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ABSTRACT 
Next-generation communication services will be required to adapt 
their behavior to the specific characteristics of the physical and 
social environment in which they will be invoked. The technology 
to acquire contextual information will be increasingly available, 
e.g., in the form of highly-pervasive sensor networks 
infrastructure. Indeed, such infrastructure can lead to the 
production of overwhelming amounts of information, difficult to 
be managed and interpreted by services.  This calls for proper 
solutions to enable services to extract meaningful general-purpose 
data from distributed sensors in a compact way. The approach 
presented in this paper relies on a simple algorithm to let a sensor 
network self-organize a virtual partitioning in correspondence of 
spatial regions characterized by similar sensing patterns, and to let 
distributed aggregation of sensorial data take place on a per-
region basis. This makes it possible for services to gather 
information about the surrounding world as if it was generated by 
a limited number of virtual macro sensors, independently of the 
actual structure and density of the underlying sensing 
infrastructure.  

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – distributed applications. 

General Terms 
Algorithms, Reliability, Experimentation, Theory. 

Keywords 
Self-organization, pattern recognition, mobile services, gossip 
based aggregation. 

 

 

 

 

 

 

 

1. INTRODUCTION 
In the next few years, we will assist to an increasing deployment 
of sensor network systems [9, 5]. Most likely, such mass 
deployment will induce a radical change in their raison d’être. 
Rather than being closed special-purpose systems devote to 
monitor specific phenomena [15, 23], as they are today, they will 
form the basis of truly pervasive and dense shared infrastructure, 
publicly available for general-purpose sensing activities by a 
variety of users and services. Just to make some examples: cars in 
a city can access sensors around to obtain on-the-fly updated 
traffic information; tourists can exploit sensors around to discover 
urban information and activities; in the case of a disaster, sensors 
can support robots in performing rescuing operations. More in 
general, software services can exploit the information obtained by 
local sensors to contextualize their behavior and improve users’ 
satisfaction.    

The change in the very nature of sensor networks will also 
radically change the patterns by which such systems are accessed 
and exploited (see Figure 1). As of today, most sensor network 
systems are conceived to report to some base station (sink) at a 
fixed location specific data related to some specific phenomena of 
interest [22, 2], possibly after some limited in-network 
processing/compression of such data [17, 10]. Clearly, such fixed 
sinks will be present also in future sensor network scenarios. 
However:  

• sinks will have to collect general purpose data for 
remote users that want to discover about various 
events/phenomena happening somewhere in the world 
[1, 3]; 

• sensors will additionally have to report data on-demand 
to multiple and mobile services (e.g. running on users’ 
PDA) that can exploit short-range wireless connections 
to access local sensors around and retrieve user-specific 
data [19, 7, 16].  

This novel perspective of usage introduces peculiar challenging 
requirements. First, it is expected that the sensor network, despite 
being intensively used in unpredictable ways, will be able to 
control its energy consumption. In other words, the energy costs 
should be bounded and balanced over the network, so as to ensure 
a minimal guaranteed lifetime or (for self-rechargeable devices 
[14]) that it will never require more power than it can self-
produce. Second, it is expected that the network will be able to 
provide services (whether remote or local) with expressive and 
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compact information related to the phenomena under sensing 
rather than raw individual sensor data. In the presence of dense 
(virtually continuous) sensor networks generating huge (virtually 
infinite) amounts of data, dealing with the transfer and the ex-post 
analysis of individual sensors data can be become simply 
unmanageable. Third, the network should quickly answer 
services’ requests. Since services can be highly mobile (e.g., 
running on a moving car) a late answer to a query can either fail 
to reach it or reach it at a location where the answered 
information could be useless.  

To tackle the above issues, the idea underlying our proposal is 
that of delegating to the sensor network the execution of 
distributed gossip-based algorithms [12] that – by continuously 
running in the network as a sort of background noise with 
bounded energy costs – can enforce:  

• the adaptable self-partitioning of the network into 
spatial regions characterized by similar patterns for 
sensed data, via the self-organization of an overlay 
network. 

• the distributed aggregation of whatever sensorial data 
on a per-region basis. 

The result of this process is that a sensor network can be modeled 
as made up of macro sensors, each associated to a well-
characterized region of the physical environment (i.e., a region 
exhibiting a uniform pattern for some specific property such as a 
light, temperature, etc.). Within each region, each physical sensor 
has the local availability of aggregated data related to its region 
and can act as an access point to such data.   

 
The approach based on virtual macro sensors makes it possible for 
multiple and mobile services to promptly access global 
information about the surrounding environment by simply 
querying the closest sensor, at no additional costs for the sensor 
networks. Also, it makes possible to effectively transfer 
aggregated data towards a centralized collection point in a more 
compact and efficient way, yet avoiding loss of information 
typical of global aggregation algorithms. Moreover this process is 
independent of the actual density, topology, and dynamics, of the 

underlying physical sensor network (e.g., making the approach 
suitable also in the extreme case of extremely dense sensor 
networks generating huge amounts of data).   

Performance studies performed in both a simulation environment 
and a real testbed confirms the effectiveness of our approach and 
its potential for being usable in a wide range of applications 
scenarios. However, the discussion outlines a number of 
limitations calling for further work. 

The paper is organized as follows. Section 2 discusses related 
work. Section 3 details the proposed virtual macro sensors 
approach. Section 4 evaluates the approach. Section 5 discusses 
the applications of the approach and its current limitations. 
Section 6 concludes. 

2. RELATED WORK 
Most of the works on data gathering and aggregation in sensor 
networks assume the presence of fixed sinks (i.e., base stations) to 
which sensed data should flow. In such situations, the basic 
approach is that of having sensors build a tree rooted at the sink 
and supporting the routing of sensed data towards it [22]. To deal 
with the transfer of possibly large-amounts of data, several forms 
in-network data aggregation (e.g., averaging or max/min 
determination) can be performed as data from sensors climb the 
tree [17, 10, 2] both with the goal of reducing communications 
between sensors and, thus, the energy costs. However, such 
aggregation algorithms does not generally account for the data 
patterns exhibited by phenomena under sensing, and are thus at 
risk of being either ineffective or very lossy. As far as multiple 
and mobile services are concerned, tree-based approaches can 
hardly apply. In fact, the costs of building a tree on demand for 
many possible services at different and varying locations would 
be unbearable, both in terms of energy and response time. 
Although some specific optimizations for mobile services have 
been proposed [24], these do not eradicate the basic flaws of tree-
based approaches.  

Several research works in the area of sensor networks start 
recognizing the need to promote direct access to sensor data by 
multiple and mobile users/services. These works mostly focuses 
on defining suitable general-purpose primitives and language 
constructs to enable users to flexibly query the network and 
obtain information about individual sensor data and aggregated 
data related to specific regions. Examples of these approaches 
include Region Streams [20], TinyLime [7], and Logical 
Neighbourhood [18]. These kinds of languages could be well 
complemented by our proposal that could provide a basic 
algorithmic infrastructure on which to realize the proposed 
abstractions. 

The issue of recognizing regions of a sensor network 
characterised by similar properties of sensed data is considered 
very important to improve the reliability and capability of 
tracking. Indeed, some in-network algorithms for self-
organization of region partitioning in sensor networks have been 
proposed [4, 21], sharing some basic principles with our 
approach. The key differences with it are that: (i) these algorithms 
require a priori information about the typical patterns exhibited by 
the environment, while our approach does not and it is fully self-
organizing; (ii) these algorithms are not conceived for other goals 
than recognizing regions, while our approach goes further, by 

 
Figure 1: Future sensor network infrastructures. 



exploiting regions as a basis for aggregation and for building the 
abstraction of virtual macro sensors.  

As far as distributed data aggregation is concerned, diffusive 
algorithms [6] and gossip-based aggregation algorithms [12, 8] 
have been proposed as simple yet very effective approaches to 
compute and make available at each node aggregated values 
related to some global property of the network. In our approach, 
we borrow from them by exploiting aggregation algorithms that 
have a mixed diffusive-based and gossip-based inspiration. 
However, other than for computing global network values, we use 
them for computing regional aggregated values (as the basic 
sensing mechanism of virtual macro sensors).  Gossip-based 
algorithm have been recently exploited as the basis for 
partitioning a network into clusters of nodes characterized by 
similar properties [13], a problem similar to the one being 
addressed in this paper, though with totally different motivations, 
goals, and scenarios.   

3. VIRTUAL MACRO SENSORS 
The virtual macro sensors approach considers: (i) a self-organized 
region formation algorithm to define the boundaries of each 
macro sensor; (ii) localized aggregation algorithms to provide 
macro sensors with regional sensorial capabilities; (iii) solutions 
to self-adapt to transitory and dynamic situations.  
 

a)  b)  

 

c)  d)  

 

Figure 2. Self-organizing spatial regions: a) a scalar field with 
4 regions with different values of a property v; b) a 500-nodes 
sensor network immersed in the above scalar field, with links 
representing the actual physical layer; c) example of the 
overlay region organization with p=0,4 leading to a 
partitioning into 2 coarse regions (we show only the logical 
links between the nodes that are logically connected); d) 
overlay region organization with p=0,05 leading to a 
partitioning into 4 small regions.  

 

3.1 Region Formation 
We consider a sensor networks deployed in an environment in 
which the value v of some specific environmental property (i.e., a 
spatial field) can be locally sensed by sensors. The value v could 
represent a temperature, a light level, or whatever property a 
sensor is capable to infer about its sensed portion of the 
environment (see Figures 2-a and 2-b). The actual spatial 
extension and sensor density in the network is irrelevant in our 
approach, which thus apply also to (virtually) infinite and 
infinitely dense networks.  

The proposed region formation algorithm has the goal of letting 
sensors self-organize into disjoint sets of spatial regions each 
characterized by “similar” measures of the property v (see Figures 
2-c and 2-d). Organization in regions occurs via a process of 
building an overlay of virtual weighted links between neighbor 
nodes, such that nodes belonging to the same region have strong 
links, while neighbor nodes belonging to different regions have 
weak (or null) links. As examples: measuring the light level could 
be used for a sensor network in a building to self-partition on a 
“per room” basis (different rooms being characterized by different 
light level, while the light level inside a room is always quite 
homogeneous); measuring the vibration level on a mountain slope 
could lead to self-organizing a sensor network into regions 
associated to surfaces with different geological properties. More 
in general, the region organization can reflect some actual 
property of the physical space and can lead to a “logical” 
organization of sensors, thus making a region to be elected as the 
extension of a virtual macro sensor.  

Coming to the details of the algorithms, let si and sj be two 
neighbor sensors, i.e., two sensors whose distance is smaller than 
their wireless radio range r. Let v(si) and v(sj) be the values of a 
property sensed by si and sj, respectively. Let us assume that a 
distance function D can be defined for couples of v values. 
Region formation is then based on iteratively computing the value 
of a logical link l(si,sj) for each and every node of the system, as 
in the following “Update_link” procedure: 

 

Update_link: 

if ( D(v(si),  v(sj)) < T ) {  

 l(si,sj) = min(l(si,sj) + delta, 1) 

} else { 

 l(si,sj) = max(l(si,sj) - delta, 0) 

} 

 

Where: T is a threshold that determines whether the measured 
values are close enough for l(si,sj) to be re-enforced or, otherwise, 
weakened; and delta is a value affecting the reactivity of the 
algorithm in updating link (more details on the threshold T follow 
later on). 

Based on the above algorithm, it is rather clear that if D(v(si), 
v(sj)) is lower than threshold T, l(si,sj) will rapidly converge to 
either 1 or 0.  In the simplest case, one could consider two nodes 
si and sj to be in the same region when l(si,sj) is over a threshold T. 
Transitively, two nodes sh and sk are defined in the same region if 



and only if there is  a chain of nodes such that each pair of 
neighbors in the chain are in the same region. For the actual 
execution of the algorithm, each node stores a vector describing, 
for each of the neighbors, the current value of the link towards it 
and a flag signaling the status of the link (connected or not). To 
improve stability in the presence of noise, the connection status of 
a link relies on a hysteretic cycle with two thresholds Tl and Th 
with Th-Tl>> noise. 

The distributed execution of the algorithm is based on a sort of 
diffusive gossip scheme [6, 12] which act as a sort of continuous 
background activity in the sensor network: each node periodically 
wakes up, randomly selects a specific number or a specific 
percentage of its neighbors (for real-world broadcast –based 
wireless channels, this implies inviting a limited number of 
neighbors in participating in the protocol), exchanges with them 
the needed data (i.e., the v values, plus other data that will be 
detailed in the following), and then executes the “Update_link” 
procedure for each selected neighbors. Schematically: 

 

Do_forerever: 

 Wait(t); 

 Foreach(neigh[]=Select_neighbor(num_neigh)) 

  Data = Exchange_data(); 

  Update_link(data); 

Done 

 

From the above description it is clear that our algorithm tends to 
impose a pre-defined, tunable, and uniform load, to the system. 
Each node executes the same amount of operations. The interval t 
determines the frequency of such operations and the number of 
neighbors num_neigh selected at each round determines the 
communication cost of these operations. Shorter t or higher 
num_neigh tend to speed up the convergence of the algorithm, but 
increase the energy consumed by sensor per time unit (as 
quantified in the performance evaluation section). Therefore, one 
can select the “degree of noise” of our algorithm and, so, the 
energy consumed over time.  

Let us now go into more details about the other parameters of our 
algorithm. 

Concerning the parameter delta, it determines how fast the link 
weight l changes its value. The choice of this parameter is not 
crucial, provided that it is chosen small enough to require several 
cycles of the “Update_link” procedure to actually modify the 
status of link (in other words, it should be notably smaller than the 
Tl-Th hysteretic interval). This avoids that random or temporary 
fluctuations of the measured value at a node continuously cause 
changes in the established regions.  

Concerning T, an apparently challenging issue in our approach 
consists in tackling the difference between the strictly local nature 
of “Update_link” interactions and the inherently global meaning 
of the threshold T. How can two nodes evaluate the right 
threshold if they don't know anything about the rest of the 
network? Fortunately, in the vast majority of the cases, a domain 

expert can provide suitable and relevant thresholds to highlight 
the phenomena of interest and to drive the self-partitioning 
accordingly. For example, a difference of 5°C can be considered 
of relevance for a biologist to distinguish different types of 
landscape, and (s)he could rely on a region-partitioning based on 
such a threshold. Alternatively, fire guards may be interested in 
much higher thresholds (e.g., 40°C) to detect anomalies. In any 
case, it is worth emphasizing that our approach does not prescribe 
the existence of a single region partitioning. Depending on 
application needs, the same background algorithm can be 
exploited, at no additional costs, to build any number of different 
overlay partitions, each based on different thresholds. Simply, 
each node can host and compute an array of virtual link values l 
for each neighbor, each corresponding to a different threshold 
value.  

In the absence of any a priori known domain data, and for 
networks of finite size, it is still possible to define T by exploiting 
dynamically collected global values of the property v. For 
instance, in our tests, we defined T as a portion of the whole range 
of values seen over the network. Using scalar values, we defined 
T as:  

 

T = (globalMax – globalMin) * p  

 

where p is a real number between 0 an 1. In this way, one can 
parameterize the sensibility of the algorithm by using a relative 
value p rather than some absolute value requiring a priori 
knowledge on the range of v values. If one wants to obtain very 
large regions to organize the network based on macroscopic 
difference one can select p close to 1 (as in Figure 2-c). If one is 
interested in more fine-grained region organizations one can 
select p close to 0 (as in Figure 2-d). 

To locally acquire the globalMax and globalMin value at each 
node, one can execute a global diffusive aggregation algorithm 
over the whole network. Simply, as described in [12], each node 
can exchange with its neighbors the information about the 
maximum and the minimum he knows so far. Eventually the 
knowledge about the actual globalMin and globalMax will reach 
each node of the network. In details, each node si, after having 
exchanged data with node sj, can execute the following 
“Global_aggregation” procedure: 

 

Global_aggregation: 

 if(globalMini>globalMinj) globalMini=globalMinj 

 if(globalMaxi<globalMaxj) globalMaxi=globalMaxj 

 

with globalMini and globalMaxi both initialized at vi. The above 
aggregation algorithms requires minimal additional effort by 
nodes. In fact, one can exploit the existing region aggregation 
noise and its “Exchange_data” messages to exchange the 
GlobalMin and GlobalMax values, by piggybacking with such 
messages the additional data needed, and then computing the 
“Global_aggregation” function after the “Update_link” procedure 
inside the main algorithm body. When needed, one can also 



decide to exploit the same schema to compute any additional 
distributed global aggregation algorithms (e.g., computing the 
average), as well as to compute aggregations over properties 
different from v. But this is not the key point of our approach. 

3.2 Per-Region Aggregation 
The local availability of aggregated information over the whole 
sensor network may be of some use independently of regions. 
However, globally aggregated values give very little details on the 
status of the network, are prone to obsolescence and high losses 
and are definitely of little use for users wishing to acquire info 
about environmental properties around him/her. For this reason, 
our approach mostly relies on per-region aggregation algorithms. 
Local aggregation algorithms enable each sensor in a region to act 
as a sort of access point for aggregated data in that region, and 
thus realize the concept of virtual macro sensor: from the 
application viewpoint, services can perceive a region as including 
a single sensor with sensorial capabilities extended to the whole 
region. 

When regions are already formed (transitory situations will be 
discussed later on), computing aggregation function in a region 
reduces to executing a diffusive aggregation algorithm only 
between those couples of neighbor nodes that are in the same 
region (i.e., for which the l is over the Th threshold). Again, 
computing per-region aggregation function does not introduce 
significant additional burden to the network. The exchange of 
data between nodes can occur by piggybacking over the existing 
messages, and the computation of local aggregation algorithms 
reduces to add a simple “Local_aggregation” function in the main 
body of our basic scheme, as follows: 

 

Do_forerever: 

 Wait(t); 

 Foreach(neigh[]=Select_neighbor(num_neigh)) 

  Data = Exchange_data(); 

  Update_link(data); 

  Global_aggregation(); // if needed 

  If(connected) Local_aggregation(); 

Done 

 

The “Local_aggregation” function can include the identification 
of the local minimum and the local maximum of any sensed value 
w (other than the v property on which regions are based) within 
the region (computed as in the global case), as well as the calculus 
of the average Avg of any value w. In this case, the local 
aggregation for a node si, after having exchanged data with 
connected node sj, simply works as follows [12]: 

 

 Avgi(w) = ( Agvi(w)+Avgj(w) )/2 

 

with Avgi(w) simply initialized at the local value wi. The value of 
regional average is clearly the one that, more than others, gives 
practical meaning to the concept of macro sensors. Yet, the local 
maximum and minimum well complement it by adding some hint 
on the amount of data locally lost in the averaging process.  

In our scheme, we also decided to enforce two additional peculiar 
aggregation functions that are of great use for facilitating the 
gathering of information by users. A first aggregation function 
considers that each node at the border of a region (i.e., each node 
which has at least one virtual link l below the threshold) 
propagates within the region a “hop counter” initialized at 0. By 
having such counter by re-propagated by each node on per-
minimum basis, the results is that each node in a region 
eventually becomes aware of its distance form the closest border. 
We also plan to experience more sophisticated aggregation 
function to enable nodes to locally reach a higher-level 
understanding of the shape and topology of the local region, 
possibly relying on existing work of distributed topology 
recognition. What is important to note is that these kinds of 
topological measures are important to asses, within regions, the 
sensing coverage of the macro sensors. A second aggregation 
function exploits a sort of per-region minimum identification 
towards the election of a region leader. By having each sensors 
exchange its unique ID with its neighbor, the minimum ID 
eventually recognized by each node will define the leader (and the 
leader itself will recognize itself as that). This is very important to 
give macro sensor a recognizable unique identity. More details on 
how such data can be of practical use follows in Section 5.  

3.3 Transitory and Dynamic Situations 
Let us now analyze the dynamic behavior of the algorithms 
during region formation and region re-shaping (changes in the 
values of the property v upon which region formation relies can 
induce changes in the shape and dimensions of regions, as well as 
in the aggregated values).  

In general, the initial values of the virtual links l between nodes 
are irrelevant for region formation. Therefore, let us assume an 
initial situation in which all nodes are disconnected from each 
other (i.e., each node is a region in itself). As the algorithm will 
start running, nodes with similar values of v will start connecting 
with each other, and sets of regions with growing dimensions will 
start forming and possibly merge each other, until a stable 
situation will be reached.  

Concurrently with the above region formation process, the local 
aggregation procedure starts executing as soon as two nodes gets 
virtually connected in the same region, and it proceeds gradually 
involving more and more sensors, eventually converging when a 
stable region situation is reached. It can be shown (and it is quite 
intuitive indeed, due to the cumulative nature of aggregation) that 
the proposed aggregation algorithms do not experience problems 
if executed on a growing number of nodes, as in the region 
formation transitory. This also applies for the identification of the 
region leader (when two regions merge, one of the two leaders 
will be eventually overtaken by the other one). Similar 
considerations apply to the case in which new sensors are 
dynamically added in the system. 

The case in which some existing regions shrink, (either because a 
confining region has expanded or because some sensor nodes 



have died) is a bit more complex to handle. In fact, two problems 
may arise: (i) the values computed by the local aggregation 
functions may no longer be valid (e.g., the former maximum may 
have left the region and/or the average may have changed) and 
the cumulative nature of aggregation does not enable them to be 
properly updated; (ii) the region leader may have exited the 
region.  

To overcome the former problem, we decided to enforce a sort of 
“evaporation” of the values computed by the local aggregation 
algorithms (except for the leader election algorithm). In other 
words, the local aggregated values at a node are slowly (compared 
to the convergence time of the aggregation algorithms) moved 
towards the initial values, e.g., the local values of the node. In this 
way, the weight of those data cumulated by the algorithm will 
gradually diminish, unless properly re-enforced. As an example, 
consider the case of the maximum of a region, and assume that 
each node in a region has already locally available the value of 
such maximum. Now, have each node slightly “evaporate” such 
value by making it diminish to approach the local value. If the 
node holding such maximum is still in the region, a node will 
receive again the maximum value undoing the evaporation 
effects. Instead, if the node holding the maximum left the region, 
evaporation will enable to stabilize the new maximum at each 
node, after proper evaporation. Similar considerations apply, e.g., 
to the calculus of the average. This solution also enables dealing 
with situations in which, even if regions do not change their 
shape, the computed aggregate values change because of local 
changes in the sensed values.   

The second problem cannot be tackled by evaporation (the leader 
ID is not a value that can be tolerate approximation). 
Accordingly, each node keeps track of the “oldness” of the value 
of the leader ID (accounting for the number of cycles of the 
algorithm since the last time it received from some node such ID). 
Whenever such oldness becomes excessive, the current leader ID 
is considered obsolete and a new leader (i.e., the new node with 
the minimal ID) is identified and elected.  

Overall, the above two solutions make our virtual macro sensor 
approach fully self-organizing and self-adaptable. 

4. EVALUATION 
To test the effectiveness of the approach, we have experimented it 
both in a simulation environment (to verify the convergence and 
accuracy level of our approach in large-scale scenarios, and the 
effect on them of the num_neigh and t parameters) and in a small 
sensor network testbed (to evaluate its functioning in practice and 
its actual energy consumption levels). 

4.1 Simulations 
Simulations have been built over the Repast simulation 
framework [http://repast.sourceforge.net/]. We have conducted 
several experiments with sensor networks of different sizes and 
densities, immersed in different types of scalar fields, always 
obtaining similar qualitative and quantitative results. The results 
reported here refer to: a scalar field with 4 recognizable spatial 
regions of similar sizes; a 500-nodes sensor network with a 
density such that the average number of neighbor of each node is 
15 (i.e., similar to the sensor network of Figure 2-b).  

Let us firstly analyze the behavior in region formation. From a 
static viewpoint, simulations confirm that, as described in 
Subsection 2.1 and as shown in Figure 2, the region formation 
algorithm converges and variations on the parameter p actually 
induce the network in self-partition into regions of different sizes.  

From the dynamic viewpoint, we have studied how variations of 
the gossip percent num_neigh and the sleep cycle t affect the 
speed of convergence and the accuracy of the region detection 
algorithm. To this end, we traced the evolution of the system by 
imposing a change on the p parameter determining the threshold 
and, thus, forcing a change in region sizes. At startup, nodes are 
connected with any neighbor. Within cycles from 0 to 128 p was 
set to 0.4. During this interval the network converges to a 
partitioning into 2 large-regions of equal size. At cycle 129, we 
changed p from 0.4 to 1.0, making the network re-compact into a 
single large-scale region. At cycle 256 we changed p back to 0.4, 
making the single region disaggregate again into two regions. 
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Figure 3. Evolution of region detection when: a) varying the 
num_neigh parameter; b) varying the t parameter. 
 
Figure 3-a shows the evolution in the average number of nodes in 
one region as time passes, by varying the gossip percentage, while 
Figure 3-b shows the evolution by varying the sleep period t of 
sensor nodes (t=1 being an abstract simulation time unit). Both 
graphs show that the number of nodes of the region start from 0, 
grow to 250 during the first phase [0 – 128 cycles], reaches 500 
during the second phase [129 – 255 cycles], and then diminish 
again to 250. Not surprisingly, reducing the gossip percentage or 
increasing the sleep period t makes the network slower in the 
region detection process. From Figure 3, it also emerges that the 



speed of convergence in region formation appears less influenced 
by variations of num_neigh  than by variations of t.   
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Figure 4. Per region aggregated values. Minimum estimate of 
the maximum, maximum estimate of the minimum, minimum 
and maximum estimates of the average and real value of the 
average. a) num_neigh=1.0, t=1; b) num_neigh=0.5, t=1;  c) 
num_neigh=1.0, t=4. 
 
The strange “stairs-like” trend of data lines obtained by setting 
t=4 and t=8 (Figure 3-b) clearly show the non-linear nature of the 
algorithm. These are mostly due to the fact that, when a region is 
forming, lots of sub regions are growing within, thus connecting 
the most similar neighbors. Only when the new actual minimum 
ID of the new region reaches a node, such node recognizes that is 
becoming part of a new region.  

Let us know focus on the behavior of the approach in evaluating 
aggregated values. 

From the static viewpoint, all local aggregation algorithms 
correctly converge towards the correct (real) values. 

From the dynamic viewpoint, Figure 4 shows the trend of several 
values aggregated on a per region basis, in the first 250 cycles of 
the simulation scenario already discussed for Figure 3. Curves in 
each graph represent the minimum (worst case) estimate of the 
region maximum, the maximum (worst case) estimate of the 
region minimum, the minimum and the maximum (the two worst 
cases) estimates of the average, and the real actual value of the 
average computed over all nodes within the growing region.  

Although Figure 4 show results obtained for different values of t 
and num_neigh, all the graphs show the same qualitative trend. 
When regions start forming, after a few cycles, a fast convergence 
of the local maximum and minimum to their new correct values of 
120 and 80, respectively, is clearly visible. Average related values 
have a relatively small transitory and eventually reach the correct 
value of 100 as expected. At cycle 128, p is changed to p = 1.0 
and the region starts growing another time. The local maximum 
does not have to change its value. The local minimum reaches 
quickly its new value (-20) in a few iterations. Average values 
instead have a longer transitory but eventually slowly converge to 
the expected value of 50. Observing Figure 4 is clear that 
different aggregate values behave differently varying num_neigh 
and t. In particular accuracy of average related values are really 
more sensible to variations of  num_neigh and t than the local 
minimum and maximum have. Comparing the effects of 
num_neigh and t in convergence (Figure 4-a vs. 4-b and 4-c, 
respectively) shows that, unlike in region formation, local 
aggregation is comparably affected by t and num_neigh.  

4.2 Real Implementation Test bed 
We have implemented and deployed our algorithms in a testbed 
of 16 Micaz Crossbow motes, with motes distributed across two 
confining rooms and the facing corridor in our department. Light 
levels have been used as the basis for region identification, 
whereas both light and temperature have been aggregated on a 
per-region basis. Also, we have also implemented a simple 
querying system to enable a user with a laptop and a Crossbow 
interface board to query a sensor and retrieve from it aggregated 
data about the current region. 

The deployed algorithms worked as expected from the functional 
viewpoint. First, the different lights levels exhibited by the three 
rooms led the sensor network self-partition in three different 
regions (i.e., three macro sensors), each associated to a different 
room. Second, within each region, the sensor correctly computed 
aggregate light and temperature information. Third, users were 
able to access such aggregated information by querying any 
single sensor in a region as if it were a virtual macro sensor 
representative of its region. 

From the viewpoint of energy consumption, Table 1 summarizes 
the mean values of the energy consumption by sensors. This is 
expressed in terms of the average decay in the voltage exhibited 
after two hours of execution of the algorithms by initially fully-
charged batteries. The different results for different values of the 
parameters t and num_neigh confirm that both these two 
parameters are effective in tuning the energy consumption. In 



addition, the fact that these data remains approximately the same 
(±0,05v) over different experiments and with different 
configurations of the sensor network confirms that our approach 
is able to guarantee a well defined bound on energy consumption. 

Comparing Table 1 with the simulated results (comparison with 
simulated results is needed since convergence times in the small 
test bed provides not significant information), one can summarize 
that, with our approach, it is possible to tune the desired energy 
levels by acting both on t and num_neigh, though one must be 
ready to pay in any case a proportional slowing down in the 
convergence of region formation and data aggregation. 

 

Table 1. Energy consumption in the testbed. 
 

 t = 5sec t = 10sec t =20sec 

num_neigh = 1.0 0.225v 0.118v 0.072v 

num_neigh = 0.5 0.145v   

num_neigh = 0.25 0.122v   

 

5. APPLICATION SCENARIOS AND 
LIMITATIONS 
The virtual macro sensor approach can be fruitfully exploited in a 
number of applications scenarios, although it still exhibits a 
number of limitations calling for further research work and 
extensions. 

5.1 Querying by Multiple and Mobile Users 
The most direct way of exploiting the virtual macro sensor 
approach is for supporting queries by multiple and mobile users 
(or by services on users’ PDA). A user/service that wants to 
retrieve information about the surrounding will typically access 
the nearest sensor and query it about some local patterns of sensed 
data. For example, “give me the maximum temperature within 
500 meters” or, by referring to some more logical environmental 
concept, “give me the average temperature in this room”. At this 
point, in most of the cases, the queried sensor can immediately 
answer to the user without further burdening the network, 
independently of the number of mobile users.  

The answer to a user/service can be immediate whenever: (i) the 
query relates to some functions of a property w which have been 
already aggregated as part of the background aggregation noise; 
and (ii) the query concerns information within a single region, 
i.e., a single macro sensor. With this regard, we recall (Subsection 
3.2) that each sensor in a region knows its distance to the closest 
border of the region. Therefore it can recognize whether a query 
can be answered within the region because involving a single 
macro sensor (e.g., “give me the data in this room” or “give the 
data within a distance that is less then you distance to the border”) 
or not. Still, the fact that some classes of queries cannot be 
directly answered by macro sensors is indeed a limitation.  

To make virtual macro sensors able to answer to very general 
queries related to any function of any property w sensed within a 
region, our approach should be extended to make macro sensors 

programmable. This implies the possibility of dynamically 
“injecting” into a sensor network the specification of additional 
local aggregation functions, and let these be integrated into the 
existing background aggregation noise. This can make it possible 
– within the sensing capabilities of individual sensors – to have 
macro sensors able to answer to both general-purpose and 
application-specific queries, as proposed by e.g. Region Streams 
[20] and Logical Neighborhoods [18]. Clearly, such way of 
injecting new behaviors into the network could also be used to 
dynamically enforce a partitioning of regions based on different 
properties that a single one v, and based on different distance 
functions (the possibility of building multiple region partitions 
based on different threshold values for a single property v has 
already been discussed in Section 2.1).  

To make virtual macro sensors able to answer also to inter-region 
queries (e.g., to let a macro sensor answer about “the average 
temperature within 500 meters” even if the query is performed at 
a distance of 300 meters from the confining regions) without 
falling back to a raw tree-based approach, we are currently 
verifying the possibility of implementing efficient inter-region 
aggregation algorithms based on gossiping. This will make any 
node in a region able to provide users with some aggregate 
information related to neighboring regions other than to its own 
region.   

5.2 Centralized Data Collection 
As already anticipated, the expected dramatic increase in the 
number and density of sensor networks deployed in our world, 
will soon reach a point in which the overall amount of data 
generated by such network will make it impossible to transfer 
these data to some centralized location in a raw way. Collection 
of aggregated data will become the only solution to extract useful 
information from them. The virtual macro sensors approach 
already solves this problem. In fact, it is possible to route 
aggregated macro sensorial data periodically to a fixed sink at 
very limited communication costs, simply by having the leader of 
each region take care of this alone. This can take place with the 
additional advantages that collected data fully abstracts from the 
structure and dynamics of the sensor network, and that local 
aggregation limits the loss of information which is instead 
associated with global aggregation algorithms that do not take 
into account data patterns.  

However, to make the aggregated data collected at a centralized 
point really meaningful, it should be also possible to associate a 
specific dimension and shape to each region, and it should be 
possible to put regions in proper spatial relations with each other, 
so as to actually perceive the “network of macro sensors”. More 
in general, the virtual macro sensors approach could be seen as a 
way to effectively extract and collect high-level semantic 
knowledge about the structure and characteristics of an unknown 
environment [1]. To make an example, one could think at 
randomly deploying sensors over some labyrinthine environment, 
have the sensor network self-organize into macro sensors based 
on light and/or sound patterns and then, if each region could 
recognize and report about neighboring regions, dynamically 
reconstruct a map of the area and of its salient environmental 
characteristics. 

Unfortunately, so far, we are able to compute only the distance of 
a sensor from the region border. Yet, we expect similar diffusion 



algorithms (possibly exploiting the already mentioned inter-
region aggregation algorithms) can be defined to compute more 
advanced topological properties, and to extract high-level 
knowledge from a network. These, together with the mentioned 
possibility of enforcing multiple partitioning based on different 
properties and thresholds, could enable to produce, within the 
same network, multiple knowledge views for the use of diverse 
users/services.   

5.3 Situation Recognition 
The possibility of identifying regions characterized by specific 
patterns of sensed data, and the possibility of computing 
aggregated data within the network can also be effectively used to 
improve the capability of the sensor network to self-recognize 
unusual patterns of sensing and, in case, to automatically generate 
alarms.  

To make a practical example, we are cooperating with the 
geological department of the Reggio Emilia Apennine to exploit 
our approach for effective landslide detection. Inertial sensors 
deployed on a mountain slope generally sense a random 
background noise, without any recognizable patterns. However, 
when a slip surface starts detaching, all the sensors on such 
surface will exhibit peculiar acceleration patterns. In this case, our 
algorithm can be able – despite noisy data – to dynamically self-
partition the network into two distinct regions, one of which 
associated the slip surface, and of alerting the geological 
department by reporting macro sensorial information about the 
slip surface and its behavior. This can avoid the costly process of 
continuously reporting data back to the department for off-line 
analysis. Other examples include detecting anomalies in 
buildings, streets, or parks.  

Also in this case, to make situation recognition fully practical and 
general purpose, both algorithms for dynamic injection of 
aggregation functions and algorithms for the recognition of 
advanced topological properties may be required. 

6. CONCLUSIONS AND FUTURE WORK 
The proposed virtual macro sensor approach makes a sensor 
network self-organize into regions characterized by similar 
sensing patterns, so as promote aggregation of data on a per-
region basis, as if each region were monitored by a single macro 
sensor. Such an approach can be very effective in supporting 
multiple and mobile services, in facilitating data collection in very 
dense and large-scale sensor networks, and in enforcing advance 
situation recognition activities within the network.   

Despite the encouraging results obtained so far, we are aware of a 
number of limitations of our work, subjects of our current 
research work. These include: generalizing the approach to 
support multiple overlays and general-purpose queries; exploring 
inter-region algorithms to support more global queries; defining 
algorithms to promote the building of high-level knowledge about 
the global structure and properties of the of virtual macro sensors 
network. 
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