficiently
executable state machines. Electronic Communications
of the EASST, 6, 2007.

F. A. Kraemer, P. Herrmann, and R. Braek. Aligning
uml 2.0 state machines and temporal logic for the
efficient execution of services. In Proc. of the 8th Int’l
Symp. on Distributed Objects and Applications
(DOA), LNCS 4276, Montpellier, 2006.

F. A. Kraemer, V. Slatten, and P. Herrmann.
Engineering support for uml activities by automated
model-checking - an example. In Proc. of the 4th Int’l
Workshop on Rapid Integration of Software
Engineering Techniques (RISE), University of
Luzembourg, 2007.

S. A. Lundesgaard, A. Solberg, J. Oldevik, R. France,
J. @. Aagedal, and F. Eliassen. Construction and
execution of adaptable applications using an
aspect-oriented and model driven approach. In Proc.
of DAIS, LNCS4531, pages 76-89. IFIP, 2007.

S. Malek. A user-centric framework for improving a
distributed software system’s deployment architecture.
In Proc. of the doctoral track at the 14th ACM
SIGSOFT Symp. on Foundation of Software
Engineering, Portland, 2006.

H. Meling. Adaptive Middleware Support and
Autonomous Fault Treatment: Architectural Design,
Prototyping and Fxperimental Evaluation. PhD thesis,
NTNU, Dept. of Telematics, Norway, 2006.

D. Menasce and V. Dubey. Utility-based qos brokering
in service oriented architectures. In Proc. of the Int’l
Conf. on Web Services (ICWS), Salt Lake City, Utah,
July 2007.

R. Rouvoy, F. Eliassen, J. Floch, S. Hallsteinsen, and
E. Stav. Composing components and services using a
planning-based adaptation middleware. In Proc. of
SC, LNCS4954, pages 52—67. Springer-Verlag, 2008.
R. Y. Rubinstein. The cross-entropy method for
combinatorial and continuous optimization.
Methodology and Computing in Applied Prob., 1999.
R. Schoonderwoerd et al. Ant-based load balancing in
telecommunications networks. Adaptive Behavior,
5(2), 1997.

O. Wittner. Emergent Behavior Based Implements for
Distributed Network Management. PhD thesis, NTNU,
Dept. of Telematics, Norway, 2003.

J. Xu, M. Zhao, J. Fortes, R. Carpenter, and

M. Yousif. On the use of fuzzy modeling in virtualized
data center management. In Proc. of the Int’l. Conf.
on Autonomic Computing (ICAC), 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

