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ABSTRACT
Adaptation of devices and applications based on contextual
information has a great potential to enhance usability and
mitigate the increasing complexity of mobile devices. An im-
portant topic in context-aware computing is to learn seman-
tic locations and routes of mobile device users. Several batch
methods have been proposed to learn these locations. How-
ever, such offline methods have very limited usefulness in
practice. This paper describes an online adaptive approach
to learn user’s semantic locations. The proposed method
models user’s GPS data as a mixture of Gaussians, which
is updated by an online estimation. The learned Gaussian
mixture is then evaluated to determine which components
most likely correspond to the important locations based on
a priori probabilities. With learned semantic locations, we
also propose a minimax criterion to discover user’s frequent
transportation routes, which are modeled as sequences of
GPS data. Finally, we describe an application of the pro-
posed methods in a cell phone based automatic traffic alert
system.

1. INTRODUCTION
Context aware applications can sense, infer, and predict a
user’s environment in order to provide services that bene-
fit the user by automating processes, providing relevant in-
formation, and predicting events or behavior. With the in-
creasing computing power of mobile devices and the increase
in bandwidth for wireless communications, mobile devices
become a logical platform for context aware applications.
Context aware applications for mobile devices can fall into
several different categories including, but not limited to:

• Adapt. Adaptive applications alter the state of the
mobile device depending upon context. For example,
the cell phone profile may be changed to the vibration
mode automatically when the user is a meeting room.

• Search. Context aware search applications allow users
to search for more information, which can include look-

ing up a specific topic on the Internet, finding relevant
points of interest, and finding locations of friends. For
example, the user location may be used as a search
filter to make the output from Internet searches more
relevant to the user.

• Assist. Assistive applications aid the user in complet-
ing a task more efficiently and smoothly. For example,
an intelligent calendar system can send a reminder that
takes into account the user location, meeting location,
and traffic condition. Assistive applications can be
proactive in determining tasks to be completed and
offer information and advisories to aid the user. For
example, most frequently called numbers may be listed
near the top of the phone contact list to facilitate the
dialing process.

An example of an assistive application is a navigation and/or
traffic advisory system. Currently, personal or car naviga-
tion systems are accurate and easy to use for navigation pur-
poses and they may also provide real-time traffic informa-
tion. In order to get directions from location A to location
B, the user usually enters these locations manually, which
may be a time-consuming and visually demanding task. The
traffic and accident information obtained through the sys-
tem from the Internet or satellite radio may be general in
nature and not tailored to the specific routes that the user
will take.

One does not use a navigation system for daily routines –
the commute routes are familiar to the user. However, one
typically always carries a personal cell phone while driving.
What we propose is to let the cell phone learn these daily
commute routes together with when the routes are taken.
The device will then automatically fetch traffic conditions
along possible routes in anticipation (or after detection) of
the user starting his/her commute, and inform the user if
there are any problems. The key is that no effort on the
part of the user is required to set up or operate the appli-
cation. Useful information just magically appears on the
phone screen at the time when it is needed.

Krumm and Horvitz and their colleagues have attempted to
predict user’s routes from travel history [8, 9]. We adopt a
similar approach to learn user’s usual locations and routes
from the usage history, and predict likely routes based on the
location and time information. Unlike Krumm and Horvitz,
we do not attempt to handle previously unseen destinations.
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The resulting traffic advisory system is a functional proto-
type which uses time and location information in conjunc-
tion with learned patterns of user behavior to determine
when a user is leaving a location for a learned destination.
The application reviews past routes that the user has taken
to traverse from the current location to the predicted des-
tination and checks available traffic monitoring services to
determine if there are any unusual alerts. Only if there is
such an unusual alert will the application provide the infor-
mation to the user.

The most crucial component of such a system is learning the
locations that are important to a user (we call these seman-
tic locations.) Moreover, the learning needs to be invisible
and adaptive, starting as the user installs the application
on his/her cell phone, continuing in the background as long
as the application remains installed. We describe first pre-
vious work in location learning in Sec. 2, followed by our
approach to adaptive learning of user’s important locations
in Section 3. This is the main contribution of the paper. We
then discuss route learning and roure comparison in Section
4. Section 5 describes the actual traffic advisory application
and its implementation. Section 6 concludes the paper.

2. PREVIOUS WORK
Several batch methods have been proposed to discover user’s
important locations. These methods try to detect important
locations through geographic information systems (GIS) or
machine learning methods. For example, a landmark-based
location system uses cell towers of a GSM phone network
to learn important places in a user’s daily routine [15]. Al-
though this approach uses existing infrastructure and is cost-
efficient, the resolution of the derived places is very coarse
(from about hundreds meters to a few kilometers). There-
fore, GPS receivers may be employed to identify important
locations instead. Some early work on location extraction
with GPS uses loss of signal to infer important indoor loca-
tions [2]. That is, if GPS signal disappears and then reap-
pears around a small region, the region is regarded as a lo-
cation. Such an approach is sufficient to identify some small
indoor locations such as home. However, it does not account
for larger indoor locations (e.g. office complex), and is prone
to generating false positives due to many possible outdoor
GPS shadows. Driving speed can be used to identify im-
portant locations. For example, as a part of their work on
identifying a user’s route, Patterson et al. can also infer mo-
bile places, as well as the location of parking lots and bus
stops with the help of real-world knowledge of bus sched-
ules and stop locations, along with acceleration and turning
speed information [13]. Liao et al. use mode-changes such
as GPS signal loss and acceleration peaks to identify fre-
quent locations in an unsupervised manner [12]. Learning
the important locations can also be formulated as a cluster-
ing problem [14, 16]. Clearly, the staying time is an impor-
tant factor to identify locations in this approach. Note that
traditional methods such as K-means and Gaussian mixture
model are not sufficient in this situation because they re-
quire the number of clusters to be known in advance, which
is a serious limitation in practice.

3. ADAPTIVE LOCATION LEARNING
We describe now an approach to important location learn-
ing that overcomes the cited disadvantages, is lightweight

enough to run on a cell phone, is adaptive, and operates on
a continuous stream of incoming location data. An impor-
tant location is here defined as a location where the user
spends the most of his/her time, or most often is engaged in
some activities, such as placing calls or sending messages.

3.1 Initial visualizations of the location data
Before any larger scale effort in data analysis, it usually
pays off to visualize the data in question. We present some
illustrations of the location data to justify the viability of
location learning and route learning.

Data was collected from fourteen participants. These par-
ticipants represent three groups of interest: students, office
employees, and independents. The student group consists
of six undergraduate students. The office employee group
consists of five persons who worked in regular business days
at fixed location. The independents group includes three
persons who were either stay-at-home parents or business
people who did not work consistently in an office environ-
ment (e.g. realtors).

Each participant was provided with a commercially avail-
able mobile phone equipped with Bluetooth, along with a
separate Bluetooth GPS receiver to acquire location data.
Data logging software was installed on the mobile phones.
GPS location and Cell ID were logged every 30 seconds for
a period of 2-3 months.

We depict one user’s location data in Fig. 1. Time acts
in the visualization as the z-coordinate. This figure illus-
trates two important facts. First, there are a small num-
ber of seemingly important locations where the phone usage
concentrates. These become now explicit as “columns of ac-
tivities” in Figure 1. We can see that there are four major
location clusters of phone activities. Second, the user’s daily
commute routes, as well as weekend routines, become visible
as repeating loops stacked on top of each other. Because of
this regularity, Figure 1 suggests that it is not only possible
to learn the routes from the data but also to predict them.

3.2 GPS Data Preprocessing
The semantic location discovery method is based on GPS
data, which are sampled every 30 seconds in our study. How-
ever, GPS signal may get lost due to various reasons, such as
entering into buildings or concrete canyons in urban areas or
because GPS device powers off. Therefore, re-sampling GPS
data is important to obtain equally sampled data without
losing the important location clusters. In the re-sampling
procedure, the void GPS data are made up by repeating the
last valid GPS reading, if the area where GPS signal disap-
peared and reappeared is covered by the same group of cell
IDs. The detailed re-sampling procedure is depicted in Fig.
2, where α is the GPS sampling rate , the two nearest GPS
sampling times are ti+1 and ti, and the corresponding GPS
locations are gi+1 and gi. Also, ek denotes the time that
GPS reading is invalid, and sj denotes the last sampling
time in one log file.

3.3 Adaptive Location Clustering
After re-sampling, the GPS data will be fed to the learn-
ing algorithm. Only GPS readings with speed less than 5



Figure 1: Visualization of one subject’s data base. User’s GPS coordinate traces (x,y) and time (z) plotted
together with certain phone application events. Time covers about three months and is increasing from
bottom to top.

Figure 2: Decision rule for GPS data resampling.

miles/hour will be considered to learn the stationary loca-
tions.

The adaptive algorithm is a sequential method that pro-
cesses only a small amount of GPS data each time. The al-
gorithm continuously adapts the learned model to new GPS
readings. We model the GPS data as a mixture of locations
with noise, where each location follows Gaussian distribu-
tion. Given new GPS readings, an on-line algorithm is em-
ployed to update the model, i.e. adding/deleting/merging
locations, updating the parameters of the Gaussian mix-
ture model, etc. Consider a set of sequential GPS readings
{g1, . . . , gt} in time order, where

gi = [xi, yi]
′ 1 ≤ i ≤ t

and x, y are GPS coordinates. Assume at the moment t
that the true but unknown density of GPS value g is of the



form
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is the Gaussian probability density function with two-
dimensional mean µ`

t and covariance Σ`
t. For simplicity, the

covariance matrix is assumed to be diagonal.

At time t, the number of Gaussians Nt in the mixture model
represents the number of significant location candidates, the
weight of Gaussians π`

t (` = 1, . . . , Nt) denote the signifi-
cance of the learned locations, and the mean µ`

t and variance
value Σ`

t in each Gaussian specifies the important location
center and size. Below, we will describe how to adapt the
parameters as well as the structures of the mixture model
with the new incoming observations.

Location Update Rule

If there is no change in the GPS value distribution, the num-
ber of components Nt in the mixture will be constant, and all
observations up to the current time g1:t = {g1, . . . , gt} can
be used as the training set to estimate the parameter vector
θt. Denote an estimate for p(g|θt) with the estimated param-

eter vector θ̂t as p̂t(g) = p(g|θ̂t). The EM algorithm [6] is
a maximum likelihood estimation of these parameters. Tit-
terington [7] presents a recursive procedure to update θt for
the normal distribution φ. When a new observation arrives,
the training set g1:t is updated, and p̂t(g) is re-estimated.

Let βt = 1
t

and ρ`
t = π`

t−1
φ`(gt)
p̂t(gt)

, then

π`
t = π`

t−1 + βt−1

h
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i
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h
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t−1)

T − Σ`
t−1

i

We call the procedure (1) update rule, denoted as θ̂t =

Ut(gt, βt−1, θ̂t−1). Convergence results regarding the recur-
sive update rule Ut(·) have been given in [7]. This procedure
is generally also called the recursive EM algorithm.

The mixture weights in the model represent the sizes of the
clusters, or the number of data points in a cluster. They
denote the proportion of time the user spends at each lo-
cation. However, this definition ignores locations that user
frequently visits but stays for a brief time (e.g. dropping
child off for school every day). Meanwhile, a location (e.g.
travel attraction) that user visits rarely but stays for a long
time, would be temporarily misclassified as an important lo-
cation. To solve the problem, we need also record the num-

ber of visits for each location. The weight f `
t of the visit

frequency for each location needs also be updated online.

Denote v`
t as the visit detection for location cluster `, then

v`
t =


1
0

if user just enter into location ` boundary
otherwise

Therefore, at time t, the total number of visits for all loca-

tions is Mt = Mt−1 +
NtP̀
=1

v`
t , and M0 = 0. Similarly to the

update procedure for the weight in the mixture model, the
weight of the visit frequency f `

t for location ` can also be
updated as

f `
t = f `

t−1 + γt−1[v
`
t − f `

t−1] (2)

where γt =
(Mt−Mt−1)

Mt
.

Now (1) and (2) together are denoted as the new update

rule θ̂t = Ut(gt, βt−1, γt−1, θ̂t−1).

Then the importance of a location is defind by the adjusted
weight

$`
t = απ`

t + (1− α)f `
t

where α ∈ [0, 1]. With this linear combination, both how
long and how often the user stays and visits in a location
are considered in determining the importance of a location.
Parameter α controls the compromise between the two fac-
tors, usually we use α = 0.5 to treat the visit time and the
visit frequency with equal importance.

If an approximation of the density pt(g) by a finite mixture
is used, the number of components Nt and an initial esti-
mate must be chosen. We describe next how to choose Nt

from the data in a recursive manner. The approach taken
by an adaptive mixtures estimator is to recursively adapt
not only the parameters, as above, but also the number of
components needed to fit the data. The adaptive mixtures
approach is designed to allow the number of terms to grow,
but at a much slower rate than that of a kernel estimator.
The adaptive mixtures approach is much less computation-
ally and memory intensive in practice, can produce a more
useful small sample estimator, and allows general consis-
tency results [7].

Addition Rule

The decision to add a component is made by checking the
Mahalanobis distance from the observation to each of the
terms; if the minimum of these exceeds a threshold (called
the create threshold, TD = 2.5) then the observation point
is in some sense too far away from the existing terms, and
a new term should be created. The square of the Maha-
lanobis distance between a point gt and a component with
the mean µ`

t−1 and the standard deviation Σ`
t−1 is defined

by M(zt; µ
`
t−1, Σ

`
t−1) = (gt − µ`

t−1)
′(Σ`

t−1)
−1(gt − µ`

t−1),
1 ≤ ` ≤ Nt−1. A binary decision function Dt(·) decides
when to add a component in the mixture.

Dt(gt, θ̂t−1) = 1 if min
1≤`≤Nt−1

M(gt; µ
`
t−1, Σ

`
t−1) > TD

Dt(gt, θ̂t−1) = 0 if min
1≤`≤Nt−1

M(gt; µ
`
t−1, Σ

`
t−1) ≤ TD



Creation Rule

A new observation is checked against the existing K Gaus-
sian distributions. If none of the K distributions match
the current GPS value, a new Guassian component is added
to the mixture. Assuming that the system has decided to
add a new component (Dt(gt, θ̂t−1) = 1), a creation rule,

θ̂t = ϑt(gt, βt, γt, θ̂t−1), can be derived from the fact that
the kernel estimator based on t observations is closely re-
lated to the kernel estimator based on t− 1 observations.

µNt
t = gt

ΣNt
t = Σ0

t (3)

π`
t = π`

t−1(1− βt)(` = 1, . . . , Nt−1)

πNt
t = βt

f `
t = f `

t−1(1− γt)(` = 1, . . . , Nt−1)

fNt
t = γt

Where Nt = Nt−1 + 1. Σ0
t may be user defined or derived

from the terms in the neighborhood of the observations.
Creation rule can be also used to initialize the mixture den-
sity with µ1

1 = g1, Σ1
1 = Σ0

t and π1
1 = 1.

The adaptive procedure proposed by Priebe [5] has the
fundamental assumption that {g1, . . . , gt} are drawn from
the same distribution p(g). For learning the important lo-
cations, the GPS distribution is time variant due to the
changes in user’s daily life. When the GPS distribution
changes, the new components will always be added in. The
complexity may not be controlled. An intelligent system
also needs to prune the unnecessary terms to forget the lo-
cations that user stops visiting, and to merge close nearby
terms. We describe these now in detail.

Pruning Rule

The purpose of the pruning rule is to discard the redundant
components in the mixture which do not entertain current
observations anymore. How to select the pruning candidates
is based on the Bayesian hypothesis test.

Denote C`
t : `th Gaussian component belongs to the current

important location candidates ` = 1, . . . , Nt. then P (C`
t ) =

$`
t , and

p(gt|C`
t ) =

1

(2π)n/2|Σ`
t|1/2

exp[−.5(gt − µ`
t)
′(Σ`

t)
−1(gt − µ`

t)]

The probability that the observation gt belongs to the `th
Gaussian component in the mixture is

P (C`
t |gt) =

p(gt|C`
t )P (C`

t )

p(gk)

Therefore, for the Gaussian component `1 and `2 in the mix-
ture, if

P (C`1
t |gt) > P (C`2

t |gt) (4)

the component `2 is more likely to be selected as the prun-
ing candidate. According to the 3σ property of Gaussian
distribution, exp[−.5(gt − µ`

t)
′(Σ`

t)
−1(gt − µ`

k)] → 0 when
(gt − µ`

t)
′(Σ`

t)
−1(gt − µ`

k) > 9 for gt that does not belong to

the component `. Eq. (4) can be written as

π`1
t > π`2

t

Because we adjust the location cluster weight by also con-
sidering the visiting frequency of the location, the candidate
components to be discarded from the mixture model are se-
lected from those that Dt(gt, θ̂t−1) = 1 with $`

t < TP , where
Tp is a pre-set threshold. After dropping the existing terms
in the mixture, the maintained mixture model weights π`

t

(` = 1, . . . , Nt) need to be re-normalized. We denote this

pruning procedure as θ̂t = Pt(θ̂t).

Generally, one can pre-set the largest number Nmax of Gaus-
sians to be allowed in the mixture model according to the
system requirement. When the mixture model meets this
bound, as the decision rule detects that a new component
needs to be added into the mixture model, we can replace
the old component with the new one. The candidate com-
ponent for replacing can also be chosen by the Pruning rule.

Pruning Threshold Selection

At time t0, when the new component ` is added into the mix-
ture model, we usually allow several days of adaptation to
adjust visit time weight π`

t0 and visit frequency weight f `
t0 .

To determine a reasonable pruning threshold Tp, there are
some general rules. As discussed above, the initial weights
π`

t0 and f `
t0 for the new components are often set as β̄ and

f̄ respectively. Meanwhile, the current learning rates are
adjusted as βt0 = β̄ and ft0 = f̄ . Therefore, if the `th com-
ponent in the mixture does not entertain the observations
for T = 7 days, it has

π`
t0+T = (1− βt0+T ) · · · (1− βt0+1)(1− βt0)π

`
t0

f `
t0+T = (1− γt0+T ) · · · (1− γt0+1)(1− γt0)π

`
t0

since βt0+i =
βt0

iβt0+1
, then

π`
t0+T = (1− βt0

Tβt0 + 1
)(1− βt0

(T − 1)βt0 + 1
) · · · (1− βt0)π

`
t0

=
(T − 1)βt0 + 1

Tβt0 + 1
· (T − 2)βt0 + 1

(T − 1)βt0 + 1
· · · · · (1− βt0)π

`
t0

=
(1− βt0)

Tβt0 + 1
· π`

t0 =
(1− β̄)

T β̄ + 1
· β̄

Similarly,

f `
t0+T ≥ (1− f̄)

T f̄ + 1
· f̄

Therefore, we may specify the pruning threshold as

TP ≥ α
(1− β̄)β̄

(T β̄ + 1)
+ (1− α)

(1− f̄)

T f̄ + 1
· f̄

Merging Rule

The merging rule θ̂t = M(θ̂t) combines two Gaussian com-
ponents into a single Gaussian when the two components in
the mixture model are very close to each other.



Suppose the two Gaussian components are

p(g|C`1) = N(g, µ`1 , Σ`1) P (C`1) = π`1

p(g|C`2) = N(g, µ`2 , Σ`2) P (C`2) = π`2

In probability theory, Kullback-Liebler Divergence is a quan-
tity which measures the difference between two probability
distributions. For two Gaussian distributions

KL(p(g|C`1); p(g|C`2)) + KL(p(g|C`2); p(g|C`1))

= 0.5(|(Σ`2)−1Σ`1 |+ |(Σ`1)−1Σ`2 |)

+ 0.5(µ`1 − µ`2)′[(Σ`1)−1 + (Σ`2)−1](µ`1 − µ`2)− n

When

KL(p(g|C`1); p(g|C`2)) + KL(p(g|C`2); p(g|C`1)) < ε

we can merge two Gaussian components p(g|C`1) and
p(g|C`2) into one p(g|C`′) = N(g, µ`, Σ`) and obviously
π` = π`1 + π`2 , f ` = f `1 + f `2and

µ` = E(g|C`) =
µ`1π`1 + µ`2π`2

π`1 + π`2

Σ` = E(g2|C`)− µ`(µ`)′

=
(Σ`1 + µ`1µ`1′)π`1 + (Σ`2 + µ`2µ`2′)π`2

π`1 + π`2
− µ`µ`′

As we have seen, the pruning rule and merging rule are used
to eliminate the unnecessary components and merge similar
components. The two described procedures can keep the
most efficient model for a time varying GPS distribution at
the same time saving computation and memory.

Learning Rate Adjustment

In the above adaptive location clustering process, βt is the
learning rate for the parameter adaptation of the Gaussian
mixture model. The convergence result regarding the re-
cursive update formula (1) with βt converging to 0 have
been given by [7]. Since this is an online location learning
process, a small learning rate will result in slow adaptation
to the current situation, i.e., any new location cluster will
need a long time to become significant in the system, and
the already learned location clusters are very unlikely to be
pruned from the system. To solve this problem, we set a
lower bound for the learning rate βt . When βt < βL, re-
set βt = β̄. Here β̄ > βL. Also, when the system decides
to create a new location cluster, i.e., Dt(gt, θ̂t−1) = 1, and
βt < β̄, we also reset βt = β̄. Now, all new location clusters
are adjusted with the same learning rate from beginning.

The proposed learning rate adjustment makes the system
more flexible in adjusting to changes. Therefore, user’s daily
life will be timely updated in the system. The same tech-
nique can be applied on the learning rate γt to adapt the
weight of visit frequency.

3.4 Significant Location Identification
In location learning process, the location clusters are repre-
sented by the major components in the mixture model. The
adjustment weights in the mixture model denote the signif-
icance of the locations. However, not all location clusters

belong to the significant locations since some location clus-
ters have been recently added to the model and need time
to justify themselves. The location clusters only provide the
candidates of the important locations. To determine the
significant locations, at time t, we need evaluate the adjust-
ment weight $1

t ≥ $2
t ≥ · · · ≥ $Nt

t , and pick the top N

corresponding location clusters such that
NP̀
=1

$`
t ≥ 95% and

N−1P̀
=1

$`
t < 95%, where 0 < N ≤ Nt.

The described adaptive mixture method automatically gen-
erates the location clusters. The online update procedure
adjusts model parameters as well as the number of com-
ponents in the mixture. Thus, by choosing the prominent
clusters in the mixture, the significant locations are identi-
fied.

4. LEARNING AND PREDICTION OF
ROUTES

We use raw GPS data sequences to represent routes. A
GPS string between an important location pair is denoted
as a route. The starting point and ending point of the route
involves detecting of the user leaving one important loca-
tion boundary and entering into another important location
boundary. In fact, through location clustering, the cluster
boundaries also serve as the important location boundaries.

4.1 Route Learning
Although it is easy to extract GPS data sequence between
two locations as routes, it is not straightforward to de-
termine if two sequences represent the same routes. Note
that people often have several different daily routes for the
same location pair. The system has to distinguish them
for providing traffic information by comparing GPS data
sequences.

To solve the problem, we developed a MinMax criterion to
compare two routes. Suppose two routes of GPS sequences
are

R1 = {g1
1 , g1

2 , . . . , g1
n} and R2 = {g2

1 , g2
2 , . . . , g2

m}

The best match of R1 in terms of R2 is

R̂1 = {ĝ1
1 , ĝ1

2 , . . . , ĝ1
n}

where ĝ1
i = arg ming2

j
||g1

i − g2
j ||. Similarly, R̂2 =

{ĝ2
1 , ĝ2

2 , . . . , ĝ2
m} is the best match R2 in terms of R1, where

ĝ2
j = arg ming1

i
||g1

i − g2
j ||.

We regarded two routes as the same if

max ||g1
i − ĝ1

i || < d1 and max ||g2
j − ĝ2

j || < d2

where d1 and d2 are the largest sampling intervals of R1 and
R2, respectively.

With the adaptive location clustering, the significant loca-
tions are gradually discovered and updated. Once an impor-
tant location pair is identified, the commute routes between
them are recorded and learned. Through the route compar-
ison, the unique ones are saved in the database. The unique
routes do not distinguish the directions, i.e., the route that



user moves from place A to place B or moves from place B
to place A are treated as the same. The frequencies of the
routes are counted in terms of the starting location and the
destination in an hourly base.

5. APPLICATION TO A CELL PHONE
BASED TRAFFIC ADVISOR SYSTEM

Once we have the capability for route prediction, a traffic
advisory system can be built by fetching real-time traffic
conditions along the predicted route, and presenting this
information to the user.

5.1 Design of the application
Ideally, the traffic advisor is designed to assist users during
transition times as the user is transitioning out of one loca-
tion and into a vehicle environment. Previous research has
shown that messages from context aware devices are better
received during transitions [17], and in our case it is during
transitions that the information provided by the application
is of the greatest relevance.

The application is designed to automatically detect when
the user is leaving a location and to predict where they are
likely headed and along which route. When the detection
occurs, traffic information will be fetched. To adopt a user-
centric approach and minimize the obtrusiveness, traffic his-
tory may be studied to derive traffic averages and variances
and traffic alerts are only provided when current or pre-
dicted traffic flow exceeds the average by a certain margin
(e.g., one standard deviation above the average flow). If a
traffic alert is detected that is out of the ordinary for that
route and time of day (i.e., if the route the user takes is
always delayed by ten minutes due to heavy traffic, the user
will not always be reminded of this), then the user will re-
ceive an audio or haptic alert, depending upon the current
profile settings of the phone. In addition, a pop-up window
will appear alerting the user that there is an alert, and of-
fering the user the choice of ignoring the alert or obtaining
more information. If the user selects the latter, more de-
tailed information on the alert (e.g. type of incident and
location) will be provided with an option for the application
to recommend a new route to the predicted location.

5.2 Implementation of the application
The developed prototype is a client-sever system. The client
software is running on a cell phone. The client collects GPS
data (through Bluetooth connection to a receiver) and cell
IDs and learns semantic locations and routes between them
with our adaptive algorithm. An easy to use user interface
is also developed to alert users about problematic traffic
situations (Fig. 3).

The server side provides map, real-time traffic, and other
information to clients based on J2EE. The communication
between clients and the server side is based on standard
HTTP protocol. An option to use free traffic services avail-
able in the Internet is provided, too. The architecture of the
system is depicted in Fig. 4.

5.3 Evaluation of the adaptive location learn-
ing

Figure 3: Screen shots of the application. Left side
depicts a textual pop-up alert, right side the map
view of the alert.

To evaluate the location learning feature in the traffic ad-
visory system, we compare the developed adaptive location
learning algorithm to a batch learning method. As the batch
method we employ the DBSCAN (density-based clustering)
algorithm, because it can automatically find the number of
clusters, identify outliers, it works well for arbitrary-shaped
clusters, and is also very efficient for large datasets [11, 10].

In the study, we first evaluate the algorithms on one office
employee who worked in regular business days at a fixed lo-
cation. Both batch and adaptive algorithms are applied to
the re-sampled GPS data, the comparison results for impor-
tant location discovery are generated for the first day, the
first week, and the first month. The visualization results
of the discovered significant locations are shown in Figures
5, 6, and 7. The corresponding weights of each discovered
location for both batched and adaptive methods are listed
in Table 1.

After the first day, the discovered locations by both batched
and adaptive methods match very well. The adjustment
weight ω generated by the adaptive method provides the sig-
nificance measure for the locations by considering the visit
duration as well as the visit frequencies. For example, in the
first day, the adaptive method finds that the “School”, where
the user drops his child off is comparably as important as the
“Gym” (Table 2). Although the visit time of the “School”
is much shorter than the “Gym”, the “School” has been vis-
ited twice for that day. In the first week, compared with the
batch method, the adaptive method discovered location L0

instead of L1 (Fig. 6). Since the adaptive method adjusts
the parameters online, location L1 which was visited early
in the week is already discarded from the significant location
candidates due to the short visit time and low visit frequency
(only one visit for that week). Instead, location L0 which
has been visited most recently had higher initial weight and
then becomes more important than location L1. The same
reason explains results obtaining location L3 instead of L2

from adaptive learning method on first month’s data (Fig.
7). Meanwhile, both algorithms can discover several nearby
locations in certain large areas, i.e. the “University” campus
area and the “Gym”.

This comparison shows that the proposed location learning
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Figure 4: Architecture of the server/client system. The mobile device is on the right side of the figure. This
figure depicts also the possibility of the mobile device sending collected context data (GPS in this case) to a
server (bottom), which trains the location models, and sends back to the mobile device. As we have described
in this paper, all adaptation can be done at the mobile device, and this possibility is currently reserved for
more complex cases in the future.

algorithm is effective in location identification and can adapt
to the user’s daily life.

5.4 Evaluation of Route Learning
As the important locations become available, the trans-
portation routes between the location pairs, i.e. GPS
strings, are recorded in the system. With the proposed Min-
Max criterion, the unique routes are detected and the most
frequent ones are discovered. In our study on one user’s
data, after two month learning, 47 unique routes from a
total of 170 routes are obtained.

The route frequency is derived by considering all different
routes starting from Location A to Location B. As an exam-
ple, we show the route frequencies from ”home” to ”office”
in Table 2, and those from ”office” to ”home” in Table 3.

Naturally, the most frequent route is simple to obtain once
we have the frequency for each route between semantic loca-
tions. We select the most frequent routes between location A
to B to cover 95% of total routes and the maximum number
of the most frequent ones is three for the application. Fig-
ure 8 displays the most frequent routes for different hour and

different location pairs. With these thresholds none of the
routes that the users perceived important were discarded.

5.5 Evaluation of the implementation
All specific aspects of the implementation of the design of
the traffic advisor, as well as the overall acceptance of the
application are currently being validated by real users from
specific demographic areas of interest in a field evaluation
of the application.

6. CONCLUSIONS
Context knowledge such as the user’s needs, locations, and
travel routes is a major enabler for providing a cell phone
user with unobtrusive assistance. In this paper, the focus
has been on a location-based traffic advisory system that is
based on learning and predicting the user’s patterns using
data available in the mobile devices. We have demonstrated
a successful implementation of a traffic condition assistant
that learns user’s important locations, routes between those,
and learns to predict those routes. In order to maximize
the system effectiveness and user acceptance, advisories are
provided to the user only when there is a real need (e.g., a
traffic problem on the predicted route).



Locations Home Office Gym Univ. School

first day

DBSCAN π(weight)

Adaptive

π(weight)

f (frequency)

ω(adjust weight)

0.8355

0.7583

0.5714

0.6649

0.1583

0.1889

0.1429

0.1659

0.0062

0.0474

0.2857

0.1666

first week

DBSCAN π(weight)

Adaptive

π(weight)

f (frequency)

ω(adjust weight)

0.8508

0.7910

0.4359

0.6134

0.0214

0.0193

0.1026

0.0609

0.0235 0.0804

0.0965

0.1538

0.1252

0.0111

0.0148

0.0256

0.0202

0.0051

0.0083

0.1795

0.0939

first month

DBSCAN π(weight)

Adaptive

π(weight)

f (frequency)

ω(adjust weight)

0.8333

0.6227

0.3557

0.4892

0.0206

0.1283

0.1237

0.1260

0.1073

0.0075 0.1104

0.0258 0.1804

0.0166 0.1454

0.0117

0.0038 0.0193 0.0383

0.0103 0.0361 0.0928

0.0071 0.0277 0.0655

0.0049

0.0085

0.1031

0.0558

Table 1: Significant location learning methods comparison

Route ID 4 8 25 26 27 28 29 30

frequency 0.6 0.1429 0.0286 0.1143 0.0286 0.0286 0.0286 0.0286

Table 2: Frequencies for routes from home to office

Route ID 8 28 35 36 37 38 39 40 41

frequency 0.4643 0.2143 0.03576 0.0357 0.0357 0.0714 0.0714 0.0357 0.0357

Table 3: Frequencies for routes from office to home

Figure 8: Illustration of one user’s frequent routes.



Figure 5: Visualization of the first day of one sub-
ject’s data. User’s GPS coordinates are plotted to-
gether with important locations.

Figure 6: Visualization of the first week of one sub-
ject’s data. User’s GPS coordinates are plotted to-
gether with important locations.

Figure 7: Visualization of the first month of one
subject’s data. User’s GPS coordinates are plotted
together with important locations.

We envision that context aware features like this including a
user modeling component will become essential in support-
ing new applications and concepts that connect consumers
with media and services through multiple devices in the of-
fice, car, or home.
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