Autonomic Management via Dynamic Combinations of
Reusable Strategies

Ada Diaconescu, Yoann Maurel, Philippe Lalanda
Laboratoire Informatique de Grenoble
F-38041, Grenoble cedex 9, France
firstname.lastname@imag.fr

ABSTRACT

Autonomic Management capabilities become increasingly im-
portant for attaining functional and quality goals in software
systems. Nonetheless, successful Autonomic Management
solutions must feature complex, adaptive behaviors, which
remain difficult to conceive and control. This paper pro-
poses a generic approach and a reusable framework for the
construction of Autonomic Manager applications. The pre-
sented solution advocates creating Autonomic Management
behaviors via the dynamic and opportunistic integration of
individual management strategies. The provided framework
proposes a general architecture and a common infrastruc-
ture for supporting the presented approach. A sample Au-
tonomic Manager was built using the framework with sev-
eral management strategies and was successfully tested in
an experimental scenario.

Categories and Subject Descriptors

D.2.11 [Software Engineering)|: Software Architectures—
Domain-specific architectures; D.2.13 [Reusable Software]:
Domain engineering, Reusable libraries, Reuse models

General Terms

Design, Management

Keywords

autonomic management, dynamic composition, problem solv-
ing modules, framework, service-oriented computing

1. INTRODUCTION

In the present I'T domain, dependable autonomic solutions
for managing complex computing systems become increas-
ingly critical for achieving and maintaining business suc-
cess. Nonetheless, building Autonomic Management (AM)
systems remains rather difficult and costly an undertaking,
as pointed by multiple academic and industrial parties in

Permissiorto makedigital or hardcopiesof all or partof this work for
personabr classroonuseis grantedwithout fee providedthatcopies
arenotmadeor distributedfor profit or commercialdvantag@ndthat
copiesbearthis noticeandthefull citationonthefirst page.To copy
otherwiseo republish to poston serversor to redistributeto lists,
requiresprior specificpermissiorand/orafee.

AUTONOMICS 2008,SeptembeR3-25, Turin, Italy

Copyright© 2008ICST 978-963-9799-34-9

DOI 10.4108/ICST.AUTONOMICS2008.4524

or

relevant domains. Initial efforts made in the Autonomic
Computing field indicate that for successfully administer-
ing complex software systems AM solutions must likewise
become complex software systems. This is a natural con-
sequence of the very purpose that AM systems must serve,
which is to absorb the complexity of currently manual man-
agement tasks and leave simplified, intuitive and high-level
interfaces for human administrators. Consequently, Auto-
nomic Computing will actually increase overall system com-
plexity, at the gained advantage of hiding complexity from
external users. Hence, the complexity problem is initially
exacerbated for the developers of systems incorporating au-
tonomic elements. However, once implemented, autonomic
solutions will profit system administrators via the simplic-
ity of use and the reusability of thoroughly understood and
tested management functions.

Several AM prototypes have been recently implemented
as part of different academic and industrial efforts, for han-
dling various administrative aspects of different system types
(e.g. Jasmine', Jade[11], Rainbow[4]). While these solutions
provide useful and important insights into the workings of
AM solutions, their construction remains mostly ad-hoc and
application-specific. Consequently, these contributions offer
limited reusable architectures and/or development method-
ologies for the Autonomic Computing community. For the
time being, the actual construction of AM applications re-
mains a difficult and costly task.

Numerous functionalities studied and implemented in cur-
rent autonomic frameworks could be reused across multiple
AM solutions. However, at present, common functionalities
are being implemented repeatedly and individually for dif-
ferent autonomic systems. Such management-specific func-
tions include hardware and software probes (e.g. CPU, or
response times monitoring), analysis and planning policies
(e.g. threshold detection, resource expansion or limitation)
and effector capabilities (e.g. parameter modification, or
server instantiation). Considering the functional complex-
ity and dependability requirements of AM application, the
provisioning of common, reusable solutions becomes essen-
tial for facilitating the development of such applications.
Reusable AM functionalities, interaction patterns and par-
tial implementations should be made available for utilization
across multiple AM implementations. In addition, in order

s areto meet the adaptability and extensibility requirements of

gies gutonomic solutions, such reusable modules should be eas-
, to
cific

ily configurable and replaceable over time.
This paper proposes a generic solution and a reusable

! Jasmine project: http://wiki.jasmine.objectweb.org

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AUTONOMICS 2008, September 23-25, Turin, Italy
Copyright © 2008 ICST 978-963-9799-34-9
DOI 10.4108/ICST.AUTONOMICS2008.4524

framework for the construction of Autonomic Manager ap-
plications. The adopted approach is based on: i) the parti-
tioning of AM behaviors into elementary functions, or man-
agement strategies; and ii) the dynamic activation and de-
activation of different combinations of management strate-
gies, as needed to respond to various situations, manage-
ment contexts and administrative challenges. The goal of
the presented work is twofold. First, it proposes a modular
approach to building AM solutions, based on dynamic and
opportunistic combinations of reusable management strate-
gies. Secondly, it provides a reusable framework that sup-
ports the presented approach. The framework consists of a
generic architecture and an implementation of the reusable
architectural parts. An initial framework prototype has been
implemented to offer support for the integration and execu-
tion of management strategies, as well as for their seamless
administration during runtime. The framework implemen-
tation is based on a Service Oriented Component technology.
The modularity and loose-coupling properties of such tech-
nologies provide the necessary technical support for imple-
menting the presented approach. The completed experimen-
tal work targeted the pervasive computing domain and more
particularly, ubiquitous home applications. Nonetheless, the
proposed contributions can generally be reused across mul-
tiple application domains and system types (e.g. enterprise,
or grid systems).

2. REQUIREMENTSAND CHALLENGESOF

AM APPLICATIONS

AM applications must provide complicated behaviors for
successfully administering complex software systems. Specif-
ically, administrative functions must correctly and efficiently
detect and react to various changes in the managed applica-
tions and their execution environments. Multiple manage-
ment goals must be taken into account and possibly conflict-
ing adaptations must be resolved. These requirements lead
to a significant space of possible contexts that require dif-
ferent administrative behaviors. Consequently, the specifi-
cation of an Autonomic Manager’s overall behavior becomes
a cumbersome endeavor.

In addition, an Autonomic Manager’s behavior must be
dynamically adaptable, in order to keep pace with runtime
modifications in the managed application, execution envi-
ronment and given management goals. For this reason, Au-
tonomic Manager implementations must equally be admin-
istered, in order to ensure their efficiency and correctness in
conditions that continuously evolve over time. Some of the
main adaptability requirements envisaged for AM applica-
tions include the addition and removal of autonomic utili-
ties, as well as the dynamic organization and coordination of
concurrent utilities. One possible example involves the dy-
namic installation, activation, deactivation and removal of
monitoring probes, for maintaining suitable instrumentation
coverage over fluctuating resources. A second example con-
sists of maintaining analysis and planning policies in sync
with changes that occur in the managed system, or in the
administrative goals. The dynamic removal of certain man-
agement behaviors becomes necessary in case they prove in-
effective, or no longer applicable to an updated system. An
Autonomic Manager should inactivate its faulty or depre-
cated functions and replace them with suitable versions.

Another runtime requirement for AM solutions is the abil-

ity to reconfigure their existing functions and tune their ad-
ministrative behaviors. Most autonomic functions can be
continuously adjusted and optimized for better meeting their
goals. Reconfigurations can help an AM solution reach an
optimal behavior for managing an initially given system and
environment. Additionally, it allows an AM solution adapt
to continuous changes in its managed resources and execu-
tion environments. For example, various parameters used
for the analysis and planning policies of an autonomic so-
lution can be gradually adjusted, as progressive knowledge
becomes available on the managed system, its surrounding
environment and the efficiency of previously applied policies.
Similarly, monitoring policies can dynamically be configured
depending on current necessities, including the frequency
and accuracy of extracted data, or the constraints imposed
on resource consumption and induced delays.

Finally, AM applications must be able to detect and re-
solve management deadlocks, infinite control loops, oscillat-
ing states and inefficient analysis and/or planning processes.
Most desirable characteristics of AM applications include
the following.

Maintainability: allows Autonomic Managers to be par-
tially or completely modifiable or replaceable, whether stat-
ically or during runtime. This is an important characteris-
tic for removing erroneous functionalities, updating existing
functions, or fixing securities issues.

Adaptability: allows Autonomic Managers to be context-
aware. This allows managers to display different behaviors
depending on their execution contexts and administrative
goals. In this manner, an Autonomic Manager may employ
accurate, resource-consuming strategies in a 'normal’ con-
text, while using strategies that trade preciseness for better
efficiency in cases of emergency or limited resources.

Extensibility: enables introducing new AM capabilities
without completely disrupting existing functions. For exam-
ple, a managed application may evolve over time in unex-
pected ways (e.g. provide a new sensor). In this scenario,
the Autonomic Manager should be easily extensible in order
to take advantage of its new available capabilities without
the need for completely rewriting, reloading, and rerunning
the Autonomic Manager.

Dependability: represents the reliance that can be placed
on the AM functions. This characteristic mainly results from
the previous properties. Maintainability and adaptability al-
low administrators to correct faulty behaviors. Extensibility
often leads to reusability of part of the code, reducing the
chances of introducing possible errors.

3. PROPOSED SOLUTION

3.1 Management behavior development

Likewise the managed systems that they strive to ad-
minister, autonomic applications are also complex, large-
scale, distributed systems featuring important dependabil-
ity and adaptability requirements. To alleviate the difficulty
of specifying complex management behaviors, the solution
presented in this paper proposes to divide the overall admin-
istrative activities into elementary management functions,
or strategies (Figure 1). It then promotes the formation of
composite behaviors via the simultaneous activation and/or
deactivation of different elementary strategies, during run-
time. Examples of reusable management strategies include
simple monitoring probes, threshold-detection analyzers, re-

active planning policies, or parameter-setting effectors.

—
/ N S~ N
! \‘D E‘I;I/J‘Ef—/ Context 2
1 s I:I 1
V2 /
Context 1 ‘*\I:I - VO /' O O Y
NI B R NSTZ S, & | ContextN

Management strategies pool

Figure 1: Composing adaptable management behav-
iors from reusable strategies: different sets of man-
agement strategies are activated to handle diverse
administrative contexts.

Multiple monitoring, analysis, planning, or execution stra-
tegies can be available for responding to various manage-
ment requirements and contexts. The Autonomic Manager
dynamically selects the strategies it needs to use from the
available functional implementations, in order to deal with
each given situation or challenge. In this approach, the oc-
currence of a certain situation (i.e. a problem to solve in a
given context) maps to a certain set of strategies that are
activated to handle that situation. Based on this principle,
distinct sets of possibly overlapping strategies are active in
different execution contexts, their combined effects gener-
ating various management behaviors. This paper proposes
a framework that offers an extensible set of management
strategies, as well as a reusable infrastructure common to all
management solutions. The infrastructure provides the nec-
essary support for integrating and interconnecting manage-
ment strategies, coordinating their activities and organizing
their produced results. This includes support for communi-
cation and data processing (e.g. aggregation and filtering).

Available strategies are categorized based on various crite-
ria, expressed as strategy attributes and provided as strategy
descriptions. Such strategy attributes include the managed
resource type, functions performed, concerns addressed, ap-
plicable situation and predicted effects. A strategy descrip-
tion indicates the strategy’s type, as well as the strategy’s
dependability, or approximate performance yielded. For the
scope of the presented work, strategies were categorized based
on the generic Autonomic Computing blueprint architec-
ture[1] into monitoring, analysis, planning and effector strate-
gies. In this manner, the respective functions of an Auto-
nomic Manager are ensured via the activation of strategies
from the corresponding type.

3.2 Management behavior adaptability

In order to meet the adaptability requirements of Au-
tonomic Managers, this paper proposes a means of auto-
matically changing management behaviors by dynamically
modifying the sets of strategies that are to be activated in
different situations. More precisely, the presented solution
proposes the introduction of a higher-level management ap-
plication that is in charge of administering the AM behavior
at runtime.

The solution proposed in this paper introduces a layered
architecture that implements the aforementioned concept.
Specifically, a higher-level Autonomic Manager, called the
Manager Adaptation layer, monitors and adapts the basic-
level Autonomic Manager, called the Resource Management
layer. To ensure that management behaviors remain within

a desirable space, administrative functions at the higher ab-
straction layer supervise and adjust the behavior of the Au-
tonomic Manager at the lower layer. Supervising and adapt-
ing the AM functions helps prevent undesirable situations,
such as deadlocks, or repetitive, inefficient and oscillating
operations. This is achieved by monitoring management
strategies and changing the active strategies when their be-
havior transcends acceptable boundaries. Monitored param-
eters may include the time taken by an active strategy to
reach a useful conclusion, or the detected strategy activation
patterns in the observed management procedures. The up-
per layer manager adapts the basic layer manager by adding,
updating and removing management strategies as they be-
come available or deprecated, respectively. Moreover, the
higher manager reconfigures the lower layer modifying the
sets of strategies to be activated in response to each situa-
tion. Reconfigurations are based on existing knowledge on
the efficiency and success rates of the available strategies.

A possible adaptation example initially involves the acti-
vation of strategies capable of dealing with an emergency. As
immediate action is required, these strategies will include: 1)
extensive monitoring probes for providing an accurate view
of the system’s state; ii) efficient analysis and planning poli-
cies; and iii) ”aggressive” effectors prioritizing management
decision implementations over system availability. Once the
emergency is solved, a different set of strategies is activated
to handle the routine context. As minimum maintenance
activity is required, these strategies will include: i) a re-
duced number of monitoring probes for supervising key sys-
tem points; ii) broad analysis and planning strategies con-
sidering multiple management concerns; and iii) “cautious”
effector strategies that may wait for an optimal moment be-
fore altering the system. In addition, individual strategies
can be configured for different contexts. For example, the
frequency at which a monitoring probe extracts and pro-
vides runtime data can be increased during an emergency
and reduced during normal system functioning.

3.3 Advantages

The presented approach allows for different behavioral as-
pects, dealing with different management concerns, to be
separately implemented, managed and reused. The pro-
posed design clearly separates management strategies from
each other, as well as from the management logic deciding
which strategies to activate in which context. The main
advantages of the proposed solution consist in its inherent
modularity and flexibility. These properties facilitate the
development and maintenance of AM solutions and render
such solutions self-adaptable. In contrast to building cen-
tralized, monolithic management strategies, this paper pro-
poses a decentralized design, where complex management
behaviors are created dynamically and opportunistically by
simultaneously activating simpler strategies. Separating AM
behaviors into finer-grained strategies that implement spe-
cific management functions enhances development produc-
tivity and reusability. In addition, it facilitates the dynamic
evolution of autonomic behaviors, as their various parts can
be seamlessly added, configured, removed, activated, or de-
activated at runtime. This allows AM applications to adapt
their overall behaviors to fluctuating goals, running condi-
tions and managed resources. Finally, it allows new man-
agement behaviors be dynamically discovered and tested as
various strategies become available during runtime.

4. PROPOSED FRAMEWORK

41 Overview

The second main contribution of this paper consists in
proposing a reusable framework that implements the pre-
sented solution. The framework defines a generic architec-
ture and implements the reusable architecture infrastruc-
ture. This supports for the creation of application-specific
Autonomic Managers by integrating and managing plug-
gable strategies. The framework proposes a layered architec-
ture, where each layer administers a lower-level layer, while
being administered by a higher-level layer. Two layers were
defined so far for the proposed framework architecture: a Re-
source Management layer and a Manager Adaptation layer.
The general framework architecture is presented in figure 2.

ﬁobservations Act\onsﬂ

§ (L =
g | Central Manager |
3
4 [[vt '
£
2 ST = s = s L T =
%’ Monitor Analyzer Planner Executor
S local manager local manager local manager local manager
= 'y] [y | [y | []

i ¥ | ¥ i ¥ I ¥
- ST = = = ST T ST =
1 -
1] Monitor Analyzer } ~ Planner Executor
g /ycontainer, H—H “ycontainer’ H “ycontainer’ H container,
>
g | | [| |
c
g stz Y sis str2 strt su2
5
3
K s _3] E g

Resource

active strategy-component ST ET Administration interfaces : sensor and effector touchpoints

str1 inactive strategy-component —| Standard communication interfaces

Figure 2: Layered framework architecture

Data is interchanged between the various framework en-
tities in the form of Reports of different types. All Report
types must comply with a general standard, which allows
the framework’s communication infrastructure to correctly
identify the Reports and route them to their destination(s).
Nonetheless, only the concerned parties have to understand
the actual semantics of the Reports’ contents.

The main roles, functions and relations between the two
framework layers are described as follows. The Resource
Management layer corresponds to the ”classical” AM con-
trol loop, as it is commonly portrayed in the Autonomic
Computing community [1][6]. This layer implements AM
functions for administering the underlying system resources.
The Resource Management layer is composed of two parts:
a common container and a set of pluggable strategy-compo-
nents. The common container is application-independent,
while the strategy-components are application-specific.

The Resource Management container provides support for
integrating strategy-components and ensuring their inter-
communication and coordination at runtime. The container
implements functions that are independent of the admin-
istrative goals and management techniques specific to each
application. This aspect renders the container reusable AM
solutions. At the same time, certain container parts can
be configured to meet the specific requirements of each AM
application. This includes strategy activation criteria and
Report aggregation and filtering functions. The framework
architecture uses strategy-components to encapsulate the
management strategies of the presented solution. Strategy-

components implement the actual AM functions (e.g. moni-
toring, analysis, planning and effector functions). Strategy-
components can be dynamically plugged into, or out of, the
Resource Management container, as well as activated and
deactivated depending on the current context and incoming
Reports. All strategy-components of a certain type expose
a standard interface that allows them to receive data Re-
ports and return processed results (Figure 2). It is possible
that multiple strategy components simultaneously receive
the same data Reports for processing. Individual strategy-
components are unaware of the execution of other strategies.
The container collects results from all active strategies and
processes them so as to obtain coherent output Reports.

Strategy-components can be categorized based on the man-
agement functions they perform. Therefore, the Resource
Management layer was designed as a chain of interconnected
mediation modules, where each module is responsible for
a specific management function. The successive mediation
modules of the Resource Manager layer are referred to as
management steps. Each management step consists of a con-
tainer instance and an associated set of management strate-
gies (Figure 2). A widely accepted decomposition into man-
agement steps consists of a sequence of monitoring, analysis,
planning and execution modules, which use a central knowl-
edge base (i.e. the MAPE-K model[l]). This decomposi-
tion was selected as a starting point for the presented work.
All strategy-components have access to a central knowledge
base, which contains relevant management-related informa-
tion (excluded from figure 2 for simplicity). The knowledge
base’s goal is to ensure that historical data is readily acces-
sible and that information is preserved reliably over time.

The Manager Adaptation layer is responsible for control-
ling and administering the underlying Resource Manage-
ment layer. It has a strong impact on the composition
of the Resource Management behavior by specifying which
strategy-components should be activated in various execu-
tion contexts. In addition, the Manager Adaptation layer
can also modify container functionalities, such as the com-
munication support, or the production of output Reports
from multiple strategy results. The Management Adapta-
tion architecture is further divided into two management
levels: a local level - Local Manager Adaptation, for ad-
ministrating individual management steps (e.g. monitoring,
analysis, planning and execution), and a central level - Cen-
tral Manager Adaptation, for administering the overall Re-
source Management layer. The central administration level
ensures coordination between the local administration man-
agers and provides support for communicating with external
entities (e.g. other Autonomic Managers).

Possible divergences between conflicting strategies may be
addressed at both the Resource Management and Manager
Adaptation layers. A careful configuration of the Resource
Manager container prevents the simultaneous activation of
conflicting strategy-components. This option was adopted
for the current framework prototype and presented exper-
imental work. Additionally, a special-purpose mechanism
can be implemented at the Resource Management container
level to inhibit certain strategy-components when a conflict-
ing strategy is activated. Finally, a data-mediation function
can be employed at the container level to aggregate and/or
filter conflicting results into a single coherent output Report.
Alternatively, the Manager Adaptation layer can decide to
map conflicting strategy-components to completely different

contexts, in order to avoid their concurrent activation.

4.2 Resource Management layer

The Resource Management layer was split into several
management-steps, in order to separate the different con-
cerns involved in the management process. Each management-
step consists of a generic management container and a set
of specific strategy-components. Consequently, the Resource
Management layer consists of a linked set of management
containers for monitoring, analysis, planning and execut-
ing functions, respectively (Figure 2). Accordingly, available
monitoring, analysis, planning and executing strategies are
assigned to the corresponding containers.

Information interchanged between management-steps is
encapsulated into Reports of different types. With the ex-
ception of the first and the last management steps, each
step transforms the set of incoming Reports produced by
the previous step into a set of Reports forwarded to the sub-
sequent step. Each Report contains meta-information such
as a unique ID, a production date, a producer name and
the category of the management step that produced the Re-
port. In addition, a Report type is provided to indicate the
sort of content available in the Report. A Report’s content
consists of a set of property-value pairs, depending on the
management step that created the Report. Hence, monitor-
ing Reports contain measurements extracted by probes and
planning Reports contain solutions for detected problems.

The management container implements application-inde-
pendent functions, including communication, strategy-com-
ponent administration and Report processing. The main
container roles and functionalities include enabling commu-
nication amongst active strategies of different types and di-
recting incoming Reports to the active strategies that must
process them, under each particular context. The container
subsequently collects, aggregates and filters Reports from
active strategies and sends the results to interested parties.
In addition, the container provides high-level information
on the functioning of the Resource Management layer to the
Manager Administration layer. Finally, containers reconfig-
ure strategy-components, based on indications received from
human administrators and/or from the Manager Adaptation
layer.

In order to meet these functional requirements, the con-
tainer architecture provides four main subcomponents: Re-
ceter, Bridge, Data-Processing Chain (DPC) and Emitter
(Figure 3). All subcomponents provide touchpoints that
allow the container (and indirectly the Manager Adapta-
tion layer) to administer them. The container itself pro-
vides monitoring and effector touchpoints for its own man-
agement.

Obseryations

Configuration

|

///?I—/ /Er //// / /EI—/////
—H +|—} Receiver F]% Bndge P#l‘{ DPC }-‘1#‘ Emitter }/—‘» H=)
Reports / 7 s Reports

Strategy-components pool

Figure 3: Manageable container

The container subcomponents and their interactions are
defined as follows. Container Receivers and Emitters en-

sure the communication between management-steps. Each
container holds both a Receiver and an Emitter, with the
exception of the first and last management-step containers.
The first step does not require a Receiver as information are
gathered directly by monitoring strategy-components. Simi-
larly, the last step does not use an Emitter as the actions are
directly performed by the execution strategy-components.

The container Receiver forwards incoming Reports to the
container Bridge subcomponent (Figure 3). The Bridge sub-
component is responsible for managing the container-specific
strategy-component pool. Strategy-components implement
various management strategies and expose standard inter-
faces that allow the Bridge to manage them. A strategy-
component transforms an incoming set of Reports into an
outgoing set of Reports. For example, an analyzer strategy
expects to receive monitoring Reports, which it processes
in order to produce analyzer Reports. The Bridge man-
ages pluggable strategy-components and distributes incom-
ing Reports to the relevant strategies. It uses a mapping
table for determining which Report types to send to which
strategy-components. The Local Manager Adaptation layer
can alter the Bridge mapping table via the container’s ad-
ministration interface. In turn, the Bridge collects informa-
tion on the active strategy results and forwards high-level
Reports to the Local Manager Administration component.
These Reports include information on the active strategies’
success rates and computation times, allowing to determine
the strategies’ performance and dependability parameters in
various contexts.

The Bridge collects the Reports produced by active strate-
gy-components and transmits them to the Data Processing-
Chain (DPC) subcomponent (Figure 4). The DPC subcom-
ponent consists of a flexible set of linked Data-Processing
Elements (DPE), including data aggregators and filters.

Observations

Conflguranon

ST

Data Processing Chain

DPE=
S Bl B e B
Reports filter or aggregator Flltered

Reports

Figure 4: Data Processing Chain subcomponent

Generally, the DPC becomes necessary when different stra-
tegies are activated concurrently to process the same set of
incoming Reports. The simultaneous use of multiple strate-
gies may result in an inconsistent Report set, providing con-
tradicting or missing information. The goal of the DPC is to
eliminate unwanted data or possible contradictions and/or
to complete the produced Reports. The DPC arbitrates
amongst the solutions proposed by several active strategies
and selects the most adapted ones for forwarding to the next
management step. For instance, considering the case where
two planning strategies are activated simultaneously to pro-
vide a solution for a given problem. The DPC must process
the individual solutions proposed by the two strategies and
determine a unique, coherent plan. The DPC may simply
select one of the proposed solutions (e.g. the fastest one),
or merge the two solutions into a single one, if no conflict-
ing actions are obtained in result. The DPC forwards the
resulting Report set to the Emitter subcomponent, which
sends it to the subsequent management step in the chain.

4.3 Manager Adaptation layer

The Manager Adaptation layer ensures the correct func-
tioning of the Resource Management layer and adapts its
characteristics to changing execution contexts. The main
role of the Manager Adaptation layer is to observe the ac-
tivities of the various strategies active in the Resource Man-
agement layer and to modify their associations to various
contexts. The Manager Adaptation layer is not concerned
with the implementation details of each strategy. It is only
aware of the strategies’ types and general attributes and
keeps a history of the strategies’ performances when previ-
ously activated in different contexts. In this manner, the
Manager Adaptation layer is able to detect and correct inef-
ficient strategies, management conflicts, deadlocks, oscillat-
ing states and infinite control loops. Initially, system admin-
istrators manually specify mappings between contexts and
the set of strategy-components used in those contexts. The
Manager Adaptation layer can also set in place these initial
mappings, based on the strategy-components’ types and ad-
vertised attributes. During runtime, the Manager Adapta-
tion layer reconfigures the Resource Management contain-
ers in order to update their mapping tables and modify the
strategies used in each context. Reconfiguration decisions
are based on the strategies’ descriptions and previous re-
sults, as well as on the system state and management goals.

4.3.1 Local Manager Adaptation

The Local Manager Adaptation layer administers the Re-
source Management layer at the local, concern-specific level.
In the presented framework, one Local Manager Adapta-
tion instance is present for each available management-step
(Figure 2) (i.e. monitoring, analysis, planning and execu-
tion managers). Local managers collect information on ac-
tive strategy-components and dynamically determine viable
container implementations for the current context. The goal
is to maintain a correct, dependable and possibly optimal
behavior for each management step, in conditions of vary-
ing execution contexts and management goals. Lack of lo-
cal management adaptation would result in the continuous
adoption of a default administrative behavior, predefined at
the AM system’s startup.

Adapting a management-step’s behavior is achieved by
configuring the Bridge subcomponent of the corresponding
container. Specifically, the local manager adjusts the Bridge’s
mapping specification between Report types and active stra-
tegy-components. For this purpose, local managers require
functional and non-functional information on the available
strategies. This information is initially provided by strategy-
component descriptions and progressively completed with
runtime information. Local managers complete the strategy-
components’ profiles by merely observing their applicability
for performing a certain task and without necessarily 'under-
standing’ how the strategy operates. The current framework
prototype uses static strategy descriptions and does not yet
update them with runtime information. A local manager can
also reconfigure the DPC container subcomponent, influenc-
ing the manner in which it aggregates and filters conflicting
Reports. The DPC configuration is tightly-coupled with the
Bridge configuration. Finally, the local manager is responsi-
ble for the dynamic discovery of strategy-components. Sup-
port for this capability mainly depends on the underlying
framework technologies. A possible approach involves the
availability of a central registry providing strategy descrip-

tions for the existing strategy-components. This solution
was retained for the current framework implementation.

4.3.2 Central Manager Adaptation

The Central Manager Adaptation component globally co-
ordinates the individual actions of Local Manager Adapta-
tion components. Exclusively localized adaptation without
coordination may prove insufficient to attain an Autonomic
Manager’s high-level goals. For this purpose, the Central
Manager Adaptation component performs all administrative
actions that require a global view of the Resource Manage-
ment layer. In addition, the central manager mediates com-
munication between local managers, as well as with external
entities, such as other Autonomic Managers and system ad-
ministrators.

The central manager receives high-level administrative
goals from system managers and/or other Autonomic Man-
agers and accordingly configures each local manager in order
to attain these goals. High-level goals may concern the man-
aged system, as well as the functioning of the Autonomic
Manager itself. Such administrative goals may include the
Autonomic Manager’s reaction times and resource consump-
tion. In this case, the central manager observes the behavior
of local managers and takes appropriate action in order to
regulate their overall resource consumption. In addition,
the central manager must ensure that the choice of strate-
gies activated in the different management steps results in
an overall coherent autonomic behavior. It must also verify
that the Report types circulated between successive man-
agement steps are understood mutually by the strategies
activated in those steps.

Another important role of the central manager is to dis-
seminate and filter information among the local managers.
For example, an ’alert’ signal can be distributed to all local
managers indicating the occurrence of an emergency. Con-
sequently, all local managers update the strategy mappings
in the associated containers, activating those strategies that
are most suitable for handling the emergency. This ensures
a coherent, uniform reconfiguration of the entire Resource
Management layer.

4.4 Meeting AM Requirements

Table 1 summarizes the mapping between discussed prop-
erties in section 2 and how the framework addresses them.

Properties Addressed by framework by way of

Maintenability | loosely coupled, dynamically updatable
strategies with separated concerns;
independently updatable, reusable and
application-independent framework
components; Standard administration
interfaces.

Adaptability Dynamically adaptable set of activated
strategies; replaceable framework com-
ponents; changeable communication be-

tween components.

Extensibility extendable strategy pool via discover-

able strategies

Dependability | reusable and replaceable(to fix errors)

strategies and framework components

Table 1: Mapping between desirable characteristics
and proposed solution

5. SOLUTION IMPLEMENTATION
5.1 Service-Oriented Computing technology

A framework prototype was implemented and tested for
managing a sample application. A Service-Oriented Com-
puting (SOC) approach was selected for the framework im-
plementation, as it largely facilitated the development of
pluggable strategies. This approach uses services as first-
class elements for building software applications. It ad-
vertises modularity and loose coupling as its core princi-
ples. Services can be supplied by multiple service providers,
featuring various implementations, and are discovered and
bound at runtime via a discovery mechanism. These char-
acteristics are particularly interesting when implementing
pluggable strategies as services. Based on this approach,
local managers in the proposed framework have the possi-
bility to dynamically discover strategy services and use them
at runtime. This facility gives local managers the means of
evolving their administrative behaviors in order to handle
unforeseen situations and challenges.

The prototype was developed based on the OSGi? service
platform and more precisely on the iPOJO?[3] service com-
ponent runtime extending the OSGi platform. The OSGi
framework is a well-known service execution platform, which
supports dynamic reconfiguration and provides a service run-
time environment. iPOJO simplifies service development by
providing a component container that is responsible for man-
aging all SOC-related aspects, from service publication to
service dependency management. Moreover, iPOJO offers,
via the use of aspect-oriented manipulation, the possibility
of adding non-functional behavior to deployed services(e.g.
logging, administration). This ability was used when imple-
menting the presented framework, for reducing the complex-
ity of strategies implementations. Finally, iPOJO provides
an Architecture Definition Language(ADL) for describing
service-based applications.

5.2 Framework implementation

The proposed framework offers a set of reusable libraries
and services for building Autonomic Managers. The dif-
ferent architectural modules are implemented as separate
iPOJO services, which are replaceable during runtime. In
iPOJO, services are created using instance factories. Facto-
ries are specialized services that facilitate component instan-
tiation. The current prototype provides a default instance
factory for each architectural component, from the central
manager to the management step containers.

In the current framework implementation, a system ad-

ministrator must explicitly instantiate the management strate-

gies used. Future extensions will allow local managers to au-
tomatically discover factories (based on their descriptions)
and obtain strategy instances as necessary. The current
framework instantiation procedure involves the hierarchical
instantiation of the framework components, starting with
the central manager and ending with the management strate-
gies. Each parent component is responsible for the instan-
tiation and maintenance of their direct children. The first
service to be created is the central manager. It creates the
different local managers in conformance with a given de-
scription. Each local manager instantiates the management

20SGi Alliance: www.osgi.org
3iPOJO project: felix.apache.org/site/ipojo.html

container they will administer and each container creates its
internal subcomponents and initial strategies.

The Resource Management layer was fully implemented
and tested. The default Receivers and Emitters ensuring
interactions between management steps are based on OSGi
platform’s support for service communication. The container-
level mappings between Report types and management strate-
gies are described via regular expression-based filters. The
DPC component was developed to meet the requirements
of the initial experimental scenarios. Several management
strategies were provided for each management step, as nec-
essary for the administration scenarios tested.

An important part of the Manager Adaptation layer was
implemented and tested. Local managers were conceived
following the MAPE-K model. Their implementation con-
sists of two parts. First, a generic part manages interactions
with the central manager and with the underlying container.
It also provides an administration interface (i.e. sensor and
effector touchpoints) for the central manager. Second, lo-
cal managers contain an application-specific part, consisting
of a statistics service, an anomaly detection service and a
strategy selection service. These services respectively corre-
spond to the knowledge base, analyzer, and planner in the
MAPE-K approach. This division separates concerns and
increases local managers’ maintenance and reusability. A
central service registry enables the discovery of strategies
by local managers. The registry is provided by the OSGi
service platform and contains information such as service
implemented algorithms and specific parameters. An ini-
tial implementation was completed for the Central Manager
Adaptation component and its functionality will be tested
in future example scenarios.

5.3 Autonomic Manager description

The proposed framework offers the possibility of specify-
ing Autonomic Managers using XML files. The goal is to de-
scribe the Autonomic Manager in a technology-independent
way, in order to facilitate its specification and improve its
portability. Although iPOJO does provide a general ADL,
its use for specifying complicated applications with specific
requirements can quickly become cumbersome. The impor-
tant number of services used renders the production of a
complete application description in iPOJO ADL too ver-
bose and laborious to verify. Therefore, a specific ADL was
defined to describe instances of the presented architecture,
appreciably reducing verbosity for the prototype’s specifi-
cation. The XML description of a framework instance is
divided into three parts: a factory description, an instance
description and an autonomic manager description. The fac-
tory and the instance description parts are largely inspired
by the iPOJO ADL. The factory description includes fac-
tory specifications for the DPEs and strategy-components.
Descriptions of strategy factories provide information on
the strategy implementation classes and default parameters.
The instance description part contains the description of ser-
vice instances, including the instance name and properties
values. The autonomic management part contains specific
information about the autonomic manager, such as the fac-
tories to use for each component, as well as the local and
central-managers descriptions. The specific XML descrip-
tion is translated into the iPOJO description language at
compile time, by means of an XSL* transformation.

“eXtensible Stylesheet Language: www.w3.org/TR/xsl/

6. EXPERIMENTSAND RESULTS
6.1 Testing scenario

The presented framework prototype was tested in an ex-

perimental scenario pertaining to the field of home-automation.

Home-automation aims at providing easy-to-use automatic
applications for non-expert users. The current framework
implementation was employed to manage a common home
application: a video camera-based intrusion detector and el-
derly person supervision. The application consisted of four
services: a simulated camera driver, a database, an intrusion
detector, and a household accident detector. For simplicity,
this application can be generalized to a classical producer-
consumer scenario that uses an intermediate buffer for data
mediation. In this scenario, the video camera service is con-
sidered as the producer, the database service as the inter-
mediate buffer and the intrusion detection and person su-
pervision services as different consumers.

Figure 5 shows the generalized application with one pro-
ducer and two consumers and depicts the Autonomic Man-
agers employed to administer each service. Autonomic Man-
ager instances communicate via predefined events, dissemi-
nated through a common communication channel. The pro-
ducer stores generated data into the database, along with
meta-information such as production dates and used config-
urations. The consumers retrieve data from the database as
required for achieving their functional goals. The role of the
database is to store information reliably, until all consumers
manage to recuperate and process it.

Ci channel

Consumer 1 (C1)

Y
‘ Producer manager‘ ‘ Database manager‘

‘ Producer Database

Consumer 2 (C2)

Figure 5: Sample application

The producer offers an administration facility for tun-
ing its data output frequency. Considering the concrete
intrusion-detection scenario, this facility is used to set the
transmission rate of the video camera, increasing it for ex-
ample when suspect activities are detected. Consumers op-
erate independently, recuperating and processing data from
the database at different frequencies. Consumer frequen-
cies can change over time, depending on execution contexts.
Data are maintained in the database until acquired by all
registered consumers. This may eventually cause database
saturation in cases where the producer’s frequency exceeds
the retrieval frequency of the slowest consumer. Special
management action is required to avoid loss of information
when the database reaches its full capacity. For that rea-
son, one Autonomic Manager instance was associated with
each application service and was given specific administra-
tive goals with respect to that service. This paper focuses
on the database Autonomic Manager and its corresponding
strategies.

High-level management goals were statically set for each
Autonomic Manager in the application. All Autonomic Man-
agers were given the goal of maintaining memory consump-
tion under a given threshold, on the shared execution plat-
form. Apart from this common objective, each manager
has specific administrative goals. The producer manager
is in charge of adjusting the producer’s output frequency,
based on requests from the database and consumer man-
agers. Similarly, consumer managers are in charge of de-
termining the best data acquisition frequencies for the ac-
tual consumers they administer. Consumer managers may
request producer managers to increase capture frequencies,
when consumers require more data in order to work properly.
The producer manager considers multiple requests from peer
consumer managers and tries to reach an optimal compro-
mise for adjusting the producer’s frequency.

The database manager administers the memory resource
allocated to the database. Its goal is to reliably preserve
relevant data and to ensure that the database capacity does
not exceed the system’s memory limits. The database ser-
vice was implemented as a data buffer and allocated a cer-
tain number of data units that simulate memory consump-
tion. The database manager employs different management
strategies at each management step, by activating the corre-
sponding strategy-components available. Implemented stra-
tegy-components include several monitoring strategies for
collecting system properties (e.g. available system memory)
and database state (e.g. current database size and capacity).
The database capacity represents the maximum amount of
data that can be stored in the database. The database size
indicates the current amount of data that is stored in the
database. In the current implementation, monitoring strate-
gies use JMX?® touchpoints for collecting information from
the managed resources.

Two analysis strategies were implemented for analyzing
monitoring Reports on the database’s size and capacity. One
strategy detects when the database size exceeds 90% of the
database’s capacity, or when it goes below 60% of the data-
base’s capacity. When either of the two cases is detected,
this strategy issues a database ’overflow’ or ’underutiliza-
tion’ event, respectively. The second analysis strategy com-
pares the database’s capacity with the maximum system
memory that can be allocated to the database (i.e. 25%
of the memory). The analysis step activates both of these
analysis strategies each time it receives a monitoring Report.

Three planning strategies were implemented and tested
for dealing with database saturation. The first strategy uses
a "smart data deletion” algorithm for selectively removing
existing data from the database and limiting memory con-
sumption. The idea is to drop irrelevant data based on
provided application-specific heuristics (e.g. deleting suc-
cessive, similar images). The second planning strategy in-
creases the database capacity provided this does not exceed
the system memory limits (i.e. ”capacity increase” strat-
egy). Rather than modifying the database, the third strat-
egy tries to solve the problem by demanding the producer
to decrease its data output frequency. More precisely, this
strategy sends a "too_high_frequency" event to the pro-
ducer’s manager, via the communication channel. The pro-
ducer manager subsequently reduces its output frequency,
provided that none of the consumers requires a high fre-

®Java Management Extensions: http://java.sun.com/javase/
technologies/core/mntr-mgmt/javamanagement/

System Memory(%)
30%

2506 4 e

Database Capacity

20% A

15% -

Database Size

10% +

5% -

period 1 period 2 period 3 period 4

0%

o 100 200 300 400 500 600 700 800
time (s)

Figure 6: database management

quency. Otherwise, it ignores the "too_high_frequency"
message received. While the three planning strategies pre-
sented handle database saturation situations, a fourth plan-
ning strategy was implemented to handle database under-
utilization. When receiving an analysis Report indicating
capacity underutilization this planning strategy decrements
the available system memory allocated to the database.
The local planning manager uses its statistics service to
log information on the use of each planning strategy. Based
on these statistics, the local manager detects when an active
strategy repeatedly fails to meet its goals over a determined
period. When this occurs, the local manager considers the
strategy as faulty, or inefficient, and uses its selection al-
gorithm to choose another strategy to activate. The plan-
ning selection algorithm specifies an ordered list of available
strategies and the number of times each strategy must prove
unsuccessful before selecting the next strategy in the list.
Each planning strategy contains an ordered list of actions,
which execution strategies can interpret and implement.

6.2 Experimental results

The graph in Figure 6 illustrates the manner in which
the presented management strategies are employed and the
effects they have on the database size and capacity. The
graph shows the evolution in time of the database capacity
(dotted line) and the database size (solid line). The goal of
the database Autonomic Manager is to keep the database
capacity at a minimum and to make sure it does not ex-
ceed 25% of total system memory. The management sce-
nario depicted in the graph began with an augmentation in
the database size (i.e. the initial part of 'period1’). This
was induced by an increase in the producer’s data output
frequency, due for example to a request from one of the
consumers. When the database size exceeded 90% of the
database capacity, the analysis management step signaled a
database saturation situation. The database-planning step
consequently employed the available planning strategies for
handling the problem. The graph in Figure 6 shows the
results of alternating the activation of available planning
strategies, as dictated by the local planning manager.

The first planning strategy the database manager employs
is the "selective data deletion” strategy. However, this strat-
egy can only provide a temporary solution and hence the
database becomes repeatedly saturated. The repeated use
of this strategy causes the database size fluctuations observ-
able during ’'period 1’, as well as over all subsequent peri-

ods. As a result, the local database manager detected the
frequent use of this strategy and decided to additionally acti-
vate the "capacity increase” strategy for solving the problem.
The results of activating this second strategy appears several
times in the graph, as the capacity curve increases in steps
(i.e. three times during ’period 1’, twice during ’period 2’
and 'period 4).

At the beginning of ’period 2’, the database capacity
reached its maximum memory allocation allowed. At this
point, the "selective data deletion” strategy, still active, was
the only one preventing the database from overflowing. The
“capacity increase” strategy could no longer succeed since
the database maximum capacity had already been reached.
The local database manager detected that this strategy failed
to complete and decided to activate the third strategy. This
strategy asked the producer to reduce its data production
frequency, by sending a "too_high_frequency" event on the
communication bus. The consequence of applying this strat-
egy can be observed in the graph as the database size curve
descends during ’period 2’. In the presented experimental
setting, the producer was implemented to lower its frequency
more and more each time it receives a demand over a certain
period. This explains why the database size decreased more
when the third strategy was applied the second time, at the
beginning of 'period 3’. When the database usage dropped,
the database manager consequently detected the database
underuse and lowered the database capacity. For experi-
mental purposes, the producer was implemented to auto-
matically re-increase its transmission frequency, over time,
in order to periodically induce the activation of managers.

The presented experimental results show that the use of
different basic strategies for building complicated adminis-
trative behaviors is an efficient way to develop Autonomic
Managers. Specifically, strategies proved to be easy to im-
plement, since their scopes were reduced to limited con-
cerns. The use of decoupled strategies offered the oppor-
tunity for their seamless combination into different behav-
iors. Nonetheless, the provided flexibility and extensibility
is counterbalanced by possible conflicts that might occur be-
tween concurrently active strategies. Part of the complexity
of strategy coordination and conflict handling is delegate to
local managers. This design provides a better separation of
concerns than if the strategies and the logic deciding which
strategies to employ were mixed in a monolithic manager.

7. RELATED WORK

The solution proposed in this paper presents strong sim-
ilarities with the Blackboard Architecture [2] and conse-
quently features similar benefits and difficulties. In a black-
board system, a set of problem solving modules (i.e. knowl-
edge sources) share a common database (i.e. blackboard)
and collaborate in an opportunistic and dynamic manner to
solve a given problem. BB1[5] extends this general approach
introducing a layered architecture for modifying the actual
control logic of the solving modules.

[7] introduces self-management capabilities at the applica-
tion architectural level. It proposes a three-layered architec-
tural model for handling component reconfigurations, local
adaptation behavior management and global goal manage-
ment. This is similar to the layered architecture proposed
in this paper, while being more theoretical and remaining
at a higher abstraction level. The ACCORD framework [9]
aims at facilitating the development of autonomic managers

from reusable autonomic elements, which can be replaceable
during runtime based on dynamically injected rules. Simi-
larly, [12] proposes a further application of architectural ap-
proaches to autonomic computing. It defines the interfaces,
communication and behavioral requirements of application
components to enable the flexible composition of autonomic
managers from reusable components.

The importance of applying the service-oriented paradigm
to Autonomic Management applications is reflected by the
publication of specific Web services standards, namely the
Web Service Distributed Management [8]. In this context,
[10] also shows the advantages of standardizing the inter-
faces of Autonomic Management elements, as it allows the
creation of autonomic applications from individual services
developed by multiple providers. The availability of such in-
terfaces is vital for building adaptable Autonomic Managers
with dynamically interchangeable elements.

Several research projects are currently developing general
architectures, engineering principles and runtime platforms,
for providing reusable autonomic capabilities to large-scale,
distributed software systems (e.g. IBM Autonomic Comput-
ing Toolkit® , Autonomia’, AutoMate® , BioNets ?, Amor-
phous Computing®® , Autonomic Networked Systems'! and
Recovery-Oriented Computing *?). These projects propose
autonomic functions and infrastructures that are comple-
mentary to the work presented in this paper. Therefore, the
capabilities of existing platforms will be studied and consid-
ered for extending the presented autonomic framework.

8. CONCLUSIONSAND FUTURE WORK

This paper proposed a solution for developing complex
and adaptable Autonomic Managers via the dynamic and
opportunistic integration of management strategies. In ad-
dition, the paper presented a reusable framework that im-
plemented this solution. A service-oriented prototype was
implemented and successfully tested for managing a sample
application.

Two main aspects must be considered when building AM
systems. The first aspect is concerned with the construc-
tion of individual Autonomic Managers responsible for the
administration of a certain resource (e.g. a machine’s CPU,
a software component, an entire application, or platform).
The second aspect is concerned with the organization and
coordination of multiple AM instances, as necessary for meet-
ing the business-level goals of an overall system. This pa-
per focused on the development of individual AM solutions.
However, the authors do recognize the importance of consid-
ering both presented aspects simultaneously. Indeed, build-
ing a single Autonomic Manager in isolation provides limited
guarantees on the successful extensibility of this solution for

 Autonomic Computing Toolkit (IBM developerworks):
www.ibm.com /developerworks/autonomic/overview.html

" Autonomia (University of Arizona): www.ece.arizona.edu/
“hpdc/projects/ AUTONOMIA

8 AutoMate (Rutgers University): automate.rutgers.edu
9The Bio-Networking Architecture (University of California
Irvine): netresearch.ics.uci.edu/bionet

10 Amorphous Computing: swiss.csail.mit.edu/projects/
amorphous

' Autonomic Networked Systems (ANS) (Imperial College):
www.doc.ic.ac.uk/"asher/ubi/ansproj

12Recovery Oriented Computing (ROC) project (Berkley and
Stanford Universities): roc.cs.berkeley.edu

supporting Autonomic Manager collaborations. Therefore,
although outside the scope of this paper, the interconnection
and communication amongst multiple managers was taken
into account into the presented solution.

While the proposed framework enables the creation of
complex AM solutions with extensive adaptability capabil-
ities, it equally allows for the construction of lighter AM
solutions when simple, efficient solutions are needed. In-
deed, the framework can be partially instantiated to only
provide the basic Resource Management functions, hence re-
ducing the AM solution’s runtime complexity and resource
consumption. Local managers and/or the central manager
can be progressively added depending on the level of adapt-
ability required of the AM behaviour. The gained flexibil-
ity, resilience and efficiency of the proposed solution come
at the cost of losing some of the absolute control on the
application’s runtime behaviour. This is because the com-
bined results of independent strategies may become difficult
to predict and debug. Further work is necessary for coordi-
nating the activities of strategies and aggregating potentially
conflicting results into coherent management actions.

9. REFERENCES

[1] An architectural blueprint for autonomic computing.
Technical report, IBM, June 2005.

[2] B. Draper, R. Collins, J. Brolio, A. Hanson, and
E. Riseman. Issues in the development of a
blackboard-based schema system for image
understanding. In R. S. Engelmore and A. J. Morgan,
editors, Blackboard Systems. Addison Wesley, 1988.

[3] C. Escoffier and R. Hall. Dynamically Adaptable
Applications with iPOJO Service Components. In
SC2007, March 2007.

[4] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl,
and P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure.
Computer, 37(10):46-54, 2004.

[5] B. Hayes-Roth. Bbl: an architecture for blackboard
systems that control, explain, and learn about their
own behavior. 1984.

[6] D. M. Kephart, Jeffrey O. et Chess. The vision of
autonomic computing. Computer, 36, 2003.

[7] Kramer and Magee. Self-managed systems: an
architectural challenge. fose, 00:259-268, 2007.

[8] H. Kreger and T. Studwell. Autonomic computing and
web services distributed management, 2005. www.ibm.
com /developerworks/autonomic/library /ac-architect/.

[9] H. Liu and M. Parashar. Accord: a programming
framework for autonomic applications. 36(3):341-352,
May 2006.

[10] B. Miller. The Standard way of autonomic computing,
2005. www-128.ibm.com/developerworks/autonomic/
library/ac-edge2/.

[11] S. Sicard, F. Boyer, and N. D. Palma. Using
components for architecture-based management: the
self-repair case. ICSE ’08: Proceedings of the 30th
international conference on Software engineering,
pages 101-110, 2008.

[12] S. R. White, J. E. Hanson, I. Whalley, D. M. Chess,
and J. O. Kephart. An architectural approach to
autonomic computing. Autonomic Computing, 2004.
Proceedings. International Conference on, pages 2—9.

