
On group formation for self-adaptation in pervasive
systems (Invited Paper)

Daniel Minder
Universität Bonn

Institut für Informatik IV
Römerstr. 164

53117 Bonn, Germany
minder@cs.uni-bonn.de

Andreas Grau
Universität Stuttgart

Institut für Parallele und
Verteilte Systeme
Universitätsstr. 38

70569 Stuttgart, Germany
andreas.grau@ipvs.uni-

stuttgart.de

Pedro José Marrón
Universität Bonn

Institut für Informatik IV
Römerstr. 164

53117 Bonn, Germany
pjmarron@cs.uni-

bonn.de

ABSTRACT
Adaptation in Pervasive Computing normally focuses on ser-
vices or on application behaviour, but the consideration of
lower level algorithms in this process can lead to significant
performance increase. To perform adaptation of algorithms
the concept of context normally used in Pervasive Comput-
ing has to be extended. Based on the same context, group
formation models are established to group devices with sim-
ilar relevant context to optimise the adaptation process. In
this paper, such group formation models are developed and
evaluated. We also draw general conclusions for adaptation.

1. INTRODUCTION
Over the last years the vision of disappearing comput-

ers, which seamlessly interact with the environment and the
user, has become more and more of a reality. Some common
applications developed as part of this vision include smart
environments, navigation and tourist guide systems, virtual
information tags, etc. These applications mainly consider
the selection of information and services, the presentation
of such information and autonomic actions based on con-
text.

At the same time, Wireless Sensor Networks have emerged
as a way to gather data from the real-world, for example,
the behaviour of animals, observation of environmental phe-
nomena, monitoring of vital parameters or the tracking of
goods.

As these examples show, both research topics are merging,
not only because Pervasive Computing uses Wireless Sensor
Networks as information providers, but also because con-
text management and action functionality is moving into
the sensor network. The Embedded Wisents project has,
therefore, introduced the notion of Cooperating Objects that
comprises both worlds [8].

The adaptation of application behaviour, which is an im-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Autonomics, October 28-30, Rome, Italy.
Copyright 2007 ICST 978-963-9799-09-7.

portant aspect of Pervasive Computing applications, ap-
pears again in Wireless Sensor Networks. Here, algorithms
and their parameterisations are subject to adaptation to im-
prove mainly the performance or the power consumption of
the network. We argue that Pervasive Computing applica-
tion can also benefit from such adaptive behaviour at a lower
level.

Pervasive Computing applications are often characterised
by periods of static behaviour that are interrupted by dy-
namic states in which the network changes. For example, a
smart room can be considered as static as long as no device
leaves or enters the room. In the EMMA project [4], a car
itself is a static Cooperating Object that is only changed
during maintenance. After such a network change, the sys-
tem has to reconfigure. In a service-centric application, ser-
vices might no longer be available and have to be replaced
by others. But also algorithms have to be adapted so that
their behaviour becomes close to optimal again.

To allow for the adaptation of algorithms, “context” must
not only be considered as information directly relevant for
the user or affecting the behaviour of the visible application,
but it has to be extended to characteristics of the environ-
ment that influence only the interior of an algorithm, which
is usually not visible to the superordinate application.

TinyCubus [7], started while the authors were at the Uni-
versity of Stuttgart, provides such a framework targeted for
Wireless Sensor Networks and Cooperating Objects that al-
lows for the adaptation of algorithms. Based on network
conditions, user requirements and algorithm characteristics,
appropriate algorithms or its parameterisations are selected
and installed. In [9], we have shown that adaptation can be
performed on each node individually, on the network as a
whole or on groups of nodes. The latter turned out to give
good results while keeping a low overhead.

This paper analyses more deeply how such groups that are
suitable for adaptation can be formed in the network. After
the discussion of related work in Chapter 2, the necessary
context information for adaptation is shown in Chapter 3.
Chapter 4 presents possible group formation models and as-
sesses them. The evaluation in Chapter 5 first explains the
experimental setup, then shows the optimal configuration on
a single node basis and the performance of several of group
formations and finally discusses the results. The paper is
concluded with a summary and outlook in Chapter 6.

fezzardi
Text Box

create-net
Typewritten Text

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copies arenot made or distributed for profit or commercial advantage and that copiesbear this notice and the full citation on the first page. To copy otherwise, torepublish, to post on servers or to redistribute to lists, requires prior specificpermission and/or a fee.AUTONOMICS 2007, 28-30 October 2007, Rome, ItalyCopyright © 2007 ICST 978-963-9799-09-7DOI 10.4108/ICST.AUTONOMICS2007.2255

2. RELATED WORK
The topic of adaptive systems is covered by a variety of pa-

pers. In this section, we give an overview of relevant projects
in Wireless Sensor Networks and in Pervasive Computing.

As discussed before, adaptive middleware for Wireless Sen-
sor Networks focuses on algorithms and parameters. Im-
pala [6] is based on a finite state machine. It regularly
queries the parameters in the condition rules from the ap-
plication or the system, evaluates the rules and switches to
another application if a rule is satisfied. Our approach using
TinyCubus is more flexible than the finite state machine and
allows for the exchange or parameterisation of a single al-
gorithm and not on the coarse application level. Moreover,
coordination between nodes like in our group approach is
not done in Impala.

The MiLAN [5] middleware allows applications to specify
their quality needs and the various sensors to announce the
quality of their sensor data. MiLAN determines the sensors
satisfying the application’s quality requirements and selects
among them the data provides, while considering the power
costs of each sensor, and configures the network accordingly.
In contrast to Impala and our system, MiLAN focuses on the
quality of the sensor data only, but does not adapt other
algorithms.

In the Pervasive Computing area, there are several ex-
amples for context-based adaptation. Gaia and its ad-hoc
version Mobile Gaia [2] provide support for Active Spaces.
Such an active space provides a single view to the under-
lying physical space by hiding the actual devices in its in-
terior. Users and developers can use this abstract comput-
ing environment and do not have to address individual en-
tities. Personal devices in the vicinity are automatically
added to the personal active space whereupon the system
loads additional components and runs services to use this
new device. Gaia also implements a Model-View-Controller
paradigm and adapters between these three entities that ease
the development of applications running with different input
and output elements. In contrast to our work, the clustering
of Gaia does not aim at the adaptation of the system but is
the reason for subsequent adaptation need. This adaptation
is carried out to enable new devices but not to improve the
performance of an algorithm.

In PCOM [1] as well, spatial proximity of devices defines
the context. Applications are composed of components that
may run on different devices. Contracts specify the depen-
dencies between a component and other components or the
underlying computing platform. If an application is started,
PCOM selects necessary components according to the con-
tract of the root component while respecting the resource
limitations of the devices. In case of a network change,
PCOM tries to reselect the dependency to another compo-
nent to keep the application running. In contrast, our sys-
tem does not deal with the adaptation of the application,
but with algorithms and their interiors.

Several adaptive applications exist in the Pervasive Com-
puting field. In general, an application can retrieve con-
text information from a context model and adapts its be-
haviour based on that information. In [10], a user-adaptive
and location-aware task planer is presented. The alarm time
for a task is continuously recalculated based on the current
distance between the user and the event. The purpose of
tasks can also be specified (e.g. buying food) and the sys-
tem enables the tasks based on the location and time of the

user and the opening hours of places. Our approach adapts
on a much lower level and is, therefore, orthogonal to such
adaptive applications.

3. CONTEXT FOR GROUP FORMATION
As we have shown, context-based adaptation in Perva-

sive Computing focuses on the application level, typically by
searching and (re)integrating services into the application or
by changing the application behaviour or presentation. The
information needed for such adaptation is “classical” con-
text, i.e. the identity of entities, their location and the time
of the information.

For adaptation of algorithm, context parameters have to
be included that affect the behaviour of algorithms. Since
nodes with similar context should be configured similarly,
group formation has to consider the same context. This
context can be divided into three categories: node hardware,
network topology and application characteristics.

3.1 Node hardware
Computing devices used in Pervasive Computing and Wire-

less Sensor Networks can exhibit varying hardware capabil-
ities. In most cases, RISC processors are used, but they
range from 8bit Atmels with 8 MHz to 32bit ARM proces-
sors with more than 1 GHz. Program memory and main
memory also differ in similar dimensions. Communication
hardware can also be different, from small sensor nodes that
only use Bluetooth to PDAs with powerful 802.11 cards.
Devices with more powerful processors or communication
hardware usually have a battery with higher capacity. Fi-
nally, the number and type of extra devices may also vary:
sensor nodes usually carry several sensors like temperature,
brightness, humidity or vibration, and, for example, GPS
devices might be included in PDAs.

From an algorithm’s point of view, this variety is not de-
sirable since basic algorithms usually assume homogeneous
hardware. Thus, similar devices should be grouped so that
algorithms can easily take care of the specific constraints of
the underlying platform. Groupings that exploit the hetero-
geneity, e.g. where a powerful device in each group can take
over computation or communication intensive tasks, usually
include more than one algorithm that are coordinated by the
application. This is handled by above-mentioned service-
centric adaptation systems for Pervasive Computing.

3.2 Network topology
Devices can either be static or mobile. Mobile devices

have the ability to move itself (e.g., a car in the EMMA
scenario), are carried (e.g., a PDA) or are attached to a
moving object (e.g., in a Wireless Sensor Network scenario
where this object is the observed one). We do not examine
mobility in this work but focus on the static states that occur
between mobile states. Therefore, mobility patterns are not
taken into account for group formation.

Static devices can be deployed freely which happens either
systematically or randomly. The latter is the often cited ex-
ample of sensor nodes thrown from an airplane. Systematic
placement can lead to very regular patterns, e.g. a grid
which is useful to uniformly observe an area.

Networks of mobile or randomly placed devices have a
varying density of devices. Only in regularly formed grid
scenarios, the density is equal, except at the border. Devices
that are more closely together often perform joint work as

the applications in Section 2 have shown. Since algorithms
are dependent on the density of nodes and should be opti-
mally coordinated between devices that are interdependent,
density is important grouping context information. Since
the density can be calculated from the absolute positions of
the devices, this belongs to “classical” context.

Closely related to density are constrained topologies. Usu-
ally, obstacles in the environment, e.g. walls in a building,
separate devices from each other. In most cases, this sepa-
ration has an analogy in the application. Therefore, adap-
tation of algorithms and group formation have to consider
this. If physical separation cannot be deduced from den-
sity, the context model has to be queried. In this case, the
devices cannot perform group formation and adaptation au-
tonomously.

3.3 Application characteristics
While the last sections described physical properties of

the devices and the network, this section focuses on soft-
ware issues. Network traffic is such an important property
since in wireless networks, large traffic loads on some devices
can interfere with other devices. In peer-to-peer scenarios
with equal devices, this is a minor problem. But in Wire-
less Sensor Networks with base stations where data is sent
to or in the EMMA scenario where a data connector con-
trols the data content between different hierarchical levels
or in a Pervasive Computing application where a powerful
device takes over many task from other resource-poor de-
vices, traffic concentrates around certain points. Therefore,
the network traffic has to be taken into account for group
formation.

The fact that the traffic increases when the distance to
such concentration points decreases can be exploited. In-
stead of the traffic load measurement, the distance of a de-
vice to such a point can be used. Since this requires location
information, it is related to the second category discussed
above.

4. GROUP MODELS
After we have explained the context necessary and rele-

vant for group formation, this section gives an overview of
the group formation models using the context in their met-
rics. Besides “used metrics”, the model space consists of two
more dimensions: “coordination” and “group layout”. The
complete model space is discussed in the following.

4.1 Model space

4.1.1 Coordination
The dimension“coordination”defines where the group for-

mation algorithm is running. There are two extremes: run-
ning all computations on a central component or distributing
the computation on all nodes.

The central approach allows to take the global situation
into account which enables high optimisation possibilities.
On the other hand, it requires to transfer the state needed for
group formation via the network and distribute the created
groups back to the network. Especially in large networks
such an approach can result in a large overhead.

The distributed approach requires no large scale state
transfer since the group formation is performed on each node
in the network and uses only local information. Since all

decisions are based on limited information no global optimi-
sations are possible.

Combining the benefits of these approaches results in a
hybrid method. The basic idea is to analyse the global sit-
uation by a central component. Based on this computation
a distributed algorithm is configured. Since analysing the
global situation does not require every nodes’ state in de-
tail, aggregation can be used to limit the amount of data to
be transfered.

4.1.2 Used metrics
Grouping nodes requires the existence of a metric defin-

ing a mapping of nodes to groups. This metric is heavily
dependent on the domain of the algorithms to be adapted.
In case of routing algorithms the traffic load, neighbourhood
and location of nodes are possible candidates.

4.1.3 Group layout
When using the formed groups to adapt algorithms, an ad-

justment between neighbouring groups may be required. In
case of such a required adjustment, every group has to elect a
cluster head for efficient communication between groups be-
cause negotiations between every node of two groups would
require too much communication.

An efficient election of a cluster head and the commu-
nication between the cluster head and its group members
requires connected groups. Distributed groups do not al-
low efficient communication between the cluster head and
its group members.

4.2 Models
The different models are briefly introduced now. Since

the “coordination” dimension has the biggest influence on
the model, they are ordered by this dimension.

4.2.1 Centralised approach
In the centralised approach, the groups are formed by a

single algorithm running on the central coordinator. Based
on this idea, the group formation is divided into three phases:

1. Collect node information and transfer them to the cen-
tral coordinator

2. Create groups and assign cluster heads

3. Inform cluster heads about their members

Weighted Links - Graph Partitioning.
The Weighted Links (WL) approach is based on the idea

of weighting the links between nodes. The calculation of the
weights depends on the properties of the involved nodes.
Using the graph partitioning algorithm discussed in [3], the
graph is divided in several subgraphs, which contain the
nodes to be grouped.

The graph representing the network has nodes N corre-
sponding to the nodes in the real network and edges E be-
tween nodes where communication between the nodes in the
real network is possible. Each node is assigned a node prop-
erty value based on the used metric, e.g. the number of
neighbours or the traffic load (vk, node property value of
node k). Every edge eij (edge between node i and j) is
weighted depending on the properties of the corresponding
nodes using Formula 1. This formula assigns links between

nodes with similar properties values near 1 and nodes with
different properties values near 0.

eij = min(vi, vj)/max(vi, vj) (1)

C(G) =
X

eij∈E&ni∈Gl1
&nj∈Gl2

&l1 6=l2
eij (2)

The groups, required for adaptation, are formed by parti-

tioning the graph G(N, E) in t groups gl (with |N|
t

±ε nodes
per group), while minimising the cost function listed in 2.
This function covers those edges, where the connected nodes
are assigned to different groups.

4.2.2 Distributed approaches

Most Equal Neighbour.
Generally, the Most Equal Neighbour (MEN) approach is

based on the idea that two neighbouring nodes with nearly
equal properties should be configured in the same way. Since
all members of a group are configured equally, these two
nodes should be in the same group. Following that ba-
sic idea, the same argument can be applied to groups. If
two neighbouring groups have the same properties the two
groups should be merged.

The formation of the groups is split in two phases. In
the first phase every node calculates its node property value
which maps the properties of a node to a single integer value.
This value is then broadcasted to the local neighbourhood.
After that, every node knows its neighbourhood and their
values. Based on the own and the neighbours’ values, a node
can weight the corresponding links and selects the neighbour
with the most equal value to form a group with it. If two
neighbours have the same values, the neighbour with the
lower ID will be selected. Every node informs its selected
neighbour. All selected edges between nodes are forming a
spanning tree which can be used in the second phase to elect
a cluster head for each group.

The used metric defines the node property value and, there-
fore, the weight of the link. In case of a location dependent
metric every node can broadcast an arbitrary number since
the receiving node can determine the closest neighbour (the
location of both nodes is most equal) by comparing the RSSI
(received signal strength indicator) values of the incoming
packets. When using the neighbourhood metric, each node
counts the number of neighbouring nodes. For this purpose,
the existent network traffic can be used and, therefore, no
additional traffic has to be generated. Based on this existent
traffic it also possible to calculate the traffic load.

Distributed Groups - Static Table.
While the previous distributed approach builds connected

groups, this approach results in distributed ones. The nodes
belonging to such a group are distributed over the whole
network and, therefore, this model allows to group all nodes
that have the same properties, which are relevant for the
algorithm to be adapted, independently from the location
of nodes.

The underlying idea of this group formation approach is to
map the relevant node information to a single integer value.
Additionally to this Mapping Function 3, a second Mapping
Function 4 exists, which maps the result of fproperty to a
group identifier.

fproperty(node) → integer (3)

fgroup(integer) → group id (4)

The first benefit of this group formation model is that it does
not require any additional messages to be transmitted and,
therefore, the required energy is minimal. The model also
allows to group nodes from any part of the network, which
would result in a high amount of transmitted messages when
using other models. Another benefit of this model is the fact
that it can handle small and large groups.

The simple structure of this model – there are only two
mapping functions – is its drawback, too. Since there is
no communication between the nodes, the target domain of
Mapping Function 3 has to be a fixed interval, e.g. the inter-
val between zero and one hundred. Without a fixed interval
the second Mapping Function 4 cannot map sub intervals
to groups. With a fixed interval (mini..maxi), it is possible
to define fgroup(x) = x∗number of groups/(maxi−mini),
where nodes are mapped to number of groups groups. Like
every introduced distributed approach, this model does not
guarantee that each group has the same size, nor that each
group has members.

4.2.3 Hybrid approach

Distributed Groups - Dynamic Table.
When applying the hybrid approach to the Distributed

Groups - Static Table (DGST) model, the static table is
replaced by a dynamic table (Distributed Groups - Dynamic
Table; DGDT). The dynamic table is calculated by a central
component. In contrast to the centralised approaches, it is
not mandatory to transfer the total state of each node to
that component. In the most trivial case only the minimum
and maximum value of the property is transfered, which
enables the possibility of aggregation, to limit the required
traffic. Based on these two values, an optimised table can be
created. Since the table is adapted to the values which are
actually present in the network, this model can also be used
for metrics where it is impossible to define reasonable upper
bounds for the measured node properties. After creating
the table, all nodes have to be informed about the calculated
table. Flooding is used for distribution and, therefore, every
node has to transmit the table once.

Location Based.
The group formation process of the Location Based model

(LB), based on location information, is divided in several
steps. Since some of these steps are performed by a central
coordinator and others can be performed by nodes them-
selves, this approach is a hybrid approach. The different
steps are:

1. Collect information about node distribution: In
the most trivial case the minimal rectangle containing
all nodes is calculated. In general, different densities in
the network can be sent to the base station, too. A co-
ordinator knowing the position of every node would be
the best result of this step. When using Network Sta-
tus Monitoring Frameworks[12, 11], this task can be
performed without sending any additional messages.

2. Define a pattern for virtual cluster heads: The
second task is executed by the central coordinator. Us-
ing the node distribution information, the coordinator
defines a set of virtual cluster heads. Every virtual

cluster head corresponds to a group of nodes because
the neighbourhood of a virtual cluster head defines the
group. Generally the virtual cluster head can be freely
placed, but taking the distribution of the virtual clus-
ter heads’ position into account, a regular pattern re-
sults in less distribution effort.

3. Distribute the pattern in the network: After the
pattern definition, all nodes in the network have to
be informed about the used virtual cluster head posi-
tions. The distribution can be performed by flooding
the pattern through the network.

4. Determine the closest virtual cluster head: Ev-
ery node knows the position of every virtual cluster
head, which allows the calculation of the nearest vir-
tual cluster head. Nodes selecting the same cluster
head belong to the same group.

5. Run cluster head election: Every group of nodes
now determines a ”real” cluster head. To elect the
cluster head every standard clustering algorithm can
be used with little adaptations. To limit the election to
nodes belonging to the same group every sent message
contains a virtual cluster head identifier. Only such
messages are used where the identifier of the message
and the own virtual cluster head are equal.

As outlined in the general discussion of the location based
approach, the pattern used to define groups is not optimal.
Exact knowledge of node positions or too much effort on the
pattern distribution forbids that. Due to the suboptimal
location of virtual cluster heads it cannot be assumed that
all nodes having the same nearest virtual cluster head are
connected. In such case the election algorithm will create
two cluster heads and, therefore, two groups are formed.
Since the two groups cannot communicate with each other
the failure of the pattern results in the benefit that both
groups can adapt its setting individually.

In scenarios where data is routed to a central coordinator,
the traffic processed by a node increases with the closeness
to the coordinator. Based on the assumption that the be-
haviour of routing algorithms at a specific node is related to
the amount of traffic at that node, it is adequate to configure
nodes depending on the distance to the central component.
Using only the distance property to form groups results in
small groups in the area around the central coordinator and
large groups with high in distant areas. The Circular Pat-
tern arranges the virtual cluster heads, see Figure 1, on
circles around the central component, which results in equal
sized groups.

4.3 Model rating
When analysing the different models, it becomes obvious

that a completely centralised algorithm does not scale with
an increasing number of nodes. Since the WL algorithm
weights the edges between nodes the properties of the indi-
vidual nodes have to be known to the central coordinator
which prohibits the usage of aggregation. Without aggre-
gation the amount of state that have to be transfered is
high. Another problem of this approach is the fact that
graph partitioning is a NP-hard problem, even if there ex-
ists algorithms to approximately calculate the groups with
less effort, the formation of the groups requires considerably

Figure 1: Grouped nodes (�) using virtual cluster
heads (�) arranged by the Circular Pattern around
the sink (�). Nodes are assigned to the minimal
distant virtual cluster head (- -).

effort. Due to the high costs of this approach we do not
consider the method of group formation in the following.

Using the DGST method requires minimal effort to form
groups. All nodes can calculate the group they belong to us-
ing only local information which they can compute by eval-
uating the background traffic. Whenever a node overhears a
message from another node, it can store the id of the node.
Counting the collected distinct IDs results in a approxima-
tion of the neighbourhood size. Since no global knowledge
is used this approach cannot be used with an arbitrary met-
ric. And even with a suitable metric, like the one based on
neighbourhood, this approach cannot give any guarantees
about the groups sizes. Considering these drawbacks brings
us to the conclusion not to further investigate this approach.

The main advantage of the MEN approach is the fact
it can use an arbitrary metric to form groups distributed.
However, since the formation is based on the idea of select-
ing the most equal neighbour the sizes of the created groups
are probably small. Even if the size of the formed groups can
be adapted by using also the second equal neighbour, if it is
similar to the most equal, it is difficult to select an appro-
priate threshold. Small groups have only limited advantages
in comparison to the case where all nodes are configured in-
dividually. Even if this approach promises some interesting
features we do not consider it in the following.

Dynamic tables, introduced by the DGDT approach, al-
lows to use a wide spectrum of metrics because it removes
the demand to map the node properties uniformly to a pre-
defined interval. Even if the central coordinator needs global
knowledge the amount of state to be transfered is limited
because the state can be aggregated during the collection.
Since the density of nodes is an important factor when adapt-
ing the transmission range of routing algorithms, in the fol-
lowing we focus on DGDT-N, where N denotes the used
metric (Neighbourhood).

Another promising approach is LB. Since this method is
also using the idea of a centrally configured distributed al-
gorithm, this approach is able to adapt to the concrete net-
work situation without the requirement of transferring a lot
of state which would result in a not scalable solution. Even if
this approach allows to use sophisticated methods to create

Figure 2: Layout of the cooperating objects sce-
nario: nodes (�) and data sink (�).

the pattern of the virtual clusterhead locations, we focus
on a regular pattern to reduce the amount of state to be
send through the network. In the following we use LB-C
as an abbreviation for location based model with a circular
pattern.

5. EVALUATION
After having selected two interesting group formation mod-

els, their quality is evaluated. This is done by rating the per-
formance of the adapted network configuration. Since every
model introduces some overhead, for example messages to
be transmitted or CPU time, the introduction of the models
has to improve the network performance because otherwise
the effort does not pay. Therefore, it is compared with an
established lower and upper bound.

5.1 Experimental Setup

5.1.1 Scenarios
To evaluate the grouping models we introduce two scenar-

ios. The first one used during the evaluation of the group
formation approaches models a Wireless Sensor Network
(WSN) and consists of 100 nodes. These nodes are arranged
regularly on a grid with an edge length of ten nodes with an
distance between the nodes of 30 meters. In the second sce-
nario, the nodes are randomly placed as in typical Pervasive
Computing scenarios. To model areas with a high node den-
sity like the engine compartment in the EMMA project the
nodes are not uniformly distributed. The positions of the
nodes is visualised in Figure 2. In both scenarios the data
is routed to a sink which is located in the top left corner.

For the simulation of this scenario the nodes are grouped
using the developed group formation models and each group
is configured with one of the three transmission power set-
tings. These settings are 3dBm, 6dBm and 9dBm which
results in transmission ranges of 39m, 55m and 79m respec-
tively. In the Wireless Sensor Network scenario, nodes using
the lowest setting can only reach the four nearest neighbours,
whereas using 6dBm it is possible to communicate with all
eight surrounding nodes, or in other words it is possible to
use diagonal links. The maximum transmission power allows
to extend the neighbourhood to 20 nodes.

The course of the scenario is structured as follows:

• Initialisation Phase (0s − 300s): The routing algo-
rithm constructs a routing tree. The TrafficGenerators
create data and send them to the central coordinator.
Every node is configured with a transmission power of
6dBm.

• Group Formation Phase (300s): The group for-
mation component creates the groups using informa-
tion about the node positions and neighbourhood sizes.
The information is collected during the Initialisation
Phase. Since the focus is on the quality of the created
groups, we abstracted from the state transfer and using
shared variables to access the required information.

• Adaptation Phase (300s): In this phase the nodes
are adapting their transmission power using the formed
groups.

• Reconfiguration Phase (300s − 600s): During this
phase, the routing tree is reconfigured, i.e. new parents
are selected. Due to the adapted transmission power,
new neighbourhoods are formed. The TrafficGenera-
tors are disabled during this phase.

• Test Phase (600s − 1200s): After enabling the Traf-
ficGenerators data is routed to the central component.

• Evaluation Phase (1200s): During this phase the to-
tal amount of data received by the central coordinator
is calculated. The quotient of received and generated
data is named the Target Ratio which is used to rate
the quality of the network configuration (transmission
power).

5.1.2 Implementation
The evaluation of the designed models using network sim-

ulators requires an implementation of the models. Since
every simulator abstracts in some way from the real world
this section introduces the used simulator and discusses the
implementation of the models. During the evaluation two
different node types are used. The first type, called Sending
Node, simulates a node collecting data about its environ-
ment. Since the collected data is needed by the user this
data has to be sent to the second type of nodes, the Co-
ordinator, which simulates the node with the user interface
where the data is required. The traffic generator at the send-
ing nodes creates packets with a size of 30 bytes. The traffic
generated by one node is on average three bytes per second,
which results in sending one packet every ten seconds.

Since multihop communication is required to send data to
the coordinating node a routing algorithm is used. The un-
derlying concept of this algorithm is based on the construc-
tion of a spanning tree. The coordinator acts as the root of
this tree. The data is forwarded to the root by sending the
data to the parent node in the tree. Since there exist a lot of
different implementations with various metrics, defining for
example how to select a parent node, this section explains
the used implementation in detail. The exact knowledge of
the mode of operation is necessary to understand and inter-
pret the results gained from simulating the scenarios and,
therefore, in the following the algorithm is explained in de-
tail.

The algorithm is event driven, which means that all ac-
tions are caused by events. In case of the construction pro-
cess there are three events: OnSendBeacon, OnReceiveBea-
con, and OnAllBeaconReceived.

The OnSendBeacon event is triggered periodically with
the interval of three seconds. Whenever the event occurs
a beacon with the node ID, the distance to the root and a
list of neighbourhood nodes is sent per broadcast. Since the
space in the beacon is limited only ten neighbourhood nodes
are included. The selection of the ten nodes is based on the
time when the node was detected for the first time.

The occurrence of the event OnReceiveBeacon indicates
the arrival of a beacon from another node. The sender of
the beacon is included in the neighbourhood list. To detect
node failures or support moving nodes the list implements
the soft state approach. If no beacon of a node arrives for 30
seconds the node is removed from the list. Since the trans-
mission power of the nodes is adapted during the simulation
links between node are not necessarily bi-directional. To
avoid situations where nodes select parents without having
a bi-directional link between them a BidirectionalLinkFlag is
introduced. If the neighbourhood list of the incoming beacon
contains the own ID the link is assumed to be bi-directional.

The last event used for spanning tree construction is On-
AllBeaconReceived. This event is triggered before the On-
SendBeacon event. The first performed action is to update
the time-to-live values of the neighbourhood list, or in other
words decrease them. A time-to-live value equal zero in-
dicates a timeout. After that, the optimal parent node is
searched. The list of potential parents is limited step by
step: after removing stale nodes and those without a path to
the root nodes which are connected with an uni-directional
link are deleted. From the remaining nodes those with a
minimal root distance are searched. In case of several nodes
with the same distance those nodes with a maximum RSSI
value are selected. Theoretically, this list can contain more
than one node. The final selection is based on the time when
the node was detected first.

The routing algorithm requires the transmission of pack-
ets to neighbouring nodes. This single hop communica-
tion between two neighbouring nodes is controlled by the
IEEE80211 component, which is part of the network sim-
ulator. Since unicast packets are transmitted using acknowl-
edgements lost packets are automatically retransmitted. The
maximum number of retransmits is set to 3.

The evaluation of our models requires a network simulator
allowing to change simulation parameters, like the trans-
mission power of a node, at runtime. Since this demand
is essential for the our evaluation approach, see next sec-
tion for details, we are using the CUBUS network simula-
tor, which was developed in our department. CUBUS is a
discrete event simulator. The used object model allows set
or change the configuration of every component, for exam-
ple the protocols in network stack or the network interfaces
statically using a scenario definition file or at runtime us-
ing a command line interface. Due to its modular design it
is is possible to exchange implementations of protocols at
runtime.

5.2 Lower and upper bounds
When configuring every formed group with equal param-

eters, no differences between using and not using groups
are visible. For this reason, the performance of an opti-
mally configured grouped network is higher than using no
groups and, because of this, using no groups acts as the
lower bound.

As a second step, the upper bound is determined. Every

node is configured individually or in other words a model
is used, which assigns only one node to a group. Due to
the individual configuration of every node, it is possible to
get at least the same performance as using groups. In other
words, the group-based configured network can be mapped
to a network with individual configurations and, therefore,
the performance of the node-based configuration acts as the
upper bound.

Due to the large space of possible network configurations
(3 settings to the power of 100 nodes results in about 10 to
the power of 50 configurations) it is infeasible to simulate
and rate all of them. Therefore, a genetic algorithm is used
during the investigation for an optimal configuration. The
behaviour of this method is to randomly change the con-
figuration of some nodes and depending on a performance
improvement the new configuration is used. By iterating
this step, the optimal setting of the network can be approxi-
mated. To improve this process, this search is supported by
manually changing or temporarily fixing the configuration
of some nodes to get a faster convergence. Based on the
optimal configuration, it is possible to determine optimal
groups since an optimal model groups exactly those nodes
with equal settings.

Using the genetic algorithm, discussed in the previous sec-
tion, we found the optimal parameterisation for both sce-
narios. Figure 3(a) and Figure 3(b) shows the determined
transmission power for the nodes of the sensor network and
cooperating objects scenario. Keeping the location of the
sink of the data in mind, it attracts attention that in both
scenarios the nodes around that sink are configured with an
high transmission power. In case of the sensor network sce-
nario the nodes at the top and left border are also configured
with the maximum transmission power. When investigating
on the reason for this configuration it turns out that the
nodes at the borders are acting as attractors for the data.
The data is routed from the centre of the network to the
borders and from there to the sink. Since the nodes at the
border have large sending range the path using those nodes
results in minimal path lengths.

Analysing the configuration of the cooperating objects
scenario shows a clear interrelation of the density and the
optimal configuration. The areas at the top and the left side
of the network are configured with the medium transmission
power. High density areas on the right and bottom right
side of the network are configured with an low transmis-

(a) WSN (b) CO

Figure 3: Optimal node configuration for both sce-
narios (� 9dbm � 6dbm � 3dbm)

sion power. The interrelation is meaningful because tuning
the transmission power is a tradeoff between the number of
hops that are required to route a message to the sink and
the number of collisions on these paths. During the search
for an optimal configuration it turns out that the configura-
tion of a few nodes in the network are crucial for the overall
performance of the network. The reason for that is the fact
that configuring these nodes with an appropriate transmis-
sion power creates links between two areas which results in
completely new paths to the sink and, therefore, the load on
all paths is reduced.

As discussed at the beginning of this section we are us-
ing the equally and optimal individually configured nodes
to evaluate the performance of our group formation models.
When setting up the network with equally configured nodes
it turns out that the medium transmission power provides
in best results. The average target ratio and the distribu-
tion for several simulation runs for the equally and optimal
individually configured nodes are visualised for the sensor
network scenario in Figure 4. Figure 5 show the same val-
ues for the cooperating objects scenario. When comparing
the curves the huge potential for the group based node adap-
tation becomes visible. In case of the sensor network sce-
nario the average target ratio can be increased from 54.5% to
84.5%. Even if the difference in the cooperating objects sce-
nario is smaller a potential increase of 15 percentage points
is possible.

Figure 4: Target ratio for equally and optimal indi-
vidually configured sensor network scenario.

Figure 5: Target ratio for equally and optimal indi-
vidually configured cooperating objects scenario.

5.3 Group configuration
Knowing the upper and lower bound, in the following step

the performance of the networks adapted by the group for-
mation models LB-C and DGDT-N are evaluated. For this
purpose, the models are applied to the network scenarios
and groups are created. Even if the number of possible con-
figurations is many magnitudes smaller than those of the
individually configured nodes (8 groups with 3 possible set-
tings results in about 104 configurations), the number is still

too large to simulate them all. Therefore we use the genetic
approach again.

(a) LB-C (b) DGDT-N

Figure 6: Node configuration for sensor network sce-
nario (� 9dbm � 6dbm � 3dbm)

(a) LB-C (b) DGDT-N

Figure 7: Node configuration for cooperating ob-
jects scenario (� 9dbm � 6dbm � 3dbm)

The groups, formed by the two models, are visualised in
Figures 6(a) and 6(b) for the sensor network and in Fig-
ure 7(a) and 7(b) for the cooperating objects scenario. The
numbers in the circles are representing the group ID, i.e.
nodes with equal IDs are in the same group. In case of the
LB-C model the groups are arranged in circles around the
sink. Group 2 and 4, for example, are building the second
and Group 3, 5 and 7 the third ring around the sink. When
analysing the groups formed by DGDT-N in the sensor net-
work scenario, showed in Figure 6(b), it turns out that only
two groups are formed. This behaviour is expected because
due to regular layout of the nodes there are nodes at the
border with low and nodes in the middle with high density.
Actually the 4 corner nodes have a different neighbourhood
than those at the border, but the model tries to create equal
sized groups and therefore the border and corner nodes are
merged to one group. In the cooperating objects scenario
the DGDT-N groups the nodes at the borders and creates
several groups for the high and low density areas.

Figure 6 and 7 show the parameterisation for the formed
groups using black, gray and white filled circles for nodes
with 9dbm, 6dbm and 3dbm transmission power, respec-
tively. When analysing the formed groups in the sensor
network scenario huge differences between the two models
become visible. While the LB-C uses a schema where nodes

with increasing distance to the sink are configured with a
decreasing transmission power and the most distant nodes
with the medium power value the DGDT-N model uses a
completely different schema. Here the nodes in the centre
are configured with the minimum transmission power and
the nodes at the edges with the maximum. When comparing
the configurations with the optimal individual one, it turns
out that the configuration based on DGDT-N is very simi-
lar to the optimum. In the cooperating objects scenario the
differences between both models are minimal. Each model
configures the nodes depending on the density. Like in the
optimal configuration, areas with a high density are set up
with a low power value and areas with a low density with a
high transmission power.

Figure 8: Target ratio for LB-C and DGDT-N
grouped sensor network scenario.

Figure 9: Target ratio for LB-C and DGDT-N
grouped cooperating objects scenario.

After having compared the group configuration with the
optimally configured single node configuration, the perfor-
mance of the resulting networks is presented. Figure 8 shows
the distribution of the target ratio of 200 simulation runs
for each model in the sensor network scenario. In case of
the LB-C model on average 72.9% of the data reaches the
sink. Using the DGDT-N model the average target ration
is 76.6%. Comparing these values with the equally config-
ured network, we can increase the target ratio about 34%
or 41% respectively. The results for the cooperating objects
scenario are visualised in Figure 9. Using the LB-C model
we able to increase the performance of the network up to a
target ratio of 84% which is 1 percentage point below the
maximum when adapting every node individually. Using
the DGDT-N model the performance of the network can be
increased about 20% in compare to the equally configured
network. With a target ratio of 83% DGDT-N has a minimal
disadvantage in this scenario.

5.4 Discussion
Based on the analysis of the different optimal configura-

tions for the models, some general statements for good con-
figurations and network partitions are possible. In nearly
all configurations the sink and nodes around it are set up

Figure 10: Results for target ratio for sensor net-
work scenario.

Figure 11: Results for target ratio cooperating ob-
jects scenario.

with the maximum transmission power. The benefit of such
a configuration can be explained by a view on the generated
data paths. Since generally the data is routed on several
paths to the base station, these paths have to transit the
area around the base station. To minimise the number of
collisions it is useful to minimise the number of hops in this
area where the data paths are side by side and, because of
this, influencing each other.

Another general observation is the goal of maximising the
number of data paths. Configurations with several indepen-
dent paths result in a high target ratio. Independent means
in this context that the paths are not side by side and, there-
fore, interfere with each other. Such paths result in a high
number of collisions and, therefore, in loss of data. Since the
amount of traffic on each routing path influences the num-
ber of collisions, the traffic on each path should be minimal.
Based on the data flows resulting from configurations with a
high target ratio a stronger statement can be deduced. The
traffic should be equally distributed on all paths.

During the evaluation of the group formation models the
search for optimal configurations is done manually. When
integrating the group formation into TinyCubus an auto-
matic configuration discovery is needed. Based on the opti-
mal configurations for the differently grouped nodes, several
general configuration patterns can be identified.

When grouping the network using the location of the nodes,
it is possible to deduce an expedient setting using the dis-
tance to the base station. In both scenarios the nodes near
the base station are configured with the maximum trans-
mission power. With increasing distance the transmission
power shrinks to the minimal value. An exception to this
rule are the nodes at the edges. Since nodes at the opposite
side of the base station are not used to forward any data,
the configuration of these nodes is mostly irrelevant to the
overall performance. The amount of packets generated by
these nodes is very small and, therefore, a higher transmis-
sion power does not cause many collisions and decreases the

hop distance to the base station. Generally a distribution of
the power values from a high over a medium to a low and
again to a medium value results in a high target ratio.

The second configuration pattern is based on the density
of nodes. Based on the evaluated scenarios, the following
general conclusion can be deduced: Nodes with a high den-
sity should be configured with a low transmission power and
vice versa. The effect of such a configuration is that the
neighbourhoods of the nodes are equalised and interference
is diminished.

6. CONCLUSION
This paper has shown that adaptation is useful and pos-

sible also on lower levels to increase the performance of the
system. To perform it, classical context information is used,
for example location, but also new context information is
needed that goes beyond the classical context used in Per-
vasive Computing applications like network traffic.

Adaptation does not have to be global to achieve good
results, but can be done more locally, i.e. in groups of nodes.
These groups are also formed based on the extended context.
We have identified several possible models to form groups
suitable for adaptation. Evaluation then showed that the
performance can be significantly increased and can reach
almost the optimum.

From the evaluation results, general rules have been de-
duced based on the context. These rules make it possible
for general adaptation framework like TinyCubus to adapt
grouped networks with a different network setting and dif-
ferent number of groups.

Our next steps are the inclusion of the group formation
models and the adaptation rules in our general adaptation
framework TinyCubus to ease the test with other scenarios.
Then, we plan to test the combination of TinyCubus with an
adaptive systems working on application level to show that
the whole system can profit from the low-level adaptation,
but also from adaptation on application level.

This analysis focused on an routing algorithm only. It is
necessary to test the group formation with other algorithm
classes, too. To ease the finding of the optimal configura-
tions and the deduction of rules, an automated mechanism
has to be developed exchanging the manual steps of the ex-
periments.

7. REFERENCES
[1] C. Becker, M. Handte, G. Schiele, and K. Rothermel.

PCOM - A Component System for Pervasive
Computing. In Proceedings of the 2nd IEEE
International Conference on Pervasive Computing and
Communication (PerCom 04), 2004.

[2] S. Chetan, J. Al-Muhtadi, R. Campbell, and
M. Mickunas. Mobile Gaia: A Middleware for Ad-hoc
Pervasive Computing. In Proceedings of IEEE
Consumer Communications and Networking
Conference (CCNC 2005), January 2005.

[3] U. Elsner. Graph partitioning - a survey.
Preprintreihe, TU Chemnitz, SFB393/97-27,
December 1997.

[4] Embedded Middleware in Mobility Applications
(EMMA) project web site.
http://www.emmaproject.eu.

[5] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and
M. A. Perillo. Middleware to support sensor network
applications. IEEE Network, 18(1):6–14, 2004.

[6] T. Liu and M. Martonosi. Impala: A middleware
system for managing autonomic, parallel sensor
systems. In Proc. of the 9th ACM SIGPLAN Symp. on
Principles and Practice of Parallel Programming,
pages 107–118, 2003.

[7] P. J. Marrón, A. Lachenmann, D. Minder, J. Hähner,
R. Sauter, and K. Rothermel. TinyCubus: A flexible
and adaptive framework for sensor networks. In
Proceedings of the Second European Workshop on
Wireless Sensor Networks (EWSN 2005), pages
278–289, January 2005.

[8] P. J. Marrón, D. Minder, and Embedded WiSeNts
Consortium, editors. Embedded WiSeNts Research
Roadmap. Logos, 2006.

[9] D. Minder, P. J. Marrón, A. Lachenmann, and
K. Rothermel. Coordinated group adaptation in
sensor networks. In 6th Fachgespräch Sensornetze,
Technical Report AIB 2007-11, RWTH Aachen, pages
43–46. Distributed Systems Group, RWTH Aachen
University, July 2007.

[10] C. Stahl, D. Heckmann, T. Schwartz, and O. Fickert.
Here and Now: A User-Adaptive and Location-Aware
Task Planner. In Proceedings of the International
Workshop on Ubiquitous and Decentralized User
Modeling (UbiDeUM’2007), pages 52–63, June 2007.

[11] J. Zhao, R. Govindan, and D. Estrin. Computing
aggregates for monitoring wireless sensor networks. In
Proc. of the First IEEE International Workshop on
Sensor Network Protocols and Applications, 2003.

[12] Y. J. Zhao, R. Govindan, and D. Estrin. Residual
energy scan for monitoring sensor networks. In IEEE
Wireless Communications and Networking Conference
(WCNC’02), March 2002.

