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ABSTRACT

Synchronized clocks are usually considered as a prerequisite
for many distributed applications. Existing solutions mainly
deal with this problem in static environments with well de-
fined characteristics and limits. The needs of an emergent
class of large-scale peer-to-peer applications that have to
operate without any assumptions on the surrounding envi-
ronment have recently revitalized this research area with the
proposals of new solutions characterized by self-organization
capabilities and strong adaptability to dynamic settings.

This paper reports about the properties of a clock syn-
chronization algorithm for large scale applications. The al-
gorithm implements an internal clock synchronization mech-
anism which combines the gossip-based paradigm with a
nature-inspired approach coming from the coupled oscilla-
tors phenomenon. Using a theoretical approach, the paper
focuses on the convergence properties of the algorithm, char-
acterizing its synchronization speed (decay factor) the final
synchronization point and error.
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D.2.8 [Software Engineering]: Metrics—performance mea-
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1. INTRODUCTION
Clock synchronization is a fundamental building block for

many distributed applications. As such, the topic has been
widely studied for many years, and several algorithms exist
which address different scales, ranging from local area net-
works (LAN), to wide area networks (WAN). However there
exists an emergent class of applications and services, oper-
ating in very challenging settings, for which the problem of
synchronizing clocks has been attacked only recently [2, 12].
These applications have to operate without any assumption
on deployed functionalities, pre-existing infrastructure, or
centralized control, while being able to tolerate network dy-
namism, due to crashes or to node joining or leaving the sys-
tem, and scaling from few hundred to tens of thousands of
nodes. These new algorithms are built with self-organization
capabilities and strong adaptability in order to support the
adverse settings they are supposed to work on.

A common way to resolve the clock synchronization prob-
lem in absence of deployed functionalities such as external
time sources is recurring to convergence function-based tech-
niques. These techniques are based on two steps in which
a node 1) estimates through a message exchange the clock
value of other nodes obtaining a so-called clock estimate of
other nodes; 2) uses a convergence function, which takes as
argument a set of clock estimates and returns a single clock
value, to adjust its local clock. A convergence function com-
pute some kind of averaging on clock estimates and usually
some of them are designed to tolerate erroneous clock esti-
mates or faulty values. Consequently computing a mean is
often a basing building block for most internal clock syn-
chronization algorithms.

A promising approach to tackle this kind of problems is to
embrace a fully decentralized paradigm in which peers im-
plement all the required functionalities, by running so called
gossip−based algorithms. In this approach, due to the large
scale and geography of the system, each peer is provided
with a neighborhood representing the part of the system it
can directly interact with. The algorithm running at each
peer computes local results by collecting information from
this neighborhood. These results are computed periodically
leading the system to gradually compute the expected global
result.

In this paper we present a theoretical analysis of the syn-
chronization properties of a mean-based convergence func-
tion in a peer-to-peer system. While previous studies [2, 12]
provide only simulation-based experimental evaluations of
the protocol properties, we started from this basing building
block of clock synchronization (i.e. a mean) in order to show
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that is possible to provide theoretical properties in terms of
mean and variance of the distribution of clocks. In partic-
ular, using a simple mean of differences between the clock
value of a node and its neighbours as convergence function,
we show two important properties: 1) convergence speed
and synchronization error, in presence of errors induced by
network perturbation, depend only from the size of the local
view of nodes and from the distribution of network errors;
2) the synchronization error, in absence of network pertur-
bation, has an lower bound that depends on the distribution
of drift of hardware clocks, on local view size and on time
interval elapsing between two synchronization round. The
results stemmed from the theoretical evaluation evaluation
have been validated through simulation-based experiments.

The rest of the paper is organized as follows: Section 2
presents the system model along with the algorithm, while in
section 2.1 is presented the algorithm used in our evaluation
and the convergence function. The theoretical evaluation is
presented in Section 3. Section 5 discusses related works,
while Section 6 concludes the paper.

2. SYSTEM MODEL
We consider a system constituted by a finite but unknown

set of uniquely identified nodes. Nodes can crash at any
time during their computation. A node that does not crash
during the entire system lifetime is considered correct.

Each node ni has a finite set of neighbors. In the fol-
lowing we refer to this set as the local view (lvi) of node
ni. Neighbors nodes communicate by exchanging messages
through point-to-point communication. Communication be-
tween correct nodes is reliable, but message transmission
delays can be unpredictable, but finite.

The local view of a node ni is based on a Peer Sampling
Service[13]. We assume the nodes belonging to the ni’s view
provided by the Peer Sampling Service, to be a uniform ran-
dom sample of the whole system population. If a node ni

crashes, the Peer Sampling Service will not include anymore
ni in any local view.

We also assume that every node is equipped with a hard-
ware clock. Depending on its quality and the operating en-
vironment, its frequency may drift. Manufacturers typically
provide a characterization for ρ – the maximum absolute
value for clock drift. Ignoring, for the time being, the res-
olution due to limited pulsing frequency of the clock, the
hardware clock can be described by:

C(t) = ft + C0;
where: (1 − ρ) ≤ f ≤ (1 + ρ).

2.1 The Mean-Based Algorithm
In the follows we present a mean-based algorithm that

uses a mean of the clock difference between a node ni and its
neighbours in order to reach a synchronization point. Fur-
thermore the clock difference will be estimated through a
Remote Clock Reading Procedure with an error ǫ which de-
pends on the mechanism used to perform the estimation. In
this paper we assume the Remote Clock Reading Procedure
is the same used in NTP [19, 20]. Under this assumption,
the real offset is such as the error is bounded by ±RTT/2,
where RTT is the round trip time but, as it is showed in
[2], the error strictly depends from channel delay. We say
ETi,j

(n) the error induced by channel between ni and nj

belonging to St at round n. At last we should note that the
value Ci is computed periodically, every ∆T .

As a result, the clock synchronization algorithm proceeds
in synchronization rounds, where a node ni performs at each
round the following steps:

1. Ask to Peer Sampling Service a random list of neigh-
bours.

2. Evaluate the difference with every neighboring clock,
using the Remote Clock Reading Procedure.

3. Compute new clock by mean of the equation

Ci(n + 1) = Ci(n) + fi∆T

+
1

Ni

Ni
X

j=1

[(Cj(n) − Ci(n)) + ETi,j
(n)]

(1)

4. Update the value of Ci.

Where ∆T is the time interval between two consecutive syn-
chronization rounds and Ni is the size of local view lvi of
ni.

3. EVALUATION
The aim of this section is to show the behaviour of the

proposed coupling algorithm when the different clocks are
connected by a random communication graph provided by
the Peer Sampling Service. In this section first we defining
three metrics and we will show that, basing on the Peer Sam-
pling Service that we assume is able to return a number n of
random nodes in system, our algorithm show some interest-
ing properties that can be described using some statistical
well-know results.

3.1 Evaluation Metrics
The metrics used to evaluate the proposed algorithm are

its synchronization error, synchronization point and decay
factor. A precise definition, for each metric, is provided
below.

Synchronization Error.
The synchronization error (SE) at time t is the standard

deviation of the various processes’ clock values at same time
t. In an ideal setting this value should converge to zero, i.e.
all clocks are perfectly synchronized on a same value.

Synchronization Point.
The synchronization point (SP ) at time t is the mean of

the processes’ clocks values at time t.

Decay Factor.
The Decay Factor is the factor by which is reduced the

synchronization error in each round, i.e. this metric measure
the convergence speed of the algorithm.

3.2 Statistical Analysis
The aim of this section is to show the statistical properties

coming from the use of views representing a random sam-
ple of the entire population of nodes. Note that Formula
1 represents the facts that at each algorithm step a node
performs a mean of Ni samples chosen uniformly at random
from the entire population. For sake of simplicity we also
assume that Ni = n, ∀i = 1...N and N is fixed.



In the following we will prove three theorems. The first
theorem formally shows that the synchronization error of the
system decays as 1/

√
n at each round in absence of errors in-

troduced by clock drifts and communication channel delays.
The second theorem discuss the contribution of clock drift
to the synchronization error with perfect clock estimates.
Finally, the third theorem formally shows that the system
will eventually show a synchronization error only introduced
by clock drifts and communication channel delays where the
error introduced by clock drifts is negligible. Moreover we
prove three lemmas that describe how varying the synchro-
nization point of the system during time in the three sce-
narios previously described(i.e. in absence of clock drift and
network perturbation, with only clock drift, in presence of
clock drift and imperfect clock estimates).

3.2.1 Analysis with no error

Let consider the behaviour of our algorithm without the
errors introduced by clock drifts and communication chan-
nels, i.e. with perfect offsets estimates. We can consider
to have all N nodes at the initial time with clock values
following an arbitrary distribution. Clock values can be
then represented by a random variable X with an associ-
ated probability density function p(X) with unknown mean
µ and an unknown variance σ2 > 0. Now, considering the
possibility for each node to take a random sample of n nodes
X1, X2, ...Xn, each node can calculate the mean of the sam-
ple m. From the well-known Central Limit Theorem (CLT )
we have that m is approximately equal to µ, while the vari-

ance of the sample, denoted as s, is such that σ2

n
= s2. So

as the sample size increases the distribution of the sample
means becomes more concentrated about the mean value µ.
Thanks to the iterative nature of the algorithm, as the num-
ber of rounds increases, also the number of sample increases
(n samples are taken at each round). This implies that at
each round the spread of computed sample means decreases,
leading to calculate at each node the value µ when the num-
ber of synchronization rounds tends to infinity. More for-
mally, we can prove the following theorem:

Theorem 1. Let p(X0) be the initial distribution of clock
values with finite variance σ2

X0 . Let us assume no clock
drifts and perfect offset estimates. Under these hypothesis,
the mean-based algorithm is able to reduce the synchroniza-
tion error SE of a factor 1

√

n
in each synchronization round

and converges to SE = 0.

Proof. By induction on the number of synchronization
rounds.

round 1: each node extracts n samples X0

1 , X0

2 , ...X0

n from
the clock values of nodes belonging to distributed sys-
tem. Each node i computes a sample mean m0

i on the
extracted values and updates its clock to that sam-
ple mean m0

i . From CLT , the whole set of computed
sample means can be represented by a new random
variable X1 with distribution p(X1) with variance:

σ2

X1 =
σ2

X0

n
, (2)

round 2: each node i extracts again n samples X1

1 , X1

2 , ...X1

n

from the new distribution X1 shown at the end of the

first round and computes the sample mean m1

i . Apply-
ing also at this round CLT, we obtain the distribution
at the end of the second round p(X2) with variance:

σ2

X2 =
σ2

X1

n
(3)

Equation 4 becomes, substituting σ2

X1 ,

σ2

X2 =
σ2

X0

n2
(4)

round i: each node still computes a sample mean of the
clock values of its neighbours, and consequently after
round i, the variance is:

σ2

Xi =
σ2

Xi−1

n
(5)

Consequently the variance of our system at round i
becomes:

σ2

Xi =
σ2

X0

ni
(6)

At each round then, the variance of the initial distri-
bution p(X0) decreases of a factor 1

n
and consequently

the standard deviation SE of a factor 1
√

n
. For a num-

ber of synchronization rounds that tends to infinity
SE = 0 and the theorem follows.

Moreover we can prove a lemma in order to describe the
behaviour of system synchronization point around which
clock value are distributed. In this case, the synchroniza-
tion point moves on a line having an unitary slope and µX

as y-intercept.

Lemma 1. Let p(X0) be the initial distribution of clock
values with finite variance σ2

X0 , mean µX0 and let ρ = 0. Un-
der these hypothesis, the mean-based algorithm with perfect
offsets estimates converges in a round i to a synchronization
point SP (i) = µX0 + i ∗ ∆T with a SE = 0 when i → ∞.

Proof. The proof follows directly from the previous the-
orem and from the application of CLT . In fact at end of
round i the mean value of the sample mean computed by
each node is described by two terms: first derives from the
CLT, in fact for CLT the mean value of a sample mean of
a population is exactly the mean of the population, and the
second from the f ∗∆T in equation 1. From hypotesis ρ = 0
so f = 1 and from our assumption the E[∆T ] = ∆T because
each clock executes next round after the same time interval
∆T . More formally

µXi = µXi−1 + ∆T (7)

Consequently the SP at a round i is determined by the
following equation:

SP (i) = µXi = µX0 + i ∗ ∆T (8)

from theorem 1 follows that SE = 0 when i → ∞.



3.2.2 Analysis with clock drifts

However, the contribution of clock drifts has to be in-
cluded. This contribution to the standard deviation of the
system does not decrease and eventually remains the only
significant contribution to the standard deviation of the sys-
tem. This can be represented by a random variable and an
associated probability density function. In the following we
will denote as p(R), σ2

R and µR the probability distribution,
the variance and the mean of clock frequencies. Using this
notation we can prove the following theorem.

Theorem 2. Let p(X0) be the initial distribution of clock
values with finite variance σ2

X0 . Let p(R) be the distribution
of clock drifts with variance σR. Under these hypothesis, the
mean-based algorithm with perfect offsets estimates is able

to converge to SE = σR∆T ∗
q

n

n−1
.

Proof. By induction on the number of synchronization
rounds.

round 1: as shown in the proof of the previous theorem,
from CLT , the whole set of sample means computed by
each node i can be represented by a new random vari-
able X1 with distribution p(X1). In this case, the vari-
ance of this distribution is constituted by two terms,
the first term follows from the application of CLT , as
the previous theorem, and the second term includes
the contribution of clock drifts. In particular the first

term is equal to
σ2

X0

n
. As for the second term, let us

note that we have to include the value f ∗ ∆T , where
the term f depends on the drift ρ. This relation makes
f a random variable described in the whole population
by the distribution p(R). Consequently, after this first
round the distribution p(X1) of clock values has a vari-
ance :

σ2

X1 = σ2

R∆T 2 +
σ2

X0

n
, (9)

Note that the first term is constituted by the frequency
variance multiplying the factor ∆T , in fact as R repre-
sents clock frequencies possibly used by different nodes,
the total variance depends also on the duration of the
round.

round 2: the sample mean computed at round 2 applying
also at this round CLT and taking into consideration
the distribution on drifts p(R), has distribution at the
end of the second round p(X2) with variance:

σ2

X2 = σ2

R∆T 2 +
σ2

X1

n
(10)

Equation 4 becomes, substituting σ2

X1 ,

σ2

X2 = σ2

R∆T 2 +
σ2

R∆T 2

n
+

σ2

X0

n2
(11)

round i: as previous round and previous proof the distri-
bution p(Xi) has variance:

σ2

Xi = σ2

R∆T 2 +
σ2

Xi−1

n
(12)

Consequently the variance of our system at round i
becomes:

σ2

Xi = σ2

R∆T 2 +
σ2

R∆T 2

n
+ · · ·+ σ2

R∆T 2

ni−1
+

σ2

X0

ni
(13)

Where the first n terms describes a geometric series
with a common ratio r = 1

n
< 1.

σ2

Xi
=

i
X

j=0

σ2

R∆T 2

nj
+

σ2

X0

ni
(14)

Consequently the variance of the whole system con-
verges to a value that depends only from σ2

R as the
synchronization rounds go to infinity, in fact after a

transitory the terms
σ2

X0

ni becomes negligible and the

geometric series converges to σ2

R∆T 2 ∗ n

n−1
. The syn-

chronization error SE consequently becomes:

SE = σR∆T ∗
r

n

n − 1
(15)

and the theorem follows.

In the following we discuss a lemma similar to the previous
one, where we can analytically describe the behaviour of the
system synchronization point in presence of clock drifts. In
presence of clock drift, the synchronization point moves on
a line having a slope equals to µR and µX as y-intercept.

Lemma 2. Let p(X0) be the initial distribution of clock
values with finite variance σ2

X0 and mean µX0 . Let p(R) be
the distribution of clock drifts with variance σR. Under these
hypothesis, the mean-based algorithm with perfect offsets
estimates is able to converge at round i to a synchronization

point SP (i) = µX0 +µR∗i∗∆T with a SE = σR∆T ∗
q

n

n−1

when i → ∞.

Proof. The proof derives from the previous theorem and
from the lemma 1. In this case considering f distributed
with a mean µR and variance σR

E[f ∗ ∆T ] = E[f ] ∗ ∆T = µR ∗ ∆T (16)

Consequently the mean at round i has two terms: the first
term follows from the application of CLT , as the previous
theorem, and the second term includes the contribution of
clock drifts.

µXi = µXi−1 + µR ∗ ∆T (17)

Finally substituting µXi−1 we obtain

SP (i) = µXi = µX0 + µR ∗ i ∗ ∆T (18)

and from theorem 2 follows that SE = σR∆T ∗
q

n

n−1
when

i → ∞.



3.2.3 Analysis with Clock Drift and Network Errors

Finally, let us introduce errors induced by imperfect off-
sets estimates, i.e. errors in remote clock reading procedure
due to unknown channel delays. Also this type of error is
a random variable with an associated probability density
function. We denote as p(E), σ2

E and µE the probability
distribution, the variance and the mean of the errors in re-
mote clock readings. Note that p(E) is strictly related to
the asymmetry of channels and it is not a normal distribu-
tion[2]. This is not a problem for our analysis because we do
not manage directly errors but only sample means of errors
and for CLT they converge to a normal distribution despite
the shape of original distribution. Thus, we can prove the
following theorem:

Theorem 3. Let p(R) and p(X0) the distribution of clock
drifts and the initial distribution of clocks, with respectively
variance σ2

R and finite variance σ2

X0 . Let p(E) the distri-
bution of errors in remote clock reading with finite variance
σ2

E . Under these hypothesis the synchronization error SE
converges to SE = σE

√

n−1
.

Proof. By induction on the number of rounds:

round 1. Each node computes a sample mean, but each
sample is now a sum of two random variables, namely
Xi and E where Xi represents the distribution of cor-
rect clock values at the beginning of round i and E
the error induced in the Remote Clock Reading Pro-
cedure by the channel asymmetry. Consequently we
can apply separately the CLT to Xi and E. In this
manner, the variance of distribution of clock value is
constituted by three terms: the first and second term

are respectively equal to
σ2

X0

n
and σ2

R∆T , as we showed
in previous theorem, and the last one follows directly

to the application of CLT to E so it is equal to
σ2

E

n
.

At the end of the first round we obtain:

σ2

X1 = σ2

R∆T 2 +
σ2

X0

n
+

σ2

E

n
(19)

round 2. Applying also at this round CLT and taking into
consideration the clock drifts, the distribution at the
end of the second round p(X2) has variance:

σ2

X2 = σ2

R∆T 2 +
σ2

X1

n
+

σ2

E

n
(20)

Equation 20 becomes, substituting σ2

X1 ,

σ2

X2 = σ2

R∆T 2 +
σ2

R∆T 2

n
+

σ2

X0

n2
+

σ2

E

n
+

σ2

E

n2
(21)

round i. At a generic step i, as previously described, the
variance of the distribution p(Xi) is:

σ2

Xi = σ2

R∆T 2 +
σ2

Xi−1

n
+

σ2

E

n
(22)

We have to note that the term
σ2

E

n
remains the same in

each round. Consequently substituting
σ2

Xi−1

n
we can

expand Equation 22 and writing in terms of series we
obtain:

σ2

Xi =
i

X

j=0

σ2

R∆T 2

nj
+

σ2

X0

ni
+

i
X

j=1

σ2

E

nj
(23)

The last term is a geometric series with a common ra-
tion r = 1

n
< 1, so the series, starting from j = 1 con-

verges to
σ2

E

n−1
. Moreover

σ2

X0

ni becomes rapidly small

and after a few round
σ2

X0

ni <<
σ2

E

n−1
. At last, usually

σ2

R is smaller than σ2

E of several orders of magnitude
(i.e. considering slow channels presented in [3] the dif-
ference is about ten orders of magnitude), under this

assumption σ2

R∆T 2∗ n

n−1
<<

σ2

E

n−1
also for larger value

of ∆T . Thus, Equation 23 for a number of synchro-
nization rounds that tends to infinity, the variance of
the system becomes:

σ2

E

n − 1
(24)

and then, standard deviation is:

SE =
σe√
n − 1

(25)

and the theorem follows.

Finally we can analytically discuss the behaviour of syn-
chronization point in presence of both errors, i.e. clock drifts
andimperfect estimates. Note that in presence of both er-
rors the synchronization point is described by a line with
µX + µE as slope and µR as y-intercept.

Lemma 3. Let p(R) and p(X0) the distribution of clock
drifts and the initial distribution of clocks, with respectively
variance and mean σ2

R, µR and σ2

X0 , µX0 . Let p(E) the dis-
tribution of errors in remote clock reading with mean µE and
finite variance σ2

E. Under these hypothesis the synchroniza-
tion error SE converges to SE = σE

√

n−1
, when i → ∞, and

the system to a synchronization point at round i described
by SP (i) = µX0 + µR ∗ i ∗ ∆T + µE.

Proof. The proof follows from the proof of previous the-
orem and from the CLT. We have that at round i the mean
of sample mean is composed by three terms, similarly to the
previous proof: the first term follows from the application
of CLT , the second term includes the contribution of clock
drifts and the third one includes the network errors intro-
duced by the remote clock reading procedure. In Lemma
2 we showed the contribution of the first two terms to the
mean at a round i. At last adding the contribution of p(E)

µXi = µXi−1 + µR ∗ ∆T + µE (26)

Where µE is the term introduced by p(E) from CLT , simi-
larly we showed in the proof of Lemma 1

Consequently as we have showed in previous proof, sub-
stituting µXi−1

SP (i) = µXi = µX0 + µR ∗ i ∗ ∆T + µE (27)



and from theorem 3 follows that SE = σE
√

n−1
when i →

∞.

4. EXPERIMENTAL VALIDATION
The aim of this section is an experimental validation of

theorems showed in previous section. We run several simu-
lation using Peersim in order to verify the behaviour of the
mean-based algorithm in a peer-to-peer environment and to
compare the obtained experimental results with the analyt-
ical ones. We define three scenarios in order to validate
theorems presented in previous section: 1) a scenario with
perfect clock estimates and without clock drifts; 2) a sce-
nario with clock drift and perfect clock estimates; 3) a sce-
nario with clock drifts and errors in remote clock reading.
Every scenario is composed by 64K nodes and no nodes are
added/removed during the simulation.

In the first scenario we evaluate the convergence speed
in terms of number of synchronization rounds required to
reach a predefined SE = 10µs. In Figure 1 we compare
the behaviour of our simulation results with the analytical
ones starting with different variance of initial distribution of
clocks p(X0). In this case p(X0) is assumed to be a rect-
angular distribution. The difference between theoretical re-
sults and experimental ones are noticeable only with small
view size. This is due to the CLT that show better results
when the number of sample (i.e. the number of elements in
a local view) is large. The term “large” is relative: the rule
of thumb is that a sample size n of at least 30 will suffice;
although for many distributions smaller n can be sufficient
(e.g. normal, rectangular, binomial, etc. . . ).

 5

 10

 15

 20

 25

 30

 35

5 10 20 40 60 80 100

S
yn

ch
ro

ni
za

tio
n 

R
ou

nd

View Size

σ2
X0=10 Theoretical

σ2
X0=10 Experimental

σ2
X0=10E3 Theoretical

σ2
X0=10E3 Experimental

Figure 1: Convergence dependency on Variance of

Initial Distribution and View Size.

In the second scenario we introduce clock drifts. We model
p(R) as a normal distribution and assume ∆T = 30s. Fig-
ure 2 shows that practically there are not difference between
theoretical results obtained applying the theorem 2 and the
experimental ones obtained executing simulations. In par-
ticular it shows that for common value of standard deviation
of frequency, in the order of 10−6−10−7 (e.g. in [18] it is pre-
sented a comparison between clock frequencies in common
CPU) the impact of clock drifts on the accuracy of clock
synchronization is small also for large ∆T .

In the third scenario we introduce network errors. In this
setting the remote clock reading procedure does not produce
anymore perfect estimates. We describe the network errors,
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introduced in our computation, through two normal distri-
bution to model respectively the RTT of message exchange
and the asymmetry of channels. The distribution of RTT
has mean and standard deviation derived by fitting several
round-trip data set measured over the Internet [3]. In par-
ticular in this scenario we evaluate a “slow channel”, as it
is described in [3],while we let the variance of distribution
of channel asymmetry can assume different values. Because
we assumed that we evaluate the clock differences as NTP
does, the error distribution p(E) is the product of these two
distributions, as it is shown in [2]. In order to validate the
Theorem 3, in Figure 3 we show the results obtained com-
paring two different variance of channel asymmetry and con-
sequently of p(E). In this settings the differences are very
little noticeable also for the smallest view size because the
distribution of p(E) produced by the product of two normal
are more “regular” than the rectangular distribution used in
first scenario. Another important point is the order of mag-
nitude of SE introduced by imperfect estimates. As we said
in the proof of Theorem 3 usually σ2

R is smaller than σ2

E of
several orders of magnitude and Figure 3 confirms that the
impact of clock drift with respect to the network channel
errors is negligible when we consider channels like the ones
described in [3]. Error due to clock drifts and imperfect
clock estimates can become comparable only in dedicated
LAN, where RTT is very small and also channel asymmetry
can be unnoticeable.

5. RELATED WORK
We can divide clock synchronization algorithms in two

main classes: deterministic and probabilistic. Determinis-
tic clock synchronization algorithms [9, 14, 15, 16, 17, 6,
5, 10] formally guarantee strict properties on the accuracy
of the synchronization but assumes that a known bound on
message transfer delays exists. In particular by mean of ex-
istence of this bound on message delay they can guarantee
an upper bound on the difference between any two clock
values. Lamport in [14] defines a distributed algorithm for
synchronizing a system of logical clocks which can be used
to totally order events, specializes this algorithm to syn-
chronize physical clocks, and derives a bound on how far
out of synchrony the clocks can become. Several works of
Dolev et al. [7, 8, 9, 11] propose and analyze several decen-
tralized synchronization protocols applicable for WAN but
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that require a clique-based interconnecting topology, which
is hardly scalable with a large number of nodes.

However the deterministic approach, normally tuned to
cope with the worst case scenario, assures a bounded accu-
racy in LAN environments but loses its significance in WAN
environments where messages can suffer high and unpre-
dictable variations in transmission delays. Clock synchro-
nization algorithms based on a probabilistic approach were
proposed in [4, 1] in order to try to overcome this problem.
The basic idea is to synchronize clocks in the presence of
unbounded communication delays by using a probabilistic
remote clock reading procedure. Each node makes several
attempts to read a remote clock and, after each attempt,
calculates analytically the maximum error. By retrying of-
ten enough, a node can read the other clock to any required
precision with a probability as close to 1 as desired. This
implies that the overhead imposed by the synchronization
algorithm and the probability of loss of synchronization in-
creases when the required synchronization error is reduced.
A formal evaluation of relationship between required error
and probability of obtaining synchronization is proposed.
The master-slave approach and the execution of several at-
tempts are basic building blocks of the most popular clock
synchronization protocol for WAN settings: NTP [19, 20].
NTP works in a static and manually-configured hierarchical
topology. Moreover it requires the presence of some nodes
directly connected with a external time reference in order to
obtain external time synchronization.

The peer-to-peer approach for synchronizing very large
systems is a novel solution and is interesting for the inher-
ent scalability of this approach. We know only two previous
studies [2, 12] where are proposed only simulation-based ex-
perimental evaluations of the protocol properties. In [12]
the presence of a source node perfectly synchronized with
real-time clock is assumed. Each node uses a peer sampling
service to select another node in the network and to ex-
change timing information with. If the time read from the
contacted node is of higher quality than its own time (e.g.
the contacted node is the source), then the reading node
will adopt the clock setting of the other one. In [2] it is
presented convergence function-based approach to internal
clock synchronization, where each node read by mean of a
remote clock reading procedure neighbours’ clock values and
computes its new clock basing on read values.

6. CONCLUSIONS
In this paper we presented a theoretical analysis of the

synchronization properties of a mean-based convergence func-
tion in a peer-to-peer system. The analysis focused on three
main aspects of the algorithm behaviour: synchronization
error, final synchronization point and decay factor that af-
fect synchronization delay.

More specifically the analysis outlined two important prop-
erties: 1) convergence speed and synchronization error of the
mean based protocol, in presence of errors induced by net-
work perturbation, depend only from the size of the local
view of nodes and from the distribution of network errors;
2) the synchronization error, in absence of network pertur-
bation, has an lower bound that depends on the distribution
of drift of hardware clocks, on local view size and on time
interval elapsing between two synchronization round.
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