
Model Based Reactive Planning and Prediction for
Autonomic Systems∗

Invited Paper

Peter H. Deussen
Fraunhofer Institute for Open Communication Systems

Berlin, Germany
peter.deussen@fokus.fraunhofer.de

ABSTRACT
Dynamic adaptation according to situational variety requires the
employment of planning algorithms for reactive and proactive deal-
ing with detected or predicted conditions. The complexity of large
scaled, distributed systems however prohibits planning strategies
acting on the granularity of single components because (a) a local
system view from the perspective of singular components is usu-
ally not sufficient, and (b) the synthesis (or a-priory definition) of
a global perspective is far beyond feasibility. We therefore propose
the use of dynamic abstraction mechanisms to generate planning
models of a suitable degree of granularity. The framework of Ab-
stract Interpretation is used to define both a reactive planning algo-
rithm and a pro-active prediction.

Categories and Subject Descriptors
F.1.2 [Computation by Abstract Devices]: Modes of Computa-
tion—Parallelism and concurrency, Relativized computation

Keywords
Models, Autonomic Systems, Pomsets, Pomtrees, Abstraction,
Embedding, Zoom, Abstract Interpretation

1. INTRODUCTION
Autonomic Computing [13] and Communication [20] have been

introduced as paradigms to cope with the complexity of highly dis-
tributed systems and networks where a centralized management ap-
proach is doomed to fail. A number of approaches have been pre-
sented to perform system operations on the basis of local informa-
tion, based on the vision of a set of—more or less—simple rules
associated with each system component, with the underlying idea
that useful behavioral properties “emerge” on the system level.

∗This work has been supported by the project “Component-ware
for Autonomic, Situation-aware Communications, And Dynami-
cally Adaptable Services (CASCADAS)” (IST-027807) funded by
the FET Program of the European Commission.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Autonomics October 28-30, Rome, Italy
.

In this paper, we use a slightly different complementary vision
of management that is to be performed using information that goes
beyond the system perception of a single component, but does not
necessarily involve global system view, leading to an approach that
performs management action on a level that is as global as needed
and as local as possible.

A key element of our approach is that we assume the existence
of behavioral descriptions of system components, subsystems, and
systems, and that these models can be accessed and processed at
system runtime. This model based view opens a variety of possible
research topics on system and interaction definition and manage-
ment, thus for instance:

1. A model description of possible interaction modes (semanti-
cally annotated protocols) describing the set of services pro-
vided by a system component can be used for automatic ser-
vice composition, based e. g. on negotiation. Models become
a mean of communication.

2. Moreover, interaction modes of communities of components
can be expressed as suitable combinations of the models of
the components involved. Models become a mean to under-
stand emergent behavior.

3. Both local component behavior and emergent behavior of
communities can be compared with the model descriptions
of this behavior, leading to a autonomous self-management
approach. Models become a mean to supervise systems and
system components.

The above list defines a challenging research agenda. In this pa-
per, we are going to provide an approach towards the third topic.

Model-based System Supervision. Supervision may be defined as
the ongoing (passive) observation and assessment of the state of a
system and the active intervention if an undesired state (such as a
failure state) is encountered, and to guide the system back into a
more desirable state. Alternatively, intervention can be done pro-
actively to prevent the system from entering a problem state. Both
approaches require the availability of planning strategies. A poten-
tial supervisor needs to be able to estimate the effect of a supervi-
sion action to the overall system state in order to determine whether
or not to perform this action. Following the model based approach,
we assume that operational system models can be used to estimate
effects of system executions.

Clearly, the construction and usage of an overall system model of
suitable granularity is—even if this model comprises a finite num-
ber of states—far beyond feasibility. Moreover, since autonomic
systems are supposed to be open systems able to react on a (prob-
ably infinite) set of stimuli from their environment, the finite state

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.AUTONOMICS 2007, 28-30 October 2007, Rome, ItalyCopyright © 2007 ICST 978-963-9799-09-7DOI 10.4108/ICST.AUTONOMICS2007.2303

create-net
Typewritten Text

assumption is not longer valid. Thus a model based supervision
approach has either to exploit the component structure of the su-
pervised system (compositional approach) or, alternatively, has to
work with model abstractions exhibiting a smaller (or even finite)
state space, or a combination of both alternatives.

SUS

SV

eventy
|n

The work presented in this paper is of
mathematical nature, thus a number of sim-
plifications is imposed. The first one con-
cerns the actuation model that is used. It
bases on the permission of possible actions
(events) that the system under supervision
(SUS) is able to execute, i. e. if there is a
choice between different alternative behaviors, the supervisor (SV)
is able to control this choice. With other words, we assume that
management capabilities are already represented in the SUS, to be
used by the SV. The right hand side figure shows the proposed “ar-
chitecture” for the most simple case.

Another simplification concerns the notion of a “system”. We use
deterministic labeled transition systems with probably infinite state
space as generic system “syntax”. A partial order semantics based
on partially ordered multisets [12, 21, 19] is employed to take into
account concurrency issues (and to reduce computation complexity
that occurs from the explicit representation of interleaving of con-
current actions). Pomtrees (also known as Event Structures [18])
can be viewed as partial order decision trees. We use pomtrees to
represent finite reactive and proactive supervision plans. For the
computation of those plans, results from the Petri net theory are
exploited, namely the construction of finite prefixes of branching
processes [16].

Abstract interpretations has been introduced by Cousot & Cousot
as a framework for static program analysis [4]. We use a notion of
abstraction defined in terms of morphisms between systems and
show that the Cousot framework can be applied in this setting:
Planning for reactive and pro-active supervision is presented as so-
lutions of fixed point iterations performed in a concrete or abstract
domain.

Finally, we explain how to apply the result of this paper in the
context of hierarchically organized system models, and discuss how
planning for reactive and proactive supervision can be performed
on the most concrete (i. e. local) level of a model hierarchy (given
a set of abstractions/embeddings).

Methodological Remark. To carry out this work, a combination
of a number of approaches from different field has been exploited.
We therefore refrain from including the usual section on “Related
Work” which could only presented as a seemingly unconnected list
of references. We have included a number of remarks that discuss
related work in an appropriate context.

We assume that the reader is familiar with the basics of Lattice
theory (partial orders, (complete) lattices, Tarski’s fixed point the-
orem); the standard references is [2]. Moreover, the language of
commutating diagrams used in Category theory will prove as use-
ful. Deeper knowledge in this area is not required, the interested
reader is referred to [1, 14], as well as to Goldblatts excellent in-
troduction [11, Chapter 3]. Examples are presented using a process
algebra with semantics presented in a “structures operational se-
mantics (SOS)” style. Milners book on CCS [17] is probably the
best introduction into this field.

Organization of the Paper.. Section 2 summarizes the mathe-
matical notions used in this paper, including a brief discussion of
Abstract Interpretation. Section 3 introduces labeled transition sys-
tems as generic system descriptions, and defines their partial order
semantics in terms of pomsets. Moreover, pomtrees are introduced,

and computational issues are discussed. In Section 4, abstractions
and embeddings are introduced. Embeddings serve as a tool to de-
scribe system composition. Supervision is addressed in Section 5.
Both reactive planning and pro-active prediction of problem situa-
tions is considered. Section 6 shows how to apply the results pre-
sented so far in the setting of hierarchical models. Finally, Section
7 summarizes the paper and gives an outlook on further works.

2. BACKGROUND

Basic Notations. For the sake of brevity we adopt the convention
that whenever a structure A = 〈X ,Y, . . .〉 is introduced in a defi-
nition, then its components are denoted by XA, YA, Since we
make extensive use of relations, we use some non-standard nota-
tions: Let R⊆ A×B be a binary relation. Then for some a ∈ A we
let R(a) =df {b ∈ B | a R b}. This notion applies also to order rela-
tions like �. For C⊆ A we put R(C) =df

⋃
a∈C R(a). The inverse of

R is the relation R−1 ⊆ B×A and is defined by: b R−1 a⇔df a R b.
The identity relation idA ⊆ A×A is defined as a idA b⇔df a = b.
If R ⊆ A×A is a relation, we denote by R+ the smallest transitive
relation that contains R, and R∗ is R+∪ idA. By f : A ⇁ B we de-
note the fact that f is a partial function from A to B (i.e. it might be
the case that for some a ∈ A there is no b ∈ B such that 〈a,b〉 ∈ f),
while as usual f : A→ B indicates that f is a total function. Func-
tional restriction is denoted by f �C for f : A ⇁ B and C⊆ A and is
defined as f � C =df f ∩ (C×B). If f : A ⇁ B be a partial function,
we use as a further shortcut equations like f (a) = b to indicate both
that f (a) is defined and that f yields b if applied to a.

N denotes the set of non-negative integers and O is the set of
finite and transfinite ordinals with first limit ordinal ω .

Let f : X → X be a function. A fixed point of f is some x ∈ X
such that f (x) = x. If X is partially ordered by
, then x is a least
fixed point if x
 y for all other fixed points y of f .

The following is (the first part of) the well-known fixed point
theorem of Tarski [22].

THEOREM 1. Let�= 〈X ,�,⊥,�,,�〉 be a complete lattice,
and Φ : X→ X be a monotone function, i. e. x
Φ(x) for all x ∈ X.
We define:

Φ0 =df idX ,

Φ δ+1 =df Φ ◦Φ δ for successor ordinals δ +1 ∈O,

Φ λ =df
⊔

δ<λ
Φ δ for limit ordinals λ ∈O.

Then
⊔

λ∈O Φ λ (⊥) is the least fixed point of Φ .

Sometimes, sequences of fixed point iterations are considered,
each step taking the result of the previous step as starting point.
To make the definitions of those chains more readable, we use the
notion lfp[Φ ,⊥] =df

⊔
λ∈O Φ λ (⊥).

Abstract Interpretation. In this paper, we adopt the framework of
Abstract Interpretation (AI) introduced by Cousot & Cousot [4]. AI
has its roots in static program analysis (strictness analysis for func-
tional programs and ground term analysis for logic programs are
classical examples). The basic idea is to “emulate” the execution of
a program not in its original domain of variable values but in an ab-
stract, “more simple” version of this domain. A number of variants
of the AI framework are possible [5], that mainly differ on the set
of operators for abstraction, concretization, and computation that
is used, and the consistency criteria between abstract and concrete
program executions. In this paper, we use a variant that comprises
of abstraction and concretization functions that form Galois con-
nections.

Let �= 〈X�,
�〉 and �= 〈X�,
�〉 be partially ordered sets.
A Galois connection between � and � is a pair of mappings α :
X� → X� and γ : X� → X� such that α(x)
� y⇔ x
� γ(y)
does hold. We write α,γ : �� � in this case.

Let � = 〈X�,
�,⊥�,��,�,��〉 be a complete lattice,
where the domain X� is interpreted as states of some computa-
tion process, and x
 y expresses the fact that the state y is more
advanced that the state x, i. e. y occurs in a later stage of the com-
putation process. The computation process itself is expressed by
some monotone function Φ : X�→ X�, and the initial state is the
bottom element ⊥�. Then the complete computation processes is
expressed as

⊥�,Φ(⊥�),Φ2(⊥�), . . . ,Φ ω(⊥�),Φ ω+1(⊥�), . . .

which, by Theorem 1, has the limit lfp[Φ ,⊥�].1

Let α,γ : �� � be a Galois connection for complete lattices �
and�, and let Ψ : X�→X� be a monotone function. Then we have
x
� (γ ◦Ψ ◦α)(x), i. e. Φ(Φ λ (⊥�))
� (γ ◦Ψ ◦α)(Φ λ (⊥�)),
and lfp[Φ ,⊥�]
� γ(lfp[Ψ ,⊥�]). Thus the abstract computation
process

⊥�,Ψ(⊥�),Ψ2(⊥�), . . . ,Ψ ω (⊥�),Ψ ω+1(⊥�), . . .

has a limit that is an over-approximation of the limit of the con-
crete computation process, and moreover, each state of the abstract
computation process is an over-approximation of its concrete coun-
terpart.

Remark 1. The approach described above can be further im-
proved by means of so-called widening and narrowing operators.
The idea is that widening is used to accelerate the stabilization of
the abstract computation process by replacing the various stages
of the process by over-approximations so that the resulting process
contains only finitely many steps. The price that is paid is that the
resulting limit my exceed the limit of the original computation pro-
cess, i. e. the now finite process reaches a limit x � lfp[Ψ ,⊥]. A
further element of imprecision is added. Narrowing is then used to
compute a solution y with x � y � lfp[Ψ ,⊥] as a corrective mea-
sure. Still, the result might be an over-approximation. It is how-
ever shown in [6] that Abstract Interpretation based on widen-
ing/narrowing is more general that the Galois connection variant.

While computation sequences with widening/narrowing can be
defined in a fairly generic way, the concrete definition of the these
operators seem to require a distinction between program control
structure and program data: widening is evidently used to termi-
nate program loops by “jumping” to program data that fulfil the
termination condition.

In this paper, we use labeled transition systems to describe com-
putation processes, so no particular syntactically identifiable con-
trol structure is available. It is therefore not obvious how to ap-
ply the widening/narrowing approach to the notion of systems used
in this paper. A possible direction is to exploit the fact that so-
called cut-off events (introduced in Section 3) define—in a certain
sense—articulation points of loops within sequential processes.
This however is subject of further work.

1Usually, countable domains X are used. In this case, the computa-
tion process converges at some λ � ω .

3. SYSTEMS AND THEIR PARTIAL OR-
DER SEMANTICS

A very generic notion of the term “systems” bases on a notion of
the states that the system can assume, and a relation on states that
models the actions that modify states. We consider furthermore the
situation that certain actions can be executed concurrently, i. e. in no
definite order, and assume that concurrent executions are reflected
in the structure of the system (diamond properties, see below). This
section summarizes the necessary definitions and propositions on
systems that are needed throughout this paper. Proofs of lemmas
and theorems can be found in [7] if not otherwise stated.

Distributed Alphabets and Systems. Let A be a set of symbols,
called actions, and I ⊆ A×A be an irreflexive and symmetric inde-
pendence relation. Then Σ = 〈A, I〉 is called a distributed alphabet,
or, for short, a d-alphabet. By DΣ =df (A× A) \ I we denote the
dependence relation associated with Σ . We moreover stipulate that
for each a ∈ A, the set D(a) is finite.

Example 1. Consider a distributed system comprising a number
of communicating sequential processes. Each of these processes
can be assumed to run at some “location” (e. g. an Internet host, a
JAVA thread, etc.). Give a set of locations L, and an assignment l :
A→�(L) encoding the fact that an action a ∈ A is executed at the
locations l(a)⊆ L, we can define a dependence relation D⊆ A×A
as a D b⇔df l(a)∩ l(b) �= ∅. Then Σ = 〈A,D〉 forms a d-alphabet.
Conversely, if Σ is a d-alphabet, then we may define a DΣ -clique
C ⊆ AΣ in Σ as a maximal dependent subset, i. e. C ∈ max⊆{C′ ⊆
AΣ |C′ ⊆ DΣ ×DΣ }. Let C(Σ) denote the set of all DΣ -cliques in
Σ . Then C(Σ) can be used as a set of locations, and the mapping l :
AΣ →�(C(Σ)) is simply given by l(a) = {C ∈C(Σ) : a ∈C}.

A labeled transition system (lts) over a d-alphabet Σ is a pair
� = 〈S,δ 〉, where S is a (not necessarily finite) set of states, and
δ = {δa : S ⇁ S}a∈A is a family of partial transition functions. We
usually abbreviate δa(s) by a�(s).� = 〈S,δ ,ϕ〉 is an interpretation
of Σ if 〈S,δ〉 is a lts over Σ and for all s,s1,s2 ∈ S and for all
a,b ∈ AΣ with a IΣ b the following diamond properties are fulfilled
whenever the expressions displayed are defined:

a�(s) = s1 & b�(s) = s2⇒ b�(s1) = a�(s2),
a�(b�(s)) = b�(a�(s)).

Further, ϕ ⊆ S is a state invariant. By en�(s) =df {a ∈ AΣ :
a�(s) is defined} we denote the set of actions enabled at a state
s ∈ S. The class of interpretations of a d-alphabet Σ is denoted by
I(Σ).

Example 2. For examples, we need a concrete syntax to ex-
press distributed systems. The obvious choice is to use directed
graphs, where nodes represent states, and edges are labeled with
actions. Another choice would be some state machine syntax, prob-
ably equipped with state variables, transition conditions and tran-
sitions actions (depending on the values of the state variables), i.e.
some type of Extended Finite State Machine. A third option (which
would make the definition of d-alphabets quite instructive) would
be a Petri-net based formalism.

Graphical formalisms however have the disadvantage that the
dynamic creation of system components and their termination re-
quires some extension to the language (e. g. graph grammar rules),
since introducing a new component means to modify the graph it-
self. To avoid concentrating too much on the explanation of the
example formalism, which already assumes a significant part of
this paper, we therefore use a text based formalism where dynamic
component creation can be defined in terms of textual replacement.

P ::= ε | a.P | x← d.P | X | 0 | 0v | ∑i∈IPi | P1 ‖ P2 | X =df P | Xx =df P | Xx←v;

(a) Syntax. v ∈ R is a process identifier, d ∈ D is a value of domain D, x a variable, X a process variable, and a is an action
(probably indexed with values v or variables x). ε denotes the empty process.

(step)
a.P;R,σ a−→ P;R,σ

; (ass)
x← d.P,R,σ a−→ P,R,σ[x/d]

;

(rec1)
Xx←v;R,σ

P[x← v];R,σ
Xx =df P; (rec2)

Xx;R,σ
P[x← v];R\{v},σ

Xx =df P & v ∈ R; (rec3)
X ;R,σ
P;R,σ

X =df P

(asyn1)
P1;R,σ !a−→ P2;R,σ

P1 ‖ P;R,σ !a−→ P2 ‖ P;R,σ
; (asyn2)

P1;R,σ !a−→ P2;R,σ;P3;R,σ ?a−→ P4;R,σ

P1 ‖ P3;R,σ
!a◦Σ ?a−−−−→ P2 ‖ P4;R,σ

; (syn)
P1;R,σ a−→ P2;R,σ;P3;R,σ a−→ P4;R,σ

P1 ‖ P3;R,σ a−→ P2 ‖ P4;R,σ
;

(com)
P1 ‖ P2;R,σ
P2 ‖ P1;R,σ

; (choice)
Pi;R,σ a−→ P;R,σ

∑i∈I Pi;R,σ a−→ P;R,σ
i ∈ I; (stop1)

0;R,σ
R,σ

; (stop2)
0i;R,σ

R∪{i},σ
; (cnt)

C[P;R,σ],R
C[P];R,σ

.

(b) Semantics. P[x← v] is obtained by replacing the variable x in the term P by the value v, and C[P] means that the term
or state P occurs in the syntactic context C. For σ : V → D, σ[x/d] : V → D is defined by σ[x/d](y) =df d, if x = y, and
σ[x/d](y) =df σ(y) otherwise.

Figure 1: Example process algebra

Figure 1 describes syntax and semantics of a process algebra
with variables (taken from a set V) over a data domain D. States of
distributed systems described in this language are tuples 〈P,R,σ〉
(written as of P;R,σ) comprising a term P of the algebra, together
with a variable state σ : V → D, and a countable infinite set R of
unused process identifiers. This set is used to create new compo-
nents, and to keep track of the termination of existing ones. Pro-
cesses are defined by recursive equations of the form Xx =df P,
where X is a process variable and x is a process identifier vari-
able ranging over R. We allow x to be omitted, and to be tar-
get of an assignment (in this case we write Xx←r). The transi-
tion function δa is written in a relational style using arrows, i. e.
P1;R1,σ1

a−→ P2;R2σ2 ⇔df δa(〈P1,R1,σ1〉) = 〈P2,R2,σ2〉. An ex-
ample system is defined in the following paragraphs.

System Actions and Dependencies. Let I ⊆ R be a set of user
identifiers, J be a set of scheduler identifiers, and Q be a set of
service identifiers. The action set AΣ of a distributed alphabet Σ is
defined by the regular expression (?+!)(rq,i, j +(g+d+p+e)q,i)+
uq,i + xq ← d for q ∈ Q, i ∈ I, and j ∈ J, and variable symbols xq
for each service q ∈Q. Moreover, to define the dependence relation
DΣ , we impose the rule that actions a and b (described by the above
syntax) are dependent if they share the same user identifier, the
same service identifer, or the same scheduler identifier.

Process Equations. Our example system consists of the follow-
ing processes, defined by a set of recursive equations:

G =df ∑
q∈Q

Ux
q ‖ G

Ux
q =df ∑

j∈J
!rq,x, j.

{
?gq,x.?pq,x.uq,x.!eq,x+?dq,x

}
.0x

Cj =df ∑
q∈Q

?rq,i, j.{!gq,i.(V x←i
q ‖Cj)+!dq,i.Cj

}

V x
q =df xq← xq +1.!pq,x.?eq,x.xq← xq−1.0,

where for each service q the variable xq ranges over the domain
D = N. We chose G ‖ �

j∈J Cj;R,σ : xq �→ 0 as an initial state of the
system’s executions.

The intuition of the example is as follow: A generator process G
initiates an arbitrary number of user processes Ui

q which in turn
contact one of the scheduler processes Cj by sending a request
!rq,i, j for a service q. The scheduler decides whether to grant the
request by replying with !gq,i, or to deny it by sending !dq,i. In the
former case, the scheduler initiates a service process Vi

q. This pro-
cess increases the number of users of the service q stored in the

variable xq, and sends a !pq,i to the user i to indicate that the ser-
vice is ready to be used. User i executes the internal action uq,i,
then it indicates the exit from the service usage by sending !eq,i to
the service process which then decreases xq. Finally, both the user
process and the service process terminate.

State Invariant and Error Mode. We now assume that the num-
ber of users that are allowed to use a service q is limited by some
constant Nq. We establish the state invariant ϕ =df {〈P,R,σ〉 : ∀q ∈
Q.σ(xq) � Nq}.

The trouble with our example is now that the state invariant is
defined in terms that do not have an influence to the execution of
the system—-a user process will use the service q regardless wether
xq � Nq does hold or not. Instead of extending our process language
and the example even more, we simply impose new semantic rules:

(use)
uq.P;R,σ

P;R,σ
σ(xq) � Nq,(crash)

uq.P;R,σ
ε ;R,σ [xq/Nq +1]

σ(xq) > Nq,

i. e. we “crash” a user process that tries to access a service q in case
σ(xq) > Nq, blocking this service.2

Pomsets. A labeled partial order (lpo) u = 〈E,�,λ〉 over some
alphabet A comprises a set of events E, a partial order � ⊆ E×E
called causal order of u, and a labeling function λ : E → A. We
define e1 � e2 =df ∀e ∈ e.[e1 � e � e2 ⇒ (e = e1 ∨ e = e2)]. We
usually write ẽ instead of λ(e), if it is clear from the context which
pomset u is meant. For subsets E ⊆ Eu we put E↓ =df �−1

u (E),
and e↓ =df {e}↓ for e ∈ Eu, if confusion is not possible. By ε =df
〈∅,∅,∅〉 we denote the empty lpo. Moreover, if a ∈ A, we denote
the letter 〈{0},∅,λ : 0 �→ a〉 also by a.

A subset E ⊆ Eu is called pre-closed in u if E↓ = E. For pre-
closed sets E we define u[E] =df 〈E,�u∩E×E,λu � E〉. The con-
currency relation of u is given by e1 cou e2 =df ¬(e1 �u e2) &
¬(e2 �u e1). A co-set of u is a set E ⊆ Eu such that E×E ⊆ cou.
A lpo u is called finitary if E↓ is finite for each finite co-set E of u.
Lpos u and v are isomorphic if there is a bijection f : Eu→ Ev such
that e1 �u e2⇔ f (e1) �v f (e2) and λv ◦ f = λu. By [u] we denote
the equivalence class of u and call [u] a partially ordered multiset
(pomset).

Remark 2. To get rid of the just introduced notion [u] we do not
distinguish between u and its equivalence class [u]. From a formal

2The service can actually still be used, as σ(xq) can be decreased
by service processes that are active when the “crash” happens.

point of view, this is clearly an oversimplification. But since all con-
cepts that we will discuss throughout this paper are either indepen-
dent of the concrete choice of a representative v ∈ [u], or—if not—
can be “corrected” by the right choice of v, no harm is done.

Let Σ be a d-alphabet and u be a pomset. Assume ẽ1 DΣ ẽ2 ⇒
e1 �u e2 ∨ e2 �u e1 does hold. Then u is called a pomset over Σ .
By Ps(Σ) we denote the class of pomsets over Σ . Throughout this
paper, we assume that all pomsets u ∈ Ps(Σ) are finitary, and more-
over, that Eu is a countable set.

LEMMA 1. If u ∈ Ps(Σ) is finitary, then u =
∨{v ∈ Ps(Σ) : v �

u and v is finite}.

An example where blurring up representatives and equivalence
classes requires the right choice of a representative is the follow-
ing: Define u � v if there is some injection f : Eu → Ev such that
f
(
e↓

)
= f (e)↓ and λv ◦ f = λu. If u � v holds, then u is called a pre-

fix of v. Furthermore, put u � v if there is some bijection f : Eu→Ev
such that f

(
e↓

)⊆ f (e)↓ and, as before, λv◦ f = λu. Then u is called
weaker than v.

For some u ∈ Ps(Σ), we define 〈u〉Σ =df 〈Eu,R∗,λu〉, with e1 R
e2 ⇔df e1 �u e2 & ẽ1 DΣ ẽ2. 〈u〉Σ is called the weakening of u
w. r. t. Σ . We define Psw(Σ) =df {〈u〉Σ : u ∈ Ps(Σ)}

LEMMA 2. For u,v ∈ Ps(Σ), (a) 〈u〉Σ ∈ Ps(Σ), (b) v � 〈u〉Σ ⇒
v = 〈u〉Σ ; (c) u � v⇒ 〈u〉Σ = 〈v〉Σ ; (d) 〈〈u〉Σ 〉Σ = 〈u〉Σ .

Furthermore, let us assume Eu ∩Ev = ∅ for appropriate repre-
sentatives of u,v∈Ps(Σ). We define u◦Σ v =df 〈Eu∪Ev,R∗,λu,λv〉,
with e1 R e2 =df e1 �u e2∨ e1 �v e2∨ (e1 ∈ Eu & e2 ∈ Ev & ẽ1 DΣ
ẽ2). u ◦Σ v is called the weak sequential composition of u and v
w. r. t. Σ .

LEMMA 3. For all u,v,w ∈ Psw(Σ), (a) u ◦Σ v ∈ Psw(Σ), (b)
〈u〉Σ ◦Σ 〈v〉Σ = 〈u◦Σ v〉Σ ; (c) ε ◦Σ u = u = u◦Σ ε; (d) u◦Σ (v◦Σ w) =
(u◦Σ v)◦Σ w.

Semantics. By virtue of the operator ◦Σ , the transition function
δ� of a system � ∈ I(Σ) can be extended to a partial mapping δν

u :
S� ⇁ S� for u ∈ Psw(Σ) as follows: δε =df idS� , δu◦Σ a =df δ�,a ◦
δu for finite u. We say that δu(s) is defined even for infinite u if
δv(s) is defined for all finite v with v < u. As before, we abbreviate
δv(s) =df v�(s). By L�(s) =df {v ∈ Psw(Σ) : v�(s) is defined} we
denote the pomset language of � at s ∈ S� .

Example 3. Consider the system from Example 2 and suppose
for simplicity J = {c}, and Q = {q}. The first steps of an example
execution are shown in Fig. 2. Note that the resulting pomset forms
a chain as in the example execution no concurrent computations are
performed.

Pomsets are more readable if drawn as directed acyclic graphs
(without transitive edges). Fig. 3 shows a pomset representing an
execution of our example system where two users try to access a
service q, the first one succeeds while the second one fails.

!rq,1,c→?rq,1,c→!gq,1→?gq,1→x+
q→!pq,1→?pq,1→uq,1→!eq,1→?eq,1→x−q

!rq,2,c→?rq,2,c→!dq,2→?dq,2

(x+
q (x−q) abbreviates xq← xq +1 (xq← xq−1))

Figure 3: Example execution (pomset).

!rq,1,c→?rq,1,c→!gq,1→?gq,1→x+
q→!pq,1→?pq,1→uq,1→!eq,1→?eq,1→x−q

rq,2,c→?rq,2,c→!dq,2→?dq,2

!gq,2→?gq,2

Figure 4: A pomtree.

Pomtrees. The trouble with pomsets is that they do not form a
complete lattice which is required to apply the AI framework of
Cousot & Cousot, because u∨ v might not be a pomset over Σ . We
therefore extend the definition of pomsets to incorporate a notion
of “conflict” or “branching behavior”:3

Let Σ be a d-alphabet. A pomtree over Σ is a pomset ζ is a pom-
set over AΣ together with a conflict relation � ⊆ Eζ ×Eζ defined
to be the smallest irreflexive and symmetric relation satisfying: (a)
ẽ1 DΣ ẽ2 & e1 coζ e2⇒ e1 � e2, and (b) e1 � e2 & e1 �ζ e3⇒ e3 � e2.
By Pt(Σ) we denote the class of pomtrees over Σ .

Example 4. Fig. 4 shows an example of a pomtree that expresses
two different executions of the system described in Example 2. The
conflict relation is represented by a dashed line.

A configuration of a pomtree ζ is a prefix u � ζ of ζ such that
u ∈ Psw(Σ). By Cf(ζ) we denote the class of configurations of ζ .
Further, define Cf∨(ζ) =df max� Cf(ζ)

LEMMA 4. Let ζ ∈ Pt(Σ) and let E ⊆ Eζ a pre-closed set of
event. If E×E ∩ �ζ = ∅, then ζ [E] ∈Cf(ζ).

LEMMA 5. For all ζ ,ξ ∈ Pt(Σ), ζ ∨ ξ is defined and is a least
upper bound of ζ and ξ w. r. t. �. Moreover, ζ =

∨
Cf(ζ).

Obviously, Cf(ζ) is prefix closed, in particular, ε ∈ Cf(ζ). Fur-
thermore, note that �ζ is uniquely defined by ζ and Σ . Thus each
pomset u ∈ Ps(AΣ) can be viewed as a pomtree over Σ with gener-
ated conflict relation �u= ∅). We therefore allow expressions like
u∨ v for u,v ∈ Psw(Σ), even if u∨ v /∈ Psw(Σ), since (using the
implicit construction rule for �u∨v) u∨ v ∈ Pt(Σ).

THEOREM 2. Let � ∈ I(Σ) and s ∈ S� . Define T�(s) =df
{∨{u : ∃v ∈ X .u � v} : X ⊆ L�(s)} to be the pomtree language
of � at s. Then the structure 〈T�(s),�,ε ,

∨
T�(s),∨,∧〉 forms a

complete lattice.

Remark 3. We occasionally use the notion ζ ◦Σ ξ
for some ζ ,ξ ∈ Pt(Σ) to denote one of the pomtrees∨

({u◦Σ v : v ∈Cf∨(ξ)}∪Cf(ζ)\{u}) for u ∈ Cf(ζ). Clearly,
applied to pomtrees, the operation ◦Σ is not longer well-defined
(it depends on the choice of u). Thus we restrict the usage of
expressions of this form to those cases where the concrete result
does not matter.

Finite Representations of Pomtrees. Let � ∈ I(Σ) be an interpre-
tation of Σ and let s∈ S� . In this paragraph, we will show that if the
set of states reachable from s if finite that there is a finite pomtree
ζ which is complete in the sense that each state reachable from s is
represented in ζ .

Let s ∈ S� and let ζ ∈ T�(s). We call an event e ∈ Eζ a cut-off
event if there is another event e′ ∈ Eζ with e′ <ζ e and ζ [e↓]�(s) =
3Alternatively, one can work with sets of pomsets pre-closed under
�, see Theorem 2.

G ‖C;R,xq = 0 �rec3 Ux
q ‖ G ‖Cc;R,xq = 0

�rec2 !rq,1,c.
{

?gq,1.?pq,1.uq,1.!eq,1+?dq,1
}
.01 ‖ G ‖?rq,1,c.{!gq,1.(V x←1

q ‖Cc)+!dq,1.Cc};R\{1},xq = 0

!rq,1,c◦Σ ?rq,1,c−−−−−−−−→
asyn2

{
?gq,1.?pq,1.uq,1.!eq,1+?dq,1

}
.01 ‖ G ‖ {!gq,1.(V x←1

q ‖Cc)+!dq,1.Cc};R\{1},xq = 0

···◦Σ !gq,1◦Σ ?gq,1−−−−−−−−−−→
choice,asyn2

?pq,1.uq,1.!eq,1.01 ‖ G ‖V x←1
q ‖Cc;R\{1},xq = 0

�rec1 ?pq,1.uq,1.!eq,1.01 ‖ G ‖ xq ← xq +1.!pq,1.?eq,1.xq ← xq−1.0 ‖Cc;R\{1},xq = 0

···◦xq←xq+1−−−−−−−→
ass

?pq,1.uq,1.!eq,1.01 ‖ G ‖!pq,1.?eq,1.xq← xq−1.0 ‖Cc;R\{1},xq = 1 · · ·
Figure 2: Example execution.

ζ [e′↓]�(s). With other words, the state that is reached after execut-
ing e has already been reached by the execution of smaller event e′,
i. e. is already represented in the history of e. A pomtree ζ ∈ T�(s)
is called locally complete at s if

LC1. each event e ∈ max�ζ Eζ is either a cut-off event or for all

a ∈ AΣ it holds that ζ [e↓]� ◦Σ a /∈ L�(s), and

LC2. if e ∈ Eζ is not a cut-off event and ζ [e↓] ◦Σ a ∈ L�(s) for
some a ∈ AΣ , then ζ [e↓]◦Σ a � ζ .

The pomtree ζ is called globally complete at s if for each state
s′ ∈ S� we have: If there is some w ∈ L�(s) such that w�(s) = s′,
then there is some configuration v ∈Cf(ζ) with v�(s) = s′.

We now show that local completeness implies global complete-
ness.

THEOREM 3. Let � ∈ I(Σ), s ∈ S� and let ζ ∈ T�(s). Assume
that the set Rs =df {s′ ∈ S� : ∃u ∈ L�(s).s′ = u�(s)} if finite. If ζ
is locally complete at s than it is globally complete at s.

PROOF. (Sketch) Suppose some state s′ ∈ Rs that is not repre-
sented in ζ , i. e. u�(s) �= s′ for all configurations u ∈ Cf(ζ). Since
s′ ∈Rs, there is some w∈L�(s) such that w�(s)= s′. Let v∈Cf(ζ)
be a maximum pomset with v � w. Then there is a cut-off event
e ∈ Ev, i. e. there is some e′ <ζ e such that ζ [e↓]�(s) = ζ [e′↓]�(s).
Furthermore, we have w = ζ [e↓]◦Σ u for some pomset u. If follows
that ζ [e′↓] ◦Σ u ∈ L�(s). But since ζ is local complete, there must
be non-empty u1,u′ such u = u1 ◦Σ u′ and ζ [e′↓] ◦Σ u1 � ζ . Let u1
be the maximum pomset with this property. Again, u1 must contain
a cut-off event. Thus we can repeat the above construction until the
part of u that does not belong to ζ reduces to ε .

THEOREM 4. Let � ∈ I(Σ), s ∈ S� and let ζ ∈ T�(s). Assume
that the set Rs =df {s′ ∈ S� : ∃u∈L�(s).s′= u�(s)} if finite, more-
over, assume that en�(s) is finite for each s ∈ Rs. Then there is a
finite locally complete pomtree ζ at s.

PROOF. (Sketch) Since Rs if finite, there is no infinite sequence
of pomtrees ζ0 � ζ1 � · · ·� ζi � · · · without replicating the states
that are represented in ζi. The finiteness of en�(s) ensures that ζi
does not contain an infinite co-set.

The following theorem explains how to compute locally (and
thus globally) complete pomtrees as result of a fixed point itera-
tion. Since the result of each step of this iteration depends on the
actual choice of an action a ∈ AΣ , the step function Φs is defined
on sets of pomtrees rather than on pomtrees.

THEOREM 5. With the assumptions of Theorem 4, a locally
complete finite pomtree can be effectively computed as the least

fixed point of the function Φs :�(Pt(Σ))→�(Pt(Σ)):

Φs(X) =df
{

ζ ◦Σ a : a ∈ AΣ & ζ ◦Σ a ∈ T�(s) &

c(ζ)∩<−1
ζ◦Σ a(ea) = ∅

}∪X (1)

where we assume that Eζ◦Σ a = Eζ ∪{ea}, and ea /∈ Eζ (i. e. ea is
the event that is added to ζ if composed with a), and c(ζ) denotes
the set of cut-off events of ζ . More precisely, there is some n < ω
such that Φn

s ({ε}) = lfp[Φs,{ε}] = {ξ}, and ξ is local complete at
s.

Since the result of the iteration process is unique, we write
ζ = lfp[Φs,ε]. Fig. 5 shows an algorithm which computes a local
complete pomtree according to Theorem 5.

Remark 4. Local completeness has been elaborated in the con-
text of safe Petri nets by McMillan [16]. McMillan uses a more
efficient definition of cut-off events that replaces the ordering �ζ
that is used to relate a cut-off event to its predecessor. In [9] it has
been shown that McMillans ordering can be further improved, and
that the ordering we use is most inefficient (in terms of the size of
the resulting complete pomtree) in a hierarchy of orderings. We use
this ordering for the sake of simplicity; the results of [9] can easily
be applied in the context of our work.

4. MORPHISMS
Effective planning for large scaled distributed systems requires

(a) an abstraction mechanism that prevents from taking into account
an overwhelming amount of details, and (b) a notion of system
composition or, more general, the embedding of subsystems into
composite systems.

Proofs of lemmas and theorems of this section (and Section 6)
can be found in [8], if not stated otherwise.4

Abstractions. Let Σ1 and Σ2 be distributed alphabets, and �1 ∈
I(Σ1), �2 ∈ I(Σ2) An abstraction from �1 to �2 is a pair of map-
pings α : AΣ1 ⇁ AΣ2 and β : S�1 → S�2 such that (a) α(a) IΣ2

α(b) ⇒ a IΣ1 b; (b) if a�1 (s1) = s2 then if α(a) is defined then
α(a)�2 (β(s1)) = β(s2) and if α(a) is not defined then β(s1) =
β(s2), and (c) ϕ�2 ⊆ β(ϕ�1) We denote the fact that α,β form an
abstraction by [α,β] : �1→ �2.

Remark 5. One can show that the pair of identity mappings on
AΣ and S� is an abstraction, and that the component-wise compo-
sition of abstraction is again an abstraction. Thus, the class of in-
terpretations of d-alphabets together with abstraction arrows forms
a category.
4Actually, [8] uses a slightly different version of the notions pre-
sented here. These differences do however not jeopardize the re-
sults presented here.

Example 5. To obtain an abstraction for our running Exam-
ple 2, use abstract states of the form 〈P,R,K〉, with the abstrac-
tion mapping β : 〈P,R,σ〉 �→ 〈

P,R,σ ,maxq∈Q σ(xq)
〉
. We further-

more have to redefine the state invariant to ϕ =df {〈P,R,σ ,n〉 :
n < minq∈Q Nq}. We suppose that the concrete and the abstract d-
alphabet Σ coincides, and put α =df idAΣ .

The reader may ask whether the set of abstract states is indeed
more “simple” than that of concrete states. The idea here is that
we use the state component n as a “quality indicator” to assess the
suitability of a state. We furthermore encode the “correlation pro-
cess” of n (i. e. n = maxq∈Q σ(xq)) directly into the abstract states
by keeping the variable state σ , because the abstract version of an
interpretation based on quality indicators needs to have a way to es-
timate the effect of a particular (abstract) system action to the val-
ues of these indicators. The resulting complicatedness of abstract
states is thus due to the simplicity of the running example.

Let [α,β] : �1 → �2 be an abstraction for interpretations �1 ∈
I(Σ1), �2 ∈ I(Σ2). A refinement [α,β]−1 : �2→� for � ∈ I(Σ1)
is defined by: (a) S� =df {β−1(s) : s ∈ S�2 & β−1(s) �= ∅}, (b)

a�(β−1(s1)) = β−1(s2)⇔df ∃a′ ∈ α−1(a).a′�2
(s′1) = s′2, and (c)

ϕ� =df
{

β−1(s) : s ∈ ϕ�2

}
.

�

�1 �2

�3

[α,β]

[α,β]−
1

[α̂
,β̂

]
[α

1
,β

1
] [α

2 ,β2]

[α̃
,β̃

]

LEMMA 6. Let [α,β] : �1 → �2
be an abstraction and let [α,β]−1 :
�2 → �3 be the associated refine-
ment. Then (a) there is an abstrac-
tion [α̂, β̂] : �1 → �3; and moreover,
(b) if [α1,β1] : �1 → � and [α2,β2] :
�→ �2 be abstractions, then there is
a unique abstraction [α̃,β̃] : �3 → �
that makes the diagram displayed right
commute.

PROOF. Put α̂ =df idAΣ1
� α−1(AΣ2) and β̂(s) =df β−1(s). It is

an easy exercise to show the required properties.

Thus the refined system �2 is more abstract than the original
system �1, but it is nevertheless the “most concrete” system that
can be obtained by any refinement process.

We now are going to investigate the relationship between ab-
stractions and pomset languages of interpretations. For that, we first
have to explain how a mapping on action sets of distributed alpha-
bets can be extended to pomsets over these alphabets.

algorithm GENERATE(�,s0) is
1 input � ∈ I(Σ),s0 ∈ S� ;
2 output a locally complete pomtree ζ ∈ T�(s) at s ;
3 ζ ← ε;s← s0;c←∅;A← en�(s) :
4 while A �= ∅

5 do select a ∈ A;
6 if <−1

ζ◦Σ a(ea)∩c = ∅

7 then ζ ← ζ ◦Σ a;
8 select u ∈ Cf (ζ) :
9 ∃b ∈ AΣ .u◦Σ b ∈ L �(s0)\ Cf (ζ);

10 on failure output ζ ;
11 s← u�(s0);A← en�(s);
12 if ea ∈ c(ζ)
13 then c← c∪{ea};
14 else A← A\{a};
15 output ζ .

Figure 5: Pomset generation procedure

Let Σ1,Σ2 be distributed alphabets such that α : AΣ1 ⇁ AΣ2 is
a mapping. Then α is inductively extended to a mapping α∗ :
Ps(Σ1)→ Ps(Σ2) as follows:

α∗(ε) =df ε ;

α∗(u◦Σ1 a) =df

{
α∗(u)◦Σ2 α(a), if α(a) is defined;

α∗(u), otherwise;

for finite u;

α∗(u) =df
∨
{α∗(v) : v � u & v is finite} for infinite u.

for all u ∈ Ps(Σ2) and a ∈ AΣ2 .
The following lemma justifies the relationship of the notions of

refinement and abstraction on distributed alphabets and interpreta-
tions by means of the pomset languages of interpretations.

LEMMA 7. Assume [α,β] : �1 → �2 is an abstraction. Then
α∗(L�1(s))⊆ L�2(β(s)) for all s ∈ S�1 .

Embedding. The embedding operation provides us with a generic
notion on how to understand a system component as part of a larger
system, or the relationship of a system and its environment. Note
that the composition of a number of system components can be un-
derstood as the embedding of each of these components into the
composed system. Therefore, embeddings give us a generic notion
of composition without assuming any specific composition opera-
tion such as synchronous or asynchronous communication.

Let �1 ∈ I(Σ1) and �2 ∈ I(Σ2) and let f : AΣ1 → AΣ2 be an in-
jective mapping and g : S�2 → S�1 be a surjective mappings such
that for all a,b ∈ AΣ1 (a) f (a) IΣ2 f (b)⇒ a IΣ1 b, (b) f (a)�2 (s1) =
s2 ⇒ a�1(g(s1)) = g(s2), and moreover (c) ϕ�1 ⊆ β(ϕ�2). We
write (f ,g) : �1→ �2 in this case.

Remark 6. Since idAΣ and idS� form an embedding of � ∈ I(Σ)
into itself, and moreover the component-wise composition of em-
beddings forms an embedding, the class of interpretations of d-
alphabets together with embeddings as arrows is a category.

Example 6. In our example process algebra, f = idAΣ and g :
〈U ‖ P,R,σ〉 �→ 〈U,R,σ〉 form an embedding, where U refers to all
the terms “derivable” from Ux

q (compare Figure 2).

5. SUPERVISION
Supervision is based on observing the processing of some sys-

tem, and on interacting if the system enters an undesired state
(which could be an error state, a performance bottleneck, etc.). In-
teraction is done by restricting the possible behaviors of the system
under supervision to those alternatives that will lead the system
back into a desired state. Restricting behavioral alternatives bases
on the disabling of actions of the system under supervision. But of
course, not all actions can be controlled in this way. System actions
like interrupts, timeouts, are beyond the control of a supervisor. If
we consider a component of a larger environment, then from the
point of the component, actions of the environment are not control-
lable (this may different if the environment is considered).

Hence, if Σ is a d-alphabet, we partition its alphabet set AΣ
into two disjoint sets AΣ ,c and AΣ ,uc of controllable and un-
controllable actions, respectively. Furthermore, we put Σc =df〈
AΣ ,c, IΣ ∩AΣ ,c×AΣ ,c

〉
, and Σuc =df

〈
AΣ ,uc, IΣ ∩AΣ ,uc×AΣ ,uc

〉
.

Example 7. In our example, actions !gs,i, !ds,i, !ps,i are control-
lable. The behavior of the user processes are not controllable, as
well receiving events of messages from user processes.

Our approach is similar to that of Supervisory Control Theory
(SCT) [23], with the difference that we do not assume “strong”
control in the sense that a supervisor is active all the time, i. e. the
the supervised system is not able to exhibit undesired alternatives
at all. SCT has originally been presented using finite state machines
as underlying system models. Recently, extensions to infinite state
systems have been considered [3, 15, 10].

Controllability. A pomset w ∈ Psw(Σ) is called controllable if
{ẽ : e ∈min�w

Ew}∩AΣ ,uc �= ∅. Note that if w is controllable, then
it might have a suffix (i. e. some v such that th ere is an u with w =
u ◦Σ v) that is not controllable. On the other hand, uncontrollable
pomsets may have controllable suffices.

Runs. A pomset w ∈ Psw(Σ) is called a run of some � ∈ I(Σ) at
some s ∈ S� if w ∈ L�(s) and either it is infinite or it is finite and
moreover, (w◦Σ a)�(s) is undefined for all a ∈ AΣ .

Reactive Supervision Problem. Suppose some state s of a system
� ∈ I(Σ) that violates the state invariant ϕ� . The reactive supervi-
sion problem consists of the computation of maximum a pomtree
ζ comprising of configurations u that, if executed by �, will lead
the system back into some state s′ ∈ ϕ� , and moreover, if there is a
pomset that is also executable at s but does not belong to the con-
figurations of ζ (i. e. does not lead the system back into a desired
state), then its execution can be prohibited by a supervisor.

More formally: Let s ∈ S� such that s �∈ ϕ� . A reactive plan for
s is a finite pomtree ζ ∈ T�(s) such that

R1. u�(s) ∈ ϕ� for all u ∈Cf∨(ζ);

R2. u�(s) �∈ ϕ� for all u ∈Cf(ζ)\Cf∨(ζ), and moreover,

R3. for all u ∈ Cf(ζ) \Cf∨(ζ) it holds: If there is some pomset
v ∈ L�(u�(s)) such that u ◦Σ v �∈ Cf(ζ), then v is control-
lable.

A valid plan ζ is called most permissive at s if for each valid plan
ξ ∈ T�(s) we have ζ � ξ ⇒ ζ = ξ .

Example 8. In order to make the system of Example 2 “super-
visable” we have to add some “management functions”: We re-
define the following equations:

Ux
q =df ∑

j∈J
!rq,x, j.

{
?gq,x.(?pq,x.uq,x.!eq,x+?dq,x)+?dq,x

}
.0x

V x
q =df xq← xq +1.(!pq,x.?eq,x+!dq,x).xq← xq−1.0,

Let J = {c}, Q = {q}, Nq = 1, and

Ui =df
{

?ps,i.us,i.!es,i+?ds,i
}
.0i and

Vi =df (!ps,i.?es,i+!ds,i).xs← xs−1.0

for i = 1,2,3. Consider the concrete state s =〈
P;R\{1,2,3},xq �→ 3

〉
with

P =
3�

i=1

Ui ‖
3�

i=1

Vi ‖Cc ‖ G

We have β(s) =
〈
P,R\{1,2,3},xq �→ 3,3

〉
/∈ ϕ . A most permissive

valid plan at β(s) is

∨
i

⎛
⎝!ds,i ◦Σ xq← xq−1◦Σ

∨
j �=i

(!ds, j ◦Σ xq← xq−1)

⎞
⎠

for i, j = 1,2,3.

Pro-active Supervision Problem. Dually, we can define the pro-
active supervision problem as the problem to determining all finite
behavioral alternatives that lead to a state violating the state invari-
ant and that cannot be prohibited by a supervisor. If formal terms:
Let s ∈ S� such that s ∈ ϕ� . A violation prediction for s is a finite
pomtree ζ ∈ T�(s) such that

P1. u�(s) �∈ ϕ� for all u ∈Cf∨(ζ);

P2. u�(s) ∈ ϕ� for all u ∈Cf(ζ)\Cf∨(ζ), and moreover,

P3. for all u ∈ Cf(ζ) \ Cf∨(ζ): If there is some pomset v ∈
L�(u�(s)) such that u◦Σ v �∈ Cf(ζ), then v is controllable.

A violation prediction ζ is called complete at s if for each violation
prediction ξ ∈ T�(s) we have ζ � ξ ⇒ ζ = ξ .

Solutions. To meet the assumptions of Theorem 5 assume that
for a given state s the set Rs =df {s′ ∈ � : ∃u ∈ L�(s).u�(s) = s′}
is finite, and moreover en�(s′) is finite for all s ∈ Rs.

We now define—in addition to the functional Φs given by Equa-
tion (1)—a number of functionals acting on finite pomtrees:

Ψs,Σ (ζ) =df
∨
{u[Eu \�u(E)] :

a ∈ AΣ & u ∈Cf∨(ζ) & u◦Σ a �∈ Cf∨(ζ)},
where E =df max

�u

λ−1
u (DΣ (a))

Θs,S(ζ) =df
∨

min
�
{u ∈Cf(ζ) : v�(s) ∈ S}

ΩΣ ,S(s) =df Θs,S
(
lfp

[
Ψs,Σ , lfp [Φs,ε]

])
THEOREM 6. If s ∈ S� \ϕ� for some � ∈ I(Σ), the ΩΣuc,ϕ� (s)

is a most permissive reactive plan for s.

PROOF. To see that ΩΣuc ,ϕ� (s) is a reactive plan, recall from
Theorem 4 that ζ = lfp [Φs,ε] is globally complete. Ψs,Σuc (ζ)
deletes all maximum uncontrollable events e from ζ including all
immediate predecessors of e. Thus a situation in which e is exe-
cuted cannot longer occur. Thus lfp[Ψs,Σuc ,ζ] fulfills property (R3).
The final application of Θs,ϕ� ensures properties (R1) and (R2).

To prove maximum permissiveness of ζ = ΩΣuc,ϕ� (s) assume
there is a valid plan ξ such that ζ < ξ . Since lfp [Φs,ε] is state
complete, we can assume that ξ � lfp [Φs,ε] is true. Then we have
a configuration u ∈ Cf∨(ζ) such that one of the following is true:
(a) There is some a ∈ AΣ such that u ◦Σ a ∈ Cf(ξ). This however
violates property (R2), and ξ is not a reactive plan. (b) So assume
u ◦Σ a /∈ Cf(ξ). Then there is some pomset v such that there are
e ∈ min�v

(Ev), e′ ∈ Ev, ẽ = a, and e �v e′, such that both a and
ẽ′ are controllable. But in this case a (more precisely, the event
corresponding to a) would not have been removed from lfp [Φs,ε]
in the computation process of lfp

[
Ψs,Σuc , lfp [Φs,ε]

]
.

THEOREM 7. If s ∈ ϕ� for some � ∈ I(Σ), the ΩΣc,S�\ϕ� (s) is
a complete violation prediction for s.

PROOF. Dualize the proof of Theorem 6.

6. PLANNING WITH ZOOMS

A Galois Connection. In order to employ the the Cousot &
Cousot framework of AI, we need to find an appropriate Galois
connection:

THEOREM 8. Let [α,β] : �1 → �2 be an abstraction. Then
α∗,γ :�(L�1(s)) ��(L�2(β(s))) is a Galois connection, where

γ : L�2(β(s))→�(L�1 (s)), and γ(u) is defined to be the smallest
set satisfying the following conditions:

ε ∈ γ(ε)

u ∈ γ(v) & a ∈ [a′]α ⇒ u◦Σ1 a ∈ γ(v◦Σ2 a′) for finite u,v;∨
C∈Mc(X)

C ∈ γ(v) for infinite u;

where X =df
⋃{γ(w) : w < v & w is finite}, and Mc(X) denotes the

set of all maximum chains in X, that is the set of all maximum sub-
sets C ⊆ X such that u,v ∈C⇒ u � v∨ v � u.

PROOF. Assume α∗(X)⊆Y . By Lemma 6 we have γ(α∗(X))⊆
L[α,β]−1(�2)(β(s)), hence X ⊆ γ(α∗(X))⊆ γ(Y). Assume X ⊆ γ(Y).
Then α∗(X)⊆ Y by Lemma 7.

Remark 7. Theorem 8 is formulated in terms of chains because
γ(v) yields a set of possible concretization of v that are not neces-
sarily comparable by �. Thus in “jumping” from finite to infinite
pomsets, the sets to build infinite joins need to be made explicit.

Zooms. We now consider the following situation. Let (f ,g) :
�1→ �2 be an embedding and let [β ,α] : �3→ �1 be an abstrac-
tion. The question arises whether we can use the embedding pro-
cess (described by (f ,g)) also to embed the refined version of �1
into (a refined version) of �2? Such an operation would provide us
with a magnifying glass, a notion of local refinement or zooming.
Of course, we are not looking for an arbitrary zooming operation
but for a universal one in the sense that the resulting refined system
is the most abstract one that embeds the interpretation �3.

�1 �2

�3 �4

�5

(f ,g)

[α
,β

]

(f̂ ,ĝ)

[α̂
,β̂

]

[α̃ ,̃β](f ′,g ′)

[α ′,β ′]

THEOREM 9. Let �i ∈ I(Σi) in-
terpretations for i = 1,2,3 such that
(f ,g) : �1 → �2 is an embedding and
[α,β] : �3 → �1 is an abstraction.
Then there is an interpretation �4 ∈
I(Σ4), an embedding (f̂ , ĝ) : �3→ �4,
and an abstraction [α̂,β̂] : �4 → �2
such that for all interpretations �5 and
all embedings (f ′,g′) : �3 → �5 and
abstractions [α′,β ′] : �5→ �2 there is
a uniquely defined abstraction [α̃,β̃] : �5 → �4. In other words,
[α̃, β̃] is the only abstraction arrow that makes the diagram dis-
played right commute.

The following theorem states that zooms can be composed.

�1 �2 �3

�4 �5 �6

(f1,g1) (f2,g2)

(f3,g3) (f4,g4)

[α
1
,β

1
]

[α
2
,β

2
]

[α
3
,β

3
]

THEOREM 10. Consider the
diagram show left. If the inner
squares form two zooms, then
the outer rectangle is also a
zoom. If the right hand side in-
ner squares and the outer rectan-
gle are zooms, then the left hand

side inner square is also.

Planning with zooms. To prepare the results presented in this
paragraph, we have to ensure that controllability remains invariant
under abstractions and embeddings. Therefore, if [α,β] : �1→ �2
is an abstraction for �1 ∈ I(Σ1) and �2 ∈ I(Σ2), than we stipu-
late that α(AΣ1,uc)⊆ AΣ2,uc does hold, since a more concrete event
which in not controllable cannot made controllable by abstrac-
tion. If (f ,g) : �1 → �2. is an embedding, we have to assume

1. If a state s /∈ S� is detected, compute a most permissive
valid plan ξ for s.

2. Stop if step (1) does not yield a result.

3. For each localized environment �i, compute a prefix
ζi � γ(ξ) such that ζi ∈ T�i

(s′), where s′ ∈ β̂−1(s) is
the state that is detected on the level of �i. Note that
s′ �∈ ϕ�i

. We know that u�i
(s′) ∈ ϕ�i

for each configu-
ration u ∈ Cf∨(ζi), but ζi is not necessarily a valid plan,
or most permissive.

4. Stop if step (3) does not yield a result.

Figure 6: Planning algorithm

f (AΣ1,c) ⊆ AΣ2,c, since actions that are controllable in �2 are not
necessarily controllable in �1.

Consider again the zoom diagram displayed in Theorem 9. Let
ζ ∈ T�2(s) be a finite pomtree for some state s ∈ S�2 . Since the
converse of Lemma 7 does not hold, γi(ζ) is not necessary an el-
ement of T�4(s

′) (where γi is the adjoint in the Galois connection
α̂∗i ,γi : L�2(s) � L�4(s) and s′ ∈ [s]β̂). We however have:

THEOREM 11. Assume the notions of Theorem 9. Let s∈ S�4 be
a state such that s /∈ ϕ�4 and let ζ ∈ T�4(s) be a most permissive
valid plan for s. If ξ ∈ T�2(β(s)) is a most permissive valid plan
for β(s), then α̂∗(ζ) � ξ .

The proof of the theorem is rather tedious, also the theorem itself
is rather obvious. It bases on the idea that if ζ resolves a problem
on a concrete level (i. e. in �4), than the problem on a abstract level
(i. e. in �2). But since ξ is most permissive we obtain α̂∗(ζ) � ξ .

�

�2 �2 · · ·

�2 �2 · · ·

�′1 �′2 · · ·

�′1 �′2 · · ·

In practice, we will apply zooms on
a number of embedded components, i. e.
we will use a families {[αi,βi] : �i →
�i}i∈I and {(fi,gi) : �i → �}i∈I , ob-
taining families of completions {[α̂i, β̂i] :
�i → �}i∈I and {(f̂i, ĝi) : �i → �i}i∈I
(compare figure right). In this case, we
call the interpretation � a global envi-
ronment, and the interpretations �i lo-
calizations of �. This situation can be
iterated forming a tree structure of interpretations that are increas-
ingly more concrete—and more localized—towards the leaves of
the tree by letting each of the interpretations �i the environment of
another set of zoom diagrams.

Theorem 11 provides us now (indirectly) with a planning algo-
rithm utilizing zooms as shown in Figure 6. Again, an algorithm
for violation prediction with zooms can be obtained by dualizing.

Planning with zooms is done top-down, which has the following
implications: The choice of the abstractions {[αi,βi] : �i→�i}i∈I
is very sensible. Choosing a version of �i that is “too abstract”
might render to many abstract action as uncontrollable because
some of their concrete counterparts are not controllable, leading
to the situation that a valid plan cannot be computed at all. On the
other hand, using abstractions that are “to concrete” leads to com-
plexity problems and to non-feasible planning algorithms.

What happens if the execution of the algorithm is terminated in
Step (2) because of the fact that too many uncontrollable events
exist? If � is in fact the root of out model tree, we have to conclude
that we cannot resolve the problem situation. But an action that is
uncontrollable in one component may be controllable in another

one. Thus if there is a model level available above �—say �′—
we can try to repeat the planning algorithm on this level. Since �′
embeds other components besides �, controllable actions of these
components are available to resolve the problem situation on the
higher level.

We conclude that a hierarchical structure of the system models
that are used for supervision allows to resolve problems on a level
that is as local as possible.

For pro-active planing, the situation is similar. Suppose there is
a complete violation prediction ζ for some state s ∈ S�. Again,
we have to “concretize” ζ into the localized environments �i to
determine whether ζ can be executed locally. We omit the details.

7. SUMMARY AND FURTHER WORK
In this paper, we have presented an approach to perform reac-

tive as well as pro-active planning for distributed autonomic sys-
tems comprising components that exhibit operational models of
themselves. Using the embedding and abstraction morphisms, it
had been shown that there is a “most abstract” concretization of
an abstracted system component under the embedding into some
environment, or—using a more colorful language—it is possible
to use component abstractions as “magnification glasses” to zoom
into models without inventing details.

Reactive supervision has been defined as the problem to lead a
system from an undesired state back into a desired one under the as-
sumption of partial controllability. Pro-active supervision is about
the prediction of problem states that cannot be prevented because
of the lack of controllability.

We presented algorithms based on the Cousot & Cousot frame-
work of Abstract Interpretation to solve both problems. We further-
more elaborated how these solutions can be applied in the context
of a hierarchical system model leading to an iterative planning al-
gorithm that uses the most local view to the system that is possible
(under a given set of abstractions/embeddings).

A number of open questions remain, the most immanent are:

1. How to incorporate widening/narrowing operators for Ab-
stract Interpretation (Remark 1)?

2. How to define suitable abstractions (embeddings are usually
given by the structure of the SUS)? Is there a way to “adjust”
abstractions that are to coarse or fine gained?

3. Predictions that incorporate additional probabilities (express-
ing how likely it is that an uncontrollable actions occurs)
would be much more useful.

8. REFERENCES
[1] M. Arbib and E. Manes. Arrows, Structures, and Functors:

The Categorical Imperative. Academic Press, New York,
1975.

[2] G. Birkhoff. Lattice Theory. American Mathematical
Society, Providence, Rhode Island, 3rd edition, 1967.

[3] Y.-L. Chen and F. Lin. Safety control of discrete event
systems using finite state machines with parameters. In Proc.
of American Control Conference 2001, pages 975–980,
Arlington, VA, June 2001.

[4] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Conference Record of the
Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 238–252, Los
Angeles, California, 1977. ACM Press, New York, NY.

[5] P. Cousot and R. Cousot. Abstract interpretation frameworks.
Journal of Logic and Computation, 2(4):511–547, 1992.

[6] P. Cousot and R. Cousot. Comparing the Galois connection
and widening/narrowing approaches to abstract
interpretation, invited paper. In M. Bruynooghe and
M. Wirsing, editors, Proceedings of the International
Workshop Programming Language Implementation and
Logic Programming, PLILP’92,, Leuven, Belgium, 13–17
August 1992, Lecture Notes in Computer Science 631, pages
269–295. Springer-Verlag, Berlin, Germany, 1992.

[7] P. H. Deussen. Analyse verteilter Systeme mit Hilfe von
Prozessautomaten. PhD thesis, Brandenburg Technical Univ.
of Cottbus, 2001. In German.

[8] P. H. Deussen. A mathematical framework for pervasive
supervision. Cascadas project deliverable D2.1, Fraunhofer
Institute for Open Communication Systems, 2006.

[9] J. Esparza, S. Römer, and W. Vogler. An improvement of
McMillan’s unfolding algorithm. In TACAS, pages 87–106,
1996.

[10] B. Gaudin and P. H. Deussen. Supervisory control on
concurrent discrete event systems with variables. In Proc.
2007 American Control Conference, July 2007.

[11] R. Goldblatt. Topoi, the Categorial Analysis of Logic. North
Holland Publishing Company, 1979.

[12] J. Grabowski. On partial languages. Fund. Inform,
4(2):427–498, 1981.

[13] J. Kephart and D. Chess. The vision of autonomic
computing. IEEE Computer, 36(1):41–52, 2003.

[14] S. M. Lane. Categories for the Working Mathematics,
volume 5 of Graduate Texts in Mathematics. Springer
Verlag, New York, 1977.

[15] T. Le Gall, B. Jeannet, and H. Marchand. Supervisory control
of infinite symbolic systems using abstract interpretation. In
Proc. of the 44th IEEE Conference on Decision and Control
and Control (CDC’05) and European Control Conference
(ECC 2005), Sevilla (Spain), December 2005.

[16] K. L. McMillan. A technique of state space search based on
unfolding. Formal Methods in System Design: An
International Journal, 6(1):45–65, January 1995.

[17] R. Milner. Communication and Concurrency. Prentice Hall,
1989.

[18] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event
structures and domains, Part I. Theoretical Computer
Science, 13:85–108, 1981.

[19] V. Pratt. Modelling concurrency with partial orders.
International Journal of Parallel Programming,
15(1):33–71, 1986.

[20] M. Smirnov. Autonomic communication—research agenda
for a new communication paradigm. Company whitepaper,
Fraunhofer Institute for Open Communication Systems,
Berlin, Germany, 2004.

[21] P. H. Starke. Multiprocessor systems and their concurrency.
J. Inf. Process. Cybern. EIK, 20(4):207–427, 1984.

[22] A. Tarski. A lattice.theoretical fixedpoint theorem and its
applications. Pacific Journal of Mathematics, 5:522–587,
1955.

[23] W. M. Wonham. Notes on control of discrete-event systems.
Tech. rep. ECE 1636F/1637S, Department of Electrical and
Computer Engineering, Univertsity of Toronto, Toronto, July
2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

