
Dynamic QoS Adaptation of Inter-Dependent Task Sets in Cooperative
Embedded Systems

Luís Nogueira, Luís Miguel Pinho
IPP Hurray Research Group

School of Engineering, Polytechnic Institute of Porto, Portugal

E-mail: {luis,lpinho}@dei.isep.ipp.pt

Abstract

Due to the growing complexity and dynamism of many embed-
ded application domains (including consumer electronics, robotics,
automotive and telecommunications), it is increasingly difficult to
react to load variations and adapt the system’s performance in a
controlled fashion within an useful and bounded time. This is par-
ticularly noticeable when intending to benefit from the full poten-
tial of an open distributed cooperating environment, where service
characteristics are not known beforehand and tasks may exhibit
unrestricted QoS inter-dependencies.

This paper proposes a novel anytime adaptive QoS control pol-
icy in which the online search for the best set of QoS levels is
combined with each user’s personal preferences on their services’
adaptation behaviour. Extensive simulations demonstrate that the
proposed anytime algorithms are able to quickly find a good ini-
tial solution and effectively optimise the rate at which the quality
of the current solution improves as the algorithms are given more
time to run, with a minimum overhead when compared against
their traditional versions.

Categories and Subject Descriptors

J.7 [Computers in Other Systems]: Real time; D.1.3 [Pro-
gramming Techniques]: Concurrent Programming—Distributed
programming

General Terms

Algorithms, Management, Performance

Keywords

Open real-time systems, Anytime algorithms, QoS optimisa-
tion and adaptation, Service stability

1. Introduction

In open and dynamic real-time systems, resource requirements
are inherently unstable and difficult to predict in advance, as in-
dependently developed services enter and leave the system at any-
time [6]. As a consequence, the overall system’s workload is sub-
ject to significant variations, which can result in an overload and
degrade the entire system’s performance in an unpredictable fash-
ion. This situation is particularly critical for small embedded de-
vices used in consumer electronics, telecommunication systems,
industrial automation, and automotive systems. In fact, in order
to satisfy a set of constraints related to weight, space, and energy
consumption, these systems are typically built using small micro-
processors with low processing power and limited resources.

For most of these systems, the classical real-time approach
based on a rigid off-line design and worst-case assumptions would
keep resources unused for most of the time. Online methods that
react to load variations and adapt the system’s performance in a
controlled fashion overcome these shortcomings and provide the
needed flexibility. To cope with dynamic environments, a system
must be adaptive, that is, it must be able to adjust its internal strate-
gies in response to changes in the environment in order to keep the
system’s performance at a desired level.

In this context, a cooperative execution of resource intensive
services among neighbour nodes seems a promising solution. The
CooperatES (Cooperative Embedded Systems) framework [11, 14,
15] facilitates the cooperation among neighbours when a service
request cannot be satisfyingly answered by a single node. Nodes
dynamically group themselves into a new coalition, allocating re-
sources to each new service and establishing an initial Service
Level Agreement (SLA) that maximises the satisfaction of the QoS
constraints associated with the new service and minimises the im-
pact on the global QoS caused by the new service’s arrival [11,
14]. However, our previous work assumed that tasks sets were

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AUTONOMICS 2008, September 23-25, Turin, Italy
Copyright © 2008 ICST 978-963-9799-34-9
DOI 10.4108/ICST.AUTONOMICS2008.4488



independent. This paper extends our approach, assuming that ser-
vices share resources [16] and their execution behaviour and in-
put/output qualities are interdependent, i.e., a constraint on one
quality or resource parameter can constrain other system’s param-
eters.

Throughout the paper, two important requirements are consid-
ered to be essential for an efficient adaptive QoS control: the sta-
bility of service provisioning and the timeliness criteria that affects
the usefulness of the system’s adaptation behaviour. In fact, while
some users or applications may prefer to always get the best pos-
sible instantaneous QoS, independently of the reconfiguration rate
of their requested services, others may find that frequent QoS re-
configurations are undesirable [13]. This paper proposes a QoS re-
configuration policy that compares each possible service upgrade
against the user’s stability requirements, namely a minimum util-
ity increment and a minimum granted stability period to upgrade
the currently provided QoS level.

Furthermore, if the system adapts too late, it may not be useful
and may even be disadvantageous. As the complexity of open real-
time systems increases, it is also increasingly difficult to find an
optimal resource allocation that deals with both users’ and nodes’
constraints within an useful and bounded time. This is true for
many real-time applications, where it may be preferable to have
approximate results of a poorer but acceptable quality delivered on
time to late results with the desirable optimal quality. For example,
it is better for a collision avoidance system to issue a timely warn-
ing together with an estimated location of the obstacle than a late
description of the exact evasive action. Another example is video
and sound processing. While poorer quality images and voices on
a timely basis may be acceptable, late frames and long periods of
silence often are not. Other examples can be found in route opti-
misation of automated vehicles [19, 18], computer games [7], and
real-time control [2].

This paper proposes a novel anytime approach [22] to deal with
a large number of dynamic tasks, multiple resources, and real-
time operation constraints in open dynamic real-time systems. The
increased complexity of negotiating service provisioning for task
sets which exhibit unrestricted QoS dependency relations among
their tasks makes it beneficial to be able to trade the quality of the
achieved solution against its computation cost. The proposed any-
time algorithms can be interrupted at any time and still provide a
solution and a measure of its quality, which is expected to improve
as the run time of the algorithms increases. This flexibility in the
algorithms’ execution times enables the system to timely adapt to
the changing environmental conditions of dynamic open real-time
systems. To the best of our knowledge, no other approaches exist
to provide this adaptation, considering inter-dependent task sets.

2. The CooperatES framework

The goal of the CooperatES framework is to satisfy multiple
QoS dimensions in a resource constrained environment forming
temporary coalitions for a cooperative service execution among
nodes. Each node has a significant degree of autonomy and it
is capable of executing services and sharing resources with other
nodes. A service can be executed by a single node or by a group of
nodes, depending on the node’s capabilities and on the user’s im-

posed quality constraints. In either case, the service is processed
in a transparent way for the user, as users are not aware of the exact
distribution used to solve the computationally expensive service.

This paper considers the existence of dependencies among QoS
dimensions and/or resource types, extending the work presented
in [14]. Such dependency relations specify that a task offers a
certain level of QoS under the condition that some specified QoS
will be offered by the environment or by other tasks. For example,
network bandwidth can be traded for processing power by using
data compression techniques. Some compression techniques may
not be lossless, thus, they may impact the quality of the output.
Dependencies are modelled as a directed graph Gij , where each
graph node represents a task and the edges represent the data flow
between the tasks.

A service Si = {wi1, wi2, . . . , win} is then a collection of one
or more work units wij that can be executed at varying levels of
QoS to achieve an efficient resource usage that constantly adapts
to the devices’ specific constraints, nature of executing tasks and
dynamically changing system conditions. Each work unit wij =
τi1, τi2, . . . , τin is a set of one or more tasks τij that must be ex-
ecuted in the same node due to local dependencies. Correct deci-
sions on service partitioning are made at run time when sufficient
information about the workload and communication requirements
become available [20].

It is assumed that applications provide different levels of ser-
vice with distinct utilities and resource requirements. For example,
consider the transmission of multiple audio/video streams over a
network. This scenario involves a network with a given bandwidth
and nodes serving and receiving the streams. Typical audio related
parameters are the sampling rate (8, 16, 24, 44, 48 kHz), the sam-
pling bits (8, 16), and the end-to-end latency (100, 75, 50, 25 ms),
while in video are usually considered the picture dimension (SQ-
CIF, QCIF, CIF, CIF4), colour depth (1, 3, 8, 16, . . .) and frame
rate (1, . . ., 30).

Different configurations of a stream can have different utility
values for different users and applications. For example, for a par-
ticular user a transmission of a music concert may place higher
quality requirements on audio, although colour video may be also
desirable, while another user of a remote surveillance system may
require higher video quality with a minimum of gray scale images.
The CooperatES framework allows a user’s service request to be
formulated through a relative decreasing order of importance of a
set of QoS dimensions, their attributes, and possible values [11].
Users provide a single specification of their own range of QoS
preferences Qi for a complete service Si, ranging from a desired
QoS level Ldesired and the maximum tolerable service degrada-
tion, specified by a minimum acceptable QoS level Lminimum,
without having to understand the individual work units that make
up the service. As a result, the user is able to express acceptable
compromises in the desired QoS and assign utility values to QoS
levels. Note that this assignment is decoupled from the process of
establishing the supplied service QoS levels themselves and deter-
mining the resource requirements for each level.

Given the spectrum of the user’s acceptable QoS levels, if the
service request cannot be satisfyingly answered by a single node, a
cooperative execution request is broadcasted. Neighbours respond



to this cooperation request by recomputing their local set of QoS
levels in order to accept a work unit of the new service. Although
the general multiple QoS dimensions and multiple resources op-
timisation problem is NP-hard, the CooperatES framework offers
a multi-attribute utility theory to achieve the best possible service
configuration within a given and bounded time [14]. This paper
proposes a QoS optimisation process that iteratively selects the re-
source allocation that maximises the satisfaction of the QoS con-
straints Qi associated with the new service Si and minimises the
impact on the current QoS of previously accepted services. The
proposed anytime algorithm can be interrupted at any time and
provide a solution and a measure of its quality, which is expected
to increase as the algorithm is given more time to run.

Having a set of service proposals, the dynamic selection of the
new coalition’s members is also influenced by the user’s QoS pref-
erences, tailoring the provided service to each user’s specific needs
[14]. The coalition allocates resources to the new service estab-
lishing an initial SLA which contains a service description whose
parameters are within the range of the user’s desired QoS level
Ldesired and the maximum tolerable service degradation Lminimum.

Nevertheless, short term dynamic environmental changes im-
pose that the promised SLA can never be more than an expecta-
tion of a best-effort service quality during long term periods [5].
Once a SLA is admitted, it may be downgraded to a lower QoS
level (until Lminimum is reached) in order to accommodate new
service requests with a higher utility or upgraded (until Ldesired is
reached) when the needed resources become available. This paper
proposes a novel adaptive anytime QoS control method in which
the online search for the best set of QoS levels is combined with
the users’ service stability preferences. While QoS downgrades
can be mandatory in order to accommodate new services with a
higher utility, upgrades to a higher QoS level are controlled by the
user’s stability requirements.

Concurrent QoS negotiations and adaptations are supported by
the CooperatES framework. When a node recomputes its set of
local SLAs, promised resources are pre-reserved until the node is
notified about its service proposal’s acceptance or rejection (or a
timeout expires). This means that the amount of pre-reserved re-
sources will not be available to other subsequent service negotia-
tions when a new service arrives or when determining the possible
service upgrades until the former negotiation’s result is known.
Note that the currently provided QoS levels only actually change
at the end of a successful negotiation. If the service proposal is
rejected, the reserved amounts are immediately released and the
node continues to supply the offered SLAs prior to the failed co-
operative negotiation. On the other hand, if the service proposal
is accepted, the node imposes the new set of SLAs to all local
services, assigning the pre-reserved resource amounts to services.

With several independently developed applications with differ-
ent timing requirements coexisting in the same system, it is impor-
tant to guarantee a predictable performance under specified load
and failure conditions, and ensure a graceful degradation when
those conditions are violated [3]. This is strictly related to the
capacity of controlling the incoming workload, preventing abrupt
and unpredictable degradations and achieving isolation among ser-
vices, providing service guarantees to critical applications [1]. The
Capacity Sharing and Stealing (CSS) scheduler [15] extends the

resource reservation approach by proposing to handle overloads
with additional capacity that is available from two sources: (i) by
reclaiming unused allocated capacity when jobs complete in less
than their budgeted execution time; and (ii) by stealing allocated
capacities to non-isolated servers used to schedule sporadic best-
effort jobs. The integration of the CSS scheduler into the Cooper-
atES framework is discussed in detail in [12].

3. Supporting QoS adaptation and stability

We consider the users’ influence on the stability of service pro-
visioning to be essential in the dynamic QoS arbitration among
competing services [13]. While some users or applications may
prefer to always get the best possible instantaneous QoS, indepen-
dently of the reconfiguration rate of their requested services, others
may find that frequent QoS reconfigurations are undesirable. This
suggests that while the system may not be able to avoid to down-
grade the currently provided QoS level of some service in order
to accommodate new services with a higher utility in a resource
constrained environment, upgrades to a higher QoS level can and
should be controlled by each user’s stability requirements.

Possible attributes for such QoS stability dimension can be a
minimum granted stability period ∆min and a minimum incre-
ment in the service’s reward Umin in order to upgrade the current
service’s QoS level. These can be interpreted as “do not change
to a better service’s quality state unless this gives me at least a re-
ward’s increment of Umin over a ∆min period”. The flexibility
and expressiveness of the QoS scheme proposed in [11] allows the
user’s stability preferences and their relative order of importance
to be expressed as any other QoS dimension [11].

These stability constraints will rule the possible service up-
grades. The system starts by computing the possible SLA up-
grades (see Section 5 for details) and forecasting the granted sta-
bility period (Section 3.1) for an entire service Si. If the user’s sta-
bility preferences are met, the current service’s QoS is upgraded
to the new determined level. Otherwise, the service is kept in its
current QoS level and the pre-reserved resource amounts become
immediately available for subsequent QoS negotiations.

3.1 Promised stability periods

From the service provider’s side, each proposed SLA should
now be complemented with a stability period ∆t, indicating that
during that specific time interval the promised QoS level for a work
unit wij of service Si will be assured either on the arrival and
departure of other services.

Note that service stability could be achieved by using a fixed,
large enough value for ∆t, but this would then result in lack of
responsiveness in adaptability to environmental changes. Further-
more, fixed values only make sense when there is some knowledge
about the tasks’ traffic model, which is not the case in open real-
time systems. Proposed stability periods should then be periodi-
cally updated in response to variations in the tasks’ traffic flow and
correspondent resource usage, efficiently adapting the system’s be-
haviour to the observed environmental changes.

Time series analysis comprises methods that attempt to under-



stand a sequence of data points, typically measured at successive
times, spaced at (often uniform) time intervals to make forecasts.
The simple exponential smoothing (SES) model [4] has become
very popular as a forecasting method for a wide variety of time
series data as it is both robust and easy to apply. In fact, em-
pirical research by Makridakis et al. [9] has shown SES to be
the best choice for one-period-ahead forecasting, from among 24
other time series methods and using a variety of accuracy mea-
sures. Thus, regardless of the theoretical model for the process
underlying the observed time series, simple exponential smooth-
ing will often produce quite accurate forecasts.

Intuitively, past data should be discounted in a more gradual
fashion, putting relatively more weight on the most recent obser-
vations. SES accomplishes exactly such weighting, with exponen-
tially smaller weights being assigned to older observations. We
use the SES model to forecast the length of the next stability pe-
riod for a service Si by combining the forecasts for each of the
system’s resources ri it uses.

Equation 1 is used recursively to update (forecast) the smoothed
series as new observations are recorded for each resource ri. The
observed minimum stability period for resource ri during the pe-
riod of observation t is denoted by xt and ∆ri

t may be regarded as
the best estimate of what the next value of x will be.

∆ri
t = αxt + (1− α)∆ri

t−1 (1)

Each new forecast is then based on the previous forecast plus
a percentage of the difference between that forecast and the actual
value of xt at that point. The percentage 0 ≤ α ≤ 1 is known as
the smoothing factor. Values of α close to 1 have less of a smooth-
ing effect and give a greater weight to recent changes in the data,
while values of α closer to 0 have a greater smoothing effect and
are less responsive to recent changes. α can then be adjusted by
the system’s designer to create a more reactive or conservative re-
sponse to recent changes in the tasks’ traffic flow. Alternatively, a
statistical technique may be used to optimise the value of α, min-
imising the difference between the predicted and observed values.
For example, the method of least squares may be used to deter-
mine α’s value for which the sum of the quantities (∆ri

t−1 − xt)
2

is minimised [4].

Having the stability forecasts for each of the system’s resources,
the promised stability period for a work unit of a particular service
Si must be based on a coherent summary of the forecasts for each
of the resources it uses. Any use of an arithmetic summarisation
function that combines the values (such as a mean), will provide an
incorrect stability period due to relative scaling. On the other hand,
combination of several dynamical variables using logical operators
has already been proposed to provide more expressive policies for
SLAs [17].

Equation 2 determines the promised stability period for service
Si by aggregating the forecasted values for each of the resources
ri it uses through the fuzzy AND operator (the min function). It
allows a quick and simple evaluation of stability periods for each
locally accepted service and leads to a correct system behaviour.

∆t = min(∆r1 AND ∆r2 AND . . . AND ∆rn) (2)

Having forecasted a stability period ∆t, the system ensures that
during the forecasted period no change occurs in the promised QoS
level for service Si. Nevertheless, services whose stability period
has already expired can be downgraded to a lower quality level
to accommodate new services with a higher utility or can be up-
graded when the needed resources become available. These issues
will be discussed in detail in the next sections.

4. Formulating an initial SLA

Requests for a cooperative service execution may arrive at any
time. To guarantee the local execution of a work unit wij of the
new requesting service Si, each node executes a local QoS opti-
misation that aims to maximise the provided QoS level for the ar-
riving work unit, while minimising the impact on the current QoS
of the previously accepted services.

Each service request has associated a set of user-imposed QoS
preferences Qi, expressed in decreasing preference order. Each
Qi

kj = {Qi
kj [0], . . . , Qi

kj [n − 1]} is a finite set of n quality
choices for the jth attribute of the kth QoS dimension associated
with service Si.

Services share resources and their execution behaviour and in-
put/output qualities are interdependent, i.e., a constraint on one
quality or resource parameter can constrain other system’s param-
eters. This means that the negotiation process must ensure that a
source task provides a QoS which is acceptable to all consumer
tasks and lies within the QoS range supported by the source task.
As such, the system may have to adapt the quality of individual
services according to some inter-service QoS dependencies when
searching for the best overall service utility. The increased com-
plexity of such negotiation makes it beneficial to propose an any-
time approach that can trade the achieved solution’s quality by its
computational cost to ensure a timely answer to events.

Based on the new service’s data flow graph Gi and on its set of
inter-dependency relations Depsi, the proposed anytime QoS op-
timisation algorithm (Algorithm 1) tracks QoS dependencies and
propagates the performed changes in one attribute to all local af-
fected attributes at each iteration. If, by following the chain of
dependencies, the algorithm finds a task that is already in its list
of resolved dependencies, a deadlock is detected and the service
proposal formulation is aborted.

In order to be useful in practice, an anytime approach must try
to quickly find a sufficiently good initial proposal and gradually
improve it if time permits, conducting the search for a better fea-
sible solution in a way that maximises the expected improvement
in the solution’s quality [22]. As such, the proposed QoS opti-
misation algorithm starts by keeping the QoS levels of previously
accepted services and selects the lowest requested QoS level for
the new tasks in wij that complies with any eventual QoS depen-
dency with currently executing tasks. Note that this is the service
configuration with the highest probability of being feasible with-
out degrading the current level of service of previously accepted



tasks.

Algorithm 1 Formulate an initial SLA
Let τp be the set of previously accepted tasks
Let τe be the set of tasks whose stability period ∆t has expired
Let τ∗ = τp ∪ wij be the new set of tasks

Step 1: Improve the QoS level of each task τa ∈ wij

Select Qkj [n], the lowest requested level of service for all k
QoS dimensions, considering the dependencies with the previ-
ously accepted tasks τp, for all newly arrived tasks τa in wij

Keep the current QoS level of previously accepted tasks τp

while the new set of local tasks τ∗ is feasible do
for each task τa ∈ wij do

for each attribute without dependencies with τp receiving
service at Qkj [m] > Qkj [0] do

Upgrade attribute to the next possible value Qkj [m−1]
Follow attribute’s dependencies in wij and change val-
ues accordingly
Determine the utility increase of this upgrade

end for
end for
Find task τmax whose reward’s increase is maximum and per-
form upgrade

end while

Step 2: Find the local minimal service degradation in τ∗ to
accommodate each τa ∈ wij

while the new set of local tasks τ∗ is not feasible do
for each task τi ∈ τe ∪ wij receiving service at Qkj [m] >
Qkj [n] do

for all QoS attributes do
Degrade attribute j to the previous possible value
Qkj [m + 1]
Follow dependencies of attribute j in all local tasks τ∗

and change values accordingly
Determine the utility decrease of this downgrade

end for
end for
Find task τmin whose reward’s decrease is minimum and per-
form downgrade

end while
return new local QoS optimisation

After quickly determining this initial service solution, the search
of a better solution is guided, at each iteration, by the maximisation
of the new service’s QoS level and by the minimisation of the QoS
degradation of the previously accepted services. When wij can
be accommodated without degrading the QoS of the previously
accepted tasks, the configuration that maximises the reward’s in-
crease for wij is selected (Step 1). On the other hand, when QoS
degradation is needed to accommodate wij , the algorithm incre-
mentally finds the minimal service degradation for the previously
accepted services until a feasible solution is found.

At each iteration, the quality of the proposed solution can be
measured by considering the reward achieved by the new arriving
work unit rwij , the impact on the provided QoS of the n previously
accepted work units rτp and the value of the previous generated
feasible configuration Q′conf (Equation 3). Initially, Q′conf is set

to zero and its value is only updated if the iteration’s solution is
feasible.

Qconf =

0
BBBB@

rwij ∗

nX
i=0

rτp

n

1
CCCCA

(1−Q′conf )

(3)

Rewards are computed by considering the proximity of each
SLA with respect to the weighted user’s QoS preferences expressed
in decreasing relative order using Equation 4.

reward(Si) = 1−
∀Qjk<QbestjX

j=0

βj ∗ penaltyj (4)

The 0 ≤ penalty ≤ 1 parameter can be fine tuned by the sys-
tem’s administrator and its value should increase with the distance
to the user’s preferred value for a particular quality attribute. The
expressed relative order of preference determines the weight β of
each dimension, encoding user’s preferences in a qualitative way.

The algorithm can be interrupted at any time as a consequence
of the dynamic nature of the environment [15, 16], or finishes
when it finds a feasible set of QoS configurations whose quality
cannot be further improved, or when it finds that even if all the
tasks would be served at the lowest admissible QoS level it is not
possible to accommodate the new requesting tasks in wij . In this
later case, the service request is rejected and the previously ac-
cepted tasks continue to be served at their current QoS levels.

The proposed anytime QoS optimisation algorithm always im-
proves or maintains the current solution’s quality as it has more
time to run. This is done by keeping the best feasible solution
found so far, if the result of each iteration is not always propos-
ing a feasible service configuration for the new task set. However,
each intermediate configuration, even if not feasible, is used to
calculate the next solution, minimising the search effort.

The next simple example denotes this behaviour. Admit that
the algorithm runs to completion or it is interrupted after its fifth
iteration (Table 1). With this set of iterations, the algorithm would
return the solution found at the fifth iteration rather than the second
one, since it is the one with the greatest quality for the new service
under negotiation. The second solution would only be returned as
the best feasible solution if the algorithm was interrupted before it
was able to complete its fifth iteration.

Nevertheless, at the end of the QoS optimisation process, a
measure of the node’s global reward can be computed by com-
bining the rewards of the n computed SLAs (Equation 5).



Iteration Qconf Feasible?
1st (0.1 ∗ 0.8)(1−0) = 0.08 yes
2nd (0.2 ∗ 0.8)(1−0.08) = 0.185 yes
3rd (0.3 ∗ 0.8)(1−0.185) = 0.313 no
4th (0.3 ∗ 0.75)(1−0.185) = 0.297 no
5th (0.3 ∗ 0.7)(1−0.185) = 0.280 yes

Table 1. Iteratively QoS optimisation

R =

nX
i=1

reward(Si)

n
(5)

Note that unless all services are executed at their highest re-
quested QoS level, there is a difference between the current node’s
global reward Rcurrent and the maximum theoretical global re-
ward Rmax. This difference can be caused by either resource lim-
itations, which is unavoidable, or poor load balancing. The later
can be improved by using these global rewards in the nodes’ se-
lection for the new cooperative coalition [11]. Selecting the node
with a higher global reward for service proposals with a similar
QoS level, not only maximises a particular user’s satisfaction with
the provided service, but also maximises the global system’s util-
ity, since a higher local reward clearly indicates that the node’s
previous set of tasks had to suffer less QoS degradation in order to
accommodate the new tasks in wij .

4.1 Properties

Not every algorithm that can produce a sequence of approxi-
mate results is a well behaved anytime algorithm [22]. The confor-
mity of the proposed anytime service proposal formulation algo-
rithm with the desired properties of anytime algorithms is checked
in the next paragraphs.

PROPERTY 4.1.1 (MEASURABLE QUALITY). The solution’s
quality can be determined precisely

Proof: Equation 3 determines the quality of the proposed set of
SLAs by considering the proximity of the service proposals with
respect to the user’s request under negotiation and the impact of
that proximity on the utility of previously accepted services.

¤

PROPERTY 4.1.2 (RECOGNISABLE QUALITY). The solution’s
quality can be easily determined at run time

Proof: The utility of a feasible set of SLAs is determined using
the rewards achieved by the selected service configurations. With
Equation 4, computing the reward achieved by each SLA is strait
forward and time-bounded.

¤

PROPERTY 4.1.3 (MONOTONICITY). The solution’s quality
is a nondecreasing function of time

Proof: The algorithm’s first solution proposes a SLA for the
new service with the minimum requested QoS level. Admit that
this is a feasible initial solution and let σ1 be its quality.

With spare resources (Step 1), the solution’s quality is incre-
mentally increased as the new service’s reward increases, since
the current QoS level of the previously accepted services is not
changed. As such, at each iteration, the new feasible solution’s
quality σnew is always greater than σ1.

If, by increasing the new service’s QoS level, an unfeasible set
of SLAs is found, the incremental search of a better feasible solu-
tion σnext is guided by the minimisation of the service degradation
of the previously accepted services (Step 2). Let σu be the quality
of an unfeasible set of SLAs.

Since a set of SLAs can only be considered useful within a
feasible set of tasks, the algorithm always returns the best found
feasible solution σnew, rather than the last determined solution σu,
if interrupted before computing σnext.

According to Zilberstein [22], this characteristic in addition to
a recognisable quality is sufficient to prove the monotonicity of an
anytime algorithm.

¤

PROPERTY 4.1.4 (CONSISTENCY). For a given amount of
computation time on a given input, the quality of the generated
service configuration is always the same

Proof: For a given amount of computation time ∆t on a given
input of a set of QoS constraints Q associated with a set of tasks
τ , the quality of the determined set of SLAs is always the same,
since the selection of services’ attributes to improve or degrade is
deterministic.

At each iteration, the QoS attribute to be upgraded is the one
that maximises the reward’s increase for the new arrived service,
while the QoS attribute to be downgraded is the one that minimises
the decrease in the rewards of the previously accepted tasks. As
such, the algorithm guarantees a deterministic output quality for a
given amount of time and input.

¤

PROPERTY 4.1.5 (DIMINISHING RETURNS). The improvement
in the quality of the generated set of SLAs is larger at the early
stages of the computation and it diminishes over time



Proof: From the measurable quality property, we know that
Equation 3 determines the quality of the proposed set of SLAs by
considering the proximity of the service proposals with respect to
the new user’s request under negotiation and the impact of that
proximity on the utility of previously accepted services.

When searching for a better feasible solution, the algorithm
always improves the current solution’s quality by upgrading the
attribute that results in the greatest reward increase for the new
service of by downgrading the attribute that minimises the global
reward’s decrease. As such, the improvement in the solution’s
quality is larger at the first iterations and this improvement’s in-
crease diminishes over time.

¤

PROPERTY 4.1.6 (INTERRUPTIBILITY). The algorithm can
be stopped at any time and still provide a solution

Proof: Let t′ be the time needed to generate the first feasible
solution. In interrupted at any time t < t′ the algorithm will return
an empty service configuration for the new service, resulting in
zero quality.

When stopped at time t > t′ the algorithm returns the best
feasible set of SLAs generated until time t. Note that this may not
be the last generated set of SLAs.

¤

PROPERTY 4.1.7 (PREEMPTIBILITY). The algorithm can be
suspended and resumed with minimal overhead

Proof: Since the algorithm keeps the best generated feasible
solution found until time t and the current set of SLAs, it can be
easily resumed after an interrupt.

¤

5. Reconfiguring SLAs

As detailed in the previous section, the arrival of new services
with higher utility may result in a QoS downgrade of previously
accepted services. Since the goal is to maximise the provided QoS
level for each of the existing services, it makes sense to reconfigure
previously downgraded SLAs when the needed resources become
once again available.

However, our basic viewpoint is that service stability can be
more important for some users than some momentary maximum
quality that does not take into consideration the services’ recon-
figuration rate. Although the framework ensures a fixed quality
level during a dynamically determined period of time, an upgrade
of the current quality level should be done according to each user’s
stability preferences.

Let Lt be the desired system’s resource usage threshold to ac-
tivate the dynamic QoS reconfiguration of previously degraded
tasks whose stability period ∆t has already expired. Let L be
the current level of the system’s load demanded by the n offered
SLAs. Intuitively, L < Lt indicates an underutilisation and the
dynamic QoS reconfiguration will take place.

Possible QoS upgrades of previously downgraded SLAs are de-
termined by Algorithm 2, which are then compared against the
users’ stability constraints. The anytime QoS reconfiguration al-
gorithm tries to restore the initially provided SLAs by selecting,
at each iteration, the new configuration that achieves the greatest
reward increase.

Algorithm 2 Determine possible upgrades

Let τd be the set of previously downgraded tasks whose ∆t has
expired
Let τo be the set of all other tasks
Let Qkj [init] be the initial quality level for attribute j of the
kth QoS dimension for task τi ∈ τd

Keep the current QoS level for all tasks in τo

while the new set of configurations is feasible do
for each task τi ∈ τd do

for each attribute without dependencies with τo receiving
service at Qkj [m] > Qkj [init] do

Upgrade attribute to the next possible value m− 1
Follow attribute’s dependencies and change values ac-
cordingly
Determine the utility increase of this upgrade

end for
end for
Find task τmax whose reward’s increase is maximum and per-
form upgrade

end while

The achieved solution’s quality at each iteration is measured
by Equation 6, considering the rewards achieved by the new SLAs
for the previously downgraded tasks rτd and the value of the pre-
vious generated feasible configuration Q′conf . Initially, Q′conf is
set to zero and its value is only updated if the achieved solution is
feasible.

Qconf =

0
BBBB@

nX
i=0

rτd

n

1
CCCCA

(1−Q′conf )

(6)

The algorithm can be interrupted at any time or finishes when
it finds a feasible set of QoS configurations whose quality cannot
be further improved due to resource limitations or all the initially
granted SLAs are reached. A careful analysis of Algorithm 2 and
Equation 6 allows us to conclude that the same desirable properties
of anytime algorithms, checked for Algorithm 1 in Section 4.1, can
be deduced for this dynamic QoS reconfiguration algorithm.

If Algorithm 2 produces a new set of upgraded SLAs, an actual
upgrade of each of the currently provided SLAs only occurs if the



user’s stability requirements, namely a minimum granted stabil-
ity period ∆min and a minimum increment in the SLA’s reward
Umin, are met. Clearly, as these constraints are stringent, it is
harder to upgrade to better quality levels.

6. Analysis and Evaluation

The behaviour of the proposed anytime local QoS optimisa-
tion and adaptation algorithms in dynamic open real-time scenar-
ios was evaluated through extensive simulations, with a special
attention being devoted to introduce a high variability in the char-
acteristics of the conducted simulations.

An application that captures, compresses and transmits frames
of real-time data to end users, which may use a diversity of end
devices and have different sets of QoS preferences, was used as a
scenario for the simulations. The application was composed by a
set of source units to collect the data, a compression unit to gather
and compress the data that came from the multiple sources, a trans-
mission unit to transmit the data over the network, a decompres-
sion unit to convert the data into each user’s specified format, and
an user unit to display the data in the user’s end device.

The number of simultaneous nodes in the system varied from
10 to 100 while the number of simultaneous users varied from 1 to
20, generating different amounts of load and resource availability
in the system. Each node was running a prototype implementation
of the CooperatES framework, with a fixed set of mappings be-
tween requested QoS levels and resource requirements. The code
bases needed to execute each of the streaming application’s units
was loaded a priori in all the nodes.

The characteristics of end devices and their more powerful neigh-
bour nodes was randomly generated, creating a distributed hetero-
geneous environment. This non-equal partition of resources af-
fected the ability of some nodes to singly execute some of the
application’s units and has driven nodes to a cooperative service
execution.

Requested QoS levels were randomly generated, at randomly
selected end devices and at randomly generated times, express-
ing the spectrum of acceptable QoS levels in a qualitative way,
ranging from a randomly generated desired QoS level to a ran-
domly generated maximum tolerable service degradation. The rel-
ative decreasing order of importance imposed in dimensions, at-
tributes and values was also randomly generated. Similarly, inter-
dependency QoS relations among tasks were randomly generated
for each service.

The QoS domain used to generate the users’ service requests
was composed by the following list of QoS dimensions, attributes,
and possible values:

QoS dimensions: {Container,Video,Audio}
Container: {format}
Video: {colour depth,frame size,frame rate}
Audio: {sampling rate,sample bits}
format: {3GP,ASF,AVI,QuickTime,RealVideo,WMV}
colour depth: {1,3,8,16,24}

frame size: {240x180,320x240,640x480,720x480,
1024x768, 1280x1024}

frame rate: {[1,30]}
sampling rate: {8,11,32,44,88}
sample bits: {4,8,16,24}

The reported results were observed from multiple and indepen-
dent simulation runs, with initial conditions and parameters, but
different seeds for the random values used to drive the simulations,
obtaining independent and identically distributed variables, with a
reasonably good statistical performance [8]. The random values
were generated by the Mersenne Twister algorithm [10].

6.1 Performance profiles

Anytime algorithms correlate the output’s quality with time in
a performance profile [22], a function that maps the time given
to an anytime algorithm (and in some cases also input quality) to
the quality of the algorithm’s produced solution. Since there are
many possible factors affecting the execution time of an algorithm,
rather than measuring the algorithms’ absolute execution time on
every simulation run, we have normalised it with respect to its
completion time [21]. As such, in the next figures the algorithms’
computation times are represented as a percentage of their respec-
tive completion times. Nevertheless, both algorithms needed an
average time lower than 1 second to compute their optimal solu-
tions on a Intel Core Duo T5500 at 1.66 G Hz.

A first study evaluated the behaviour of the anytime QoS op-
timisation algorithm, executed on the arrival of a new service re-
quest, by measuring its performance profile as well as the impact
generated by the arrival of a new service on the QoS level of pre-
viously accepted tasks. Recall from Section 4 that the reward of
a specific proposal measures how useful it will be for a particular
user and that the local reward expresses a degree of global satisfac-
tion for all the users that have tasks being executed at a particular
node.

The results were plotted by averaging the results over several
independent runs of the simulation, divided in two categories. Fig-
ure 1 presents the scenario where the average amount of available
resources per node is greater than the average amount of resources
demanded by the services being executed. The opposite scenario is
represented in Figure 2, where the average amount of resources per
node is smaller than the average amount of demanded resources.

In Figure 1, the increase in the solution’s quality Qconf results
from the increase in the new task’s reward (Step 1 of the algo-
rithm). Recall that with spare resources the QoS levels of previ-
ously accepted tasks remains the same. As such, this increase in
the new service’s reward also increases the node’s local reward,
that was affected by the initially proposed solution of serving the
new arrived service at the minimum requested QoS level. How-
ever, due to resource limitations (Figure 2), when trying to upgrade
the reward achieved by the new service, the generated configura-
tion may result in an unfeasible set of SLAs. The Step 2 of service
formulation algorithm is then executed in order to try to find a new
feasible solution that presents a higher satisfaction for the service
request under negotiation.



Figure 1. Initial SLA with spare resources

Figure 2. Initial SLA with limited resources

Note that, in both scenarios, the proposed algorithm optimise
the rate at which the quality of the current solution improves over
time. With spare resources (Figure 1), at only 20% of the com-
putation time, the solution’s quality for the new arrived task is
near 74% of the achieved quality at completion time. When QoS
degradation is needed to accommodate the new task (Figure 2), its
service proposal achieves 85% of its final quality at 20% of com-
putation time.

Also note that, the solution’s quality, identified by Qconf in
both figures, quickly approaches its maximum value at an early
stage of the computation. The diminishing returns property was
then empirically verified, after is formal analysis in Section 4.1.
The same is true for the monotonicity property, since the best fea-
sible configuration is only replaced if, and only if, another feasible
solution is found and has a higher quality for the user’s request
under negotiation (Figure 2).

Another study evaluated the behaviour of the anytime QoS adap-
tation algorithm. During the conducted simulations, when a sys-
tem’s utilisation below 60% was detected, an upgrade of the cur-
rently provided SLAs whose stability period had already expired
was done. Promised stability periods were determined by taking
into consideration the observed variations in the tasks’ traffic flow
and correspondent resource usage, adapting the system to the ob-

served environmental changes. The value of the smoothing factor
α was optimised using the method of least squares. The average
solution’s quality increase was measured and the results are plotted
in Figure 3. Similar conclusions regarding the desirable properties
of anytime algorithms can be taken with respect to the proposed
QoS adaptation algorithm.

Figure 3. Dynamic QoS reconfiguration

Both studies clearly demonstrate that the proposed anytime al-
gorithms can be useful even when there is no time to compute an
optimal local resource allocation. The solution’s quality can be
improved if the algorithms have more time to run, but it rapidly
approaches its final value at an early stage of the needed computa-
tion time.

6.2 Adaptation behaviour

A third study evaluated the users’ influence on the services’
adaptation behaviour. Three permanent service requests were added
to the dynamic traffic that was randomly generated at each simu-
lation run. The same randomly generated spectrum of acceptable
QoS values, in the same decreasing preference order, was used in
the three requests. The requests only differed on the users’ QoS
stability constraints for the minimum utility increase and stabil-
ity period, User1 = {0, 0s}, User2 = {0.2, 10s}, User3 =
{0.3, 30s}, respectively.

Figure 4. QoS reconfiguration rate



The influence of personal constraints on the system’s adapta-
tion behaviour is clearly observable in Figure 4. As the user’s
constraints for a service upgrade are harder to achieve there is less
probability to change and stay in a better quality level. These re-
sults clearly demonstrate that the users’ influence can be extended
to the services’ adaptation behaviour.

6.3 Overhead

A fourth study compared the computational cost of the pro-
posed anytime approach when compared against the traditional
version of the algorithms to reach their optimal solutions. The
results obtained by the local QoS optimisation are reported in the
next paragraphs. Similar results were obtained for the proposed
QoS adaptation mechanism.

The traditional version of a local QoS optimisation approach
proposed in [11] was extended to resolve any QoS dependencies
present in its optimal solution and used in this comparison. The
algorithm starts by selecting the user’s preferred QoS level for the
new service and stops when it finds a feasible solution that min-
imises the impact on the provided global level of service caused
by the new service’s arrival. The comparison’s results were nor-
malised with respect to the completion time of the longest solution
and plotted in Figures 5 and 6.

Figure 5. Needed time with spare resources

Figure 6. Needed time with limited resources

Both figures show that the anytime version can take more time
to achieve the same optimal solution in both scenarios. Two main
reasons explain this difference. First, the anytime version resolves
QoS dependencies at each iteration. Recall that the goal is to be
able to interrupt the algorithm at any time and still be able to re-
turn a valid solution. Without any restriction on the needed time
to compute its optimal solution, the traditional version only has
to resolve any eventual dependencies after finding the best con-
figuration for the individual tasks. Dependencies were resolved
by relaxing the optimal values of some of the individual tasks to
the maximum allowed value, according to the constraints of the
inter-dependency relations. Second, the different approaches used
to achieve an optimal solution can have an impact on the number
of needed iterations, particularly with spare resources. Since the
anytime version tries to quickly find a feasible solution, it starts
by considering the worst requested QoS values for the new ser-
vice and iteratively improves that solution until the optimal one
is found. On the other hand, the traditional version starts by try-
ing to provide the best requested level of service for the new tasks
and iteratively degrades all tasks, stopping when it finds a feasible,
optimal solution.

Nevertheless, in both scenarios the anytime version is by far
quicker to find a feasible solution. With spare resources, the first
feasible solution with a quality near 10% of its optimal value is
almost immediately found, and at near 20% of the running session
the solution’s quality is already around 50% of its optimal value.
With limited resources, the anytime version takes about 20% of
its computation time to reach a feasible solution with 20% of its
optimal solution’s quality, and at near 40% of the running session it
achieves 50% of its optimal value. These results, in addition to the
performance profiles plotted in Figures 1 and 2, further validate the
ability of the proposed anytime algorithm to quickly find a feasible
solution and maximise the improvement in the expected solution’s
quality at each iteration.

7. Conclusions

Adaptive real-time is a relatively new approach to embedded
systems design that allows an online reaction to load variations,
adapting the system to the specific constraints of devices and users,
nature of executing tasks and dynamically changing environmen-
tal conditions. This ability is essential to efficiently manage the
provided Quality of Service (QoS) in domains such as telecom-
munication, consumer electronics, industrial automation, and au-
tomotive systems. However, due to the growing complexity and
dynamism of these systems, it is increasingly difficult to determine
an optimal resource allocation within an useful time.

This paper proposes anytime QoS optimisation and adaptation
algorithms that can trade off the needed computation time by the
achieved solution’s quality. Both algorithms are able to quickly
find a sub-optimal solution at an early stage of the computation,
which are then iteratively refined as the algorithms are given more
time to run. Such flexibility allows a higher adaptation to the dy-
namically changing conditions of open real-time embedded sys-
tems and, as the achieved results demonstrate, can be obtained
with an overhead that can be considered negligible when compared
against the introduced benefits.



Particular attention was devoted to maximise each user’s influ-
ence on the services’ adaptation behaviour during execution. Up-
grades of provided QoS levels are done by comparing each user’s
stability requirements against the system’s dynamically forecasted
stability periods and possible utility increments. Promised stabil-
ity periods are periodically updated in response to fluctuations in
the tasks’ traffic flow, relating observations of past and present en-
vironmental conditions. The achieved results clearly demonstrate
that such influence can be achieved.

Acknowledgements

The authors would like to thank the anonymous referees for
their helpful comments. This work was supported by FCT (CIS-
TER Research Unit - FCT UI 608 and CooperatES project - PTDC/
EIA/ 71624/ 2006), and by the European Commission through the
ArtistDesign NoE (IST-FP7-214373).

8. References
[1] L. Abeni and G. Buttazzo. Integrating multimedia

applications in hard real-time systems. In Proceedings of the
19th IEEE RTSS, page 4, Madrid, Spain, December 1998.

[2] R. Bhattacharya and G. J. Balas. Anytime control algorithm:
Model reduction approach. Journal of Guidance, Control,
and Dynamics, 27(5):767–776, October 2004.

[3] S. A. Brandt and G. J. Nutt. Flexible soft real-time
processing in middleware. Real-Time Systems,
22(1):77–118, 2002.

[4] R. G. Brown. Smoothing, forecasting and prediction of
discrete time series. Prentice-Hall, Englewood Cliffs, NJ,
1963.

[5] M. Burgess. On the theory of system administration.
Science of Computer Programming, 49:1, 2003.

[6] S. Ghosh, R. R. Rajkumar, J. Hansen, and J. Lehoczky.
Integrated resource management and scheduling with
multi-resource constraints. In Proceedings of the 25th IEEE
Real-Time Systems Symposium, pages 12–22, Lisbon,
Portugal, December 2004.

[7] N. Hawes. Anytime Deliberation for Computer Game
Agents. PhD thesis, School of Computer Science, The
University of Birmingham, November 2003.

[8] A. M. Law and W. D. Kelton. Simulation modeling and
analysis. McGraw-Hill, 3rd edition, 2000.

[9] S. Makridakis, A. Andersen, R. Carbone, R. Fildes,
M. Hibon, R. Lewandowski, J. Newton, E. Parzen, and
R. Winkler. The accuracy of extrapolation (time series)
methods: Results of a forecasting competition. Journal of
Forecasting, 1:111–153, 1982.

[10] M. Matsumoto and T. Nishimura. Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random
number generator. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 8(1):3–30, 1998.

[11] L. Nogueira and L. M. Pinho. Dynamic qos-aware coalition
formation. In Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium, page 135,
Denver, Colorado, April 2005.

[12] L. Nogueira and L. M. Pinho. Building adaptable, qos-aware
dependable embedded systems. In Proceedings of the 3rd

International Workshop on Dependable Embedded Systems,
pages 72–77, Leeds, United Kingdom, October 2006.

[13] L. Nogueira and L. M. Pinho. Dynamic adaptation of
stability periods for service level agreements. In
Proceedings of the 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and
Applications, pages 77–81, Sydney, Australia, August 2006.

[14] L. Nogueira and L. M. Pinho. Iterative refinement approach
for qos-aware service configuration. IFIP From
Model-Driven Design to Resource Management for
Distributed Embedded Systems, 225:155–164, 2006.

[15] L. Nogueira and L. M. Pinho. Capacity sharing and stealing
in dynamic server-based real-time systems. In Proceedings
of the 21th IEEE International Parallel and Distributed
Processing Symposium, page 153, Long Beach,CA,USA,
March 2007.

[16] L. Nogueira and L. M. Pinho. Shared resources and
precedence constraints with capacity sharing and stealing.
In Proceedings of the 22th IEEE International Parallel and
Distributed Processing Symposium, page 97,
Miami,Florida,USA, April 2008.

[17] G. Rodosek. Quality aspects in it service management. In
Proceedings of the 13th IFIP/IEEE Internation Workshop
on Distributed Systems: Operations and Management,
pages 82–93, Montereal, Canada, October 2002.

[18] J. Shackleton, D. Cofer, and S. Cooper. Anytime scheduling
for real-time embedded control applications. In Proceedings
of the 23rd Digital Avionics Systems Conference, volume 2,
pages 101–110, Salt Lake City, UT, USA, October 2004.

[19] J. van den Berg, D. Ferguson, and J. Kuffner. Anytime path
planning and replanning in dynamic environments. In
Proceedings of the IEEE International Conference on
Robotics and Automation, pages 2366– 2371, Orlando,
Florida, USA, May 2006.

[20] C. Wang and Z. Li. Parametric analysis for adaptive
computation offloading. In Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language
Design and Implementation, pages 119–130. ACM Press,
2004.

[21] S. Zilberstein. Operational Rationality Through
Compilation of Anytime Algorithms. PhD thesis,
Department of Computer Science, University of California
at Berkeley, 1993.

[22] S. Zilberstein. Using anytime algorithms in intelligent
systems. Artificial Inteligence Magazine, 17(3):73–83,
1996.




