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ABSTRACT

This paper discusses and motivates autonomic replication in
a data management layer for network management systems.
The data management layer simultaneously supports mul-
tiple update protocols for single logical data—item, allowing
different levels of performance and consistency to be offered
to different groups of users. How replication is applied is
key to maximising system performance. The challenge lies
in the fact that the optimal scheme depends on dynamic
characteristics of the workload. Autonomically reconfigur-
ing replication in response to the changing workload using
feedback control.

The goal of the paper is to demonstrate the applicability of
feedback control to maintaining a given performance metric
in a changing environment. The presented work is intended
as an investigation and proof of concept into the feasibility of
autonomically managing a facet of replication: specifically,
the number of replicas. Replica placement and optimality of
management decisions is currently considered out of scope
and part of future work.

1. INTRODUCTION

Within an information system, replication affords a wide
range of advantages ranging from increased robustness of
client applications to a degree of failure transparency. The
degree to which any of these advantages are experienced is
dependent upon access patterns, the current system and net-
work state, the data being replicated, and the applied repli-
cation schemes. A replication scheme describes how a partic-
ular data item is replicated, that is: the number of replicas,
where those replicas are placed and the choice of update
propagation technique governing consistency. There exists
two techniques to development and application of these repli-
cation schemes, namely static and dynamic replication.

Static replication is the term used to describe replication
in systems where replication schemes are developed and ap-
plied at design time and remain largely unchanged until an
administrator manually intervenes. In a system where at-
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tributes of traffic and the network are both known and un-
changing, such static schemes are entirely appropriate. In
fact, experience and in-depth knowledge has allowed admin-
istrators to typically outperform software based solutions in
static environments. In more typical systems where varia-
tions in topology, routing [14] and changes in access pat-
terns are experienced over time, these inflexible replication
schemes are unsuitable. Changes in traffic patterns or client
population may negate the applied replication scheme or
even damage performance. Prompt and frequent redevelop-
ment of replication schemes by an administrator is required
if static replication is to be applied in a dynamic environ-
ment. For large scale highly dynamic systems, administrator
control of replication is not only susceptible to expensive hu-
man error but represents a non—trivial cost in terms of time,
expertise and money. These costs are additionally inflated
when response time is considered. Changing network condi-
tions reducing the efficacy of a given replication scheme may
cause an administrator to be notified; by the time such a no-
tification has been received, the problem has been identified
and a solution formed, the transient network conditions may
have progressed to a new problem where the derived solution
does not apply, or regressed to 'normal’ where the derived
solution no-longer needs to be applied. The problem with
this is two—fold: 1) QoS and performance conceivably deteri-
orated during the problem period which may incur financial
penalties as a result of SLAs and, 2) application of a solution
to a transient problem that has since passed creates a new
problem.

Dynamic replication accounts for the natural fluctuations
in user traffic and behaviour by adapting replication schemes
based on the current state of the network, user behaviour
and some target performance related metric(s). Typically
this is achieved through the introduction of an element of
context awareness. A system employing dynamic replication
will monitor its environment to determine, how and when
to alter replication schemes, and how these alterations ef-
fect the system. In this way, replication schemes are devel-
oped, adjusted and applied so as to maximise some objective
function representing performance[10]. The arguments and
disadvantages to administrator controlled replication pre-
sented above could arguably be cited here as well. However,
the proposition is to autonomically, as opposed to automat-
ically, manage replication. That is, allow nodes to modify
replication schemes to satisfy local goals and handle received
traffic by altering their own role in the system and cooper-
ating with other nodes.A# Not only does this autonomy de-
centralise replica management but additionally introduces
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an element of divide and conquer where individual nodes
handle small, local, problems as opposed to a system wide
problem. Furthermore, as replication is in essence a func-
tion of the environment, schemes are modified as and when
environmental changes.

The work presented herein is concerned with autonomic
replication and aims to maintain QoS and Service Level
Agreements (SLAs) in a dynamic distributed environment.
Feedback control is applied to determine how best to adapt
replication schemes so as to maintain QoS/SLAs.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the the context in which our work is applied.
Section 3 introduces the distributed data management sys-
tem and its relevant features. Section 4 defines autonomic
replica management in the context of our work, develops
a feedback control mechanism to regulate average message
response through changes in replication and presents some
preliminary results. Finally, Section 6 presents conclusions
and future work.

2. MOTIVATION

As 3G mobile networks are deployed, and pervasive, highly
heterogenous 4G networks are developed, a scalability crisis
looms in the current network operations and maintenance
(OAM) infrastructure. Due to the trend towards ubiquitous
computing environments, customers of future networks are
expected to use several separate devices, move between lo-
cations, networks and network types, and access a variety of
services and content from a multitude of service providers.
In order to support this multiplication of devices, locations,
content, services and obligatory inter—network cooperation,
there will be an increase in the scale, complexity and het-
erogeneity of the underlying access and core networks. Fur-
thermore, based in part on the 2G to 3G experience, an ex-
plosive growth in the number of network elements (NEs) to
be managed is predicted. Each additional NE, type of NE,
and inter-working function between different access network
technologies, adds to the volume of management data that
must be collected, queried, sorted, stored and manipulated
by OAM systems. Moreover, as a result of this “always on-
line” lifestyle and the increased size and complexity of net-
works, there will be an increase in management and service
related data by several orders of magnitude.

As exemplified by the OSI reference model, the Simple
Network Management Protocol (SNMP) management frame-
work, and the Telecommunications Management Network
(TMN) management framework, network management (NM)
has thrived on either centralised or weakly distributed agent-
manager solutions since the early 1990s[15]. However, the
aforementioned increase in size, management complexity,
and service requirements of future networks will present
challenging non-functional requirements that must be ad-
dressed in order to deliver scalable OAM data management
sub-systems|[2]. More distributed architectures for next gen-
eration OSS platforms are one approach to providing scal-
able, flexible and robust solutions to the demands presented
by future networks.

Within a typical NM solution management actions depend
on, and are in essence issued by, the Network Management
System (NMS); herein lies the failure of centralised NM to
cope with the scale and complexity of future networks. By
distributing the responsibility of NM, several potential ad-
vantages may be achieved: network traffic and load on the

NMS can be reduced by performing processing on, or close
to, NEs; scalability is improved as capacity to perform NM
grows with the network and distributed NM is inherently
more robust. Furthermore, as the compute power of NEs
grows, the opportunity to increase the degree of distribution
of NM also increases and thus reinforces the aforementioned
advantages.

These aspects of future networks are driving NM solutions
towards autonomically controlled, distributed solutions [2,
20]. Distributed NM addresses some of the shortcomings
of current solutions and offers scalable, flexible and robust
solutions to the demands presented by future networks.

3. DISTRIBUTED DATA LAYER

As an enabling technology for these distributed NM sys-
tems, a distributed data layer to dissociate data access from
physical location is proposed [8, 7]. Furthermore, as some of
the challenges posed by future networks are data manage-
ment challenges, the responsibility of autonomically manag-
ing the replication life-cycle and several levels of consistency
for each replicated item of data is bestowed upon the data
layer. Replication and consistency are managed using a pol-
icy based control mechanism. As no restriction is placed on
users, composition or content of the distributed data layer,
the general term “client” is used to refer to any entity ac-
cessing data, “node” to refer to the hardware across which
the data layer exists and “data item” to describe a logical
datum managed by the layer.

A fundamental observation motivating this work is the
fact that the access pattern perceived by a data item is the
product of an entire population of clients. This observation
is not exploited in most dynamic replication systems. That
is, a system applying replication treats the arrival stream to
a data item as though it were generated by a single client
and attempts to generate a “one size fits all” replication
scheme to suit this pseudo-client. As such, the range of
consistency and quality of service requirements of all clients
contributing to an arrival stream is not taken into account
when applying replication, see Figure 1. For example, if a
relatively small user group (Group A) requires strict consis-
tency mechanisms to be enforced on a particular data item,
the number of replicas in the system would ideally be kept
to a minimum in order to minimise the overhead (time and
messages) in propagating updates; this would typically di-
minish the availability of the data item in question. Further
suppose another larger user group (Group B) is capable of
operating with partially or temporarily inconsistent data. If
the replication manager exploits the differing requirements
of different classes of client by allowing several levels of con-
sistency for a single data item, requests from Group B could
be satisfied using the set of replicas that are only periodi-
cally updated (thus reducing the “cost” of an update), while
Requests from Group A could be satisfied by the smaller set
of replicas that guarantee consistency.

In order to account for and exploit the various classes
of client that contribute to the arrival stream experienced
by a data item, multiple distinct replication schemes are
simultaneously applied to a single data item so as to best
satisfy the requirements of all classes of client. To provide
this additional feature of dynamic replication policies are
introduced to the system that must be enforced by all nodes.

3.1 Policy Based Control
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Figure 1: Exploiting QoS & Consistency Require-
ments

A policy is a set of high level rules to administer, man-
age, and control dynamic replication and access to resources.
Policies allow specification of what the system should do as
opposed to how it should be done. We apply policy based
control to several aspects of the system.

In order to account for heterogeneity across nodes and
restrict resources consumed by the distributed data layer,
the role a particular node plays in the network is controlled
using a policy. Node policies are defined by an administrator
and specify how a particular node can be used in terms of
network, storage and processing resources. Node policies are
used in determining which data items can be replicated on
a specific node.

1 | <policy tupe="node'>

2 <maxStorage unit="Gh'>10</maxStorage:

3 <maxStoragePerDataltem unit="Mb">20</maxStoragePerDataltem:
4 <maxCPU>0. 2 </maxCPU:

5 <forwarding>redirect</forwarding>

6

3

g

3

* * *
<maxfueuelengthy 300 </maxbueuelengthy
<poolsizer10<s/poolsizes

</policys

Figure 2: Example Node Policy.

A node governed by the policy depicted in Figure 2 is re-
stricted in terms of the role played within the system such
that it may not: use more than 10Gb of local storage, host
a single data item larger than 20Mb, use more than 20%
of CPU time; additional node configuration parameters im-
pacting performance are also specified. As a node policy is
only pertinent to the node to which it applies, it is stored
by and accessible to only that node.

Two data centric policies are used to control replication.
A data item policy specifies upper and lower bounds on con-
sistency related parameters and performance metrics that
must be maintained by any replica of the data item to which
the policy refers, Figure 3. Associated with an instance of a
logical data item is a replica policy indirectly describing the
level of consistency maintained by that replica and request
related performance metrics its host is prepared to maintain;
these replica policies are bounded by data item policies.

The policy depicted in Figure 3 defines the boundaries for
all replica policies associated with the data item identified by
the GUID (Globally Unique IDentifier) and may be decom-
posed into three sections. The first section, metrics, specifies
minimum and maximum request related performance met-
rics that must be maintained by a replica host. Examples

1| <policy guid="00ee0ada-6709-1029-8al6-00087427F 14a" type="data" >
2 <metrics»

3 <writeserviceTime units="ms" min="100" max="z00" />
4 <readserviceTime units="ms" min="50" max="100" />
5 <replicaCount min="10" /3

5] * * *

7 </metrics:

a <triggers:

9 <trigger_def id="o01" >

10 <name> count </ /name>

11 <param min="5" max="25" />

12 <strigger defs

13 <trigeer_def id="02" »

14 <name>conpos ite<snames

15 <trigger_def id="0z21" »

16 <namescount</name>

17 <param min="10" max="100" />
18 </trigger_def>

19 <trigger_def id="o22" >

20 <name>time</name»

21 <param min=""10" max="100" />
22 </trigger_def>

23 <Strigger_def>

24 * * *

25 </triggers»

26 <protocolsy

27 <protocols

28 <name> TFC </ names

29 <param id="1" »primary</param>
30 </protocols

31 <protocol:

3z <name> TSAE</name>

33 <param id="1" »any</param:

34 <triggers»01 02<¢/triggerss

35 </protocols

361 # # #

37, <s/protocolss

38 </policy:

Figure 3: Example Data Item Policy.

of such metrics include minimum number of replicas (avail-
ability) and service time. Within the context of a data item
policy, maximum service times are considered hard limits in
that no descendent replica policy may advertise a greater
service time. Conversely, minimum service times are soft
limits; they state the lowest service time required by the
most demanding class of client. The second section defines
a set of applicable triggers and parameter boundaries. The
last section defines update protocols that may be used and
the set of triggers that may be applied to those protocols.
Current possibilities include Time Stamped Anti Entropy
(TSAE), Gossipping, and Two-Phase commit (2PC).

Within the context of our work we use the general term
trigger to refer to the means by which update propagation
is initiated. Zero or more triggers may be applied to any
update protocol. The following briefly describes some of
the possible triggers applicable within the system. Count
triggers allow update propagation to be initiated when a
specified number of tentative updates have been received.
Two time based triggers exist, time-push propagates updates
every n ms, and time-pull allows a remote replica to 'pull
down’ updates when it has not received updates in the last
m ms. Content triggers initiate propagation as a function
of the changes made to a data item. Finally, a composite
trigger allows the disjunction (or conjunction) of multiple
triggers.

When a data item is created, a data item policy controlling
replication schemes that can be applied to instances of that
data item is also created and installed in the replica location
service. The creator of a data item is responsible for defining
a data item policy. The primary copy of the data item must
adhere to the strictest set of requirements set out in the
data item policy. This restriction ensures there is at least
one instance of the data item governed by the most stringent
policy, regardless of its cost.

A replica policy defines a particular point in the param-



eter space defined by a data item policy. For example, the
replica policy of the primary copy of a data item with the
policy depicted in Figure 3 must ensure a response time of
at most 50ms for read requests and 100ms for update re-
quests, all updates must be processed by the primary copy
using Two Phase Commit and triggered update processing is
disallowed. In contrast to data item policies, within the con-
text of replica policies, performance metrics are considered
soft limits as breaking of a performance metric triggers al-
teration of a replication scheme. Both data item policies and
replica policies are installed in a federated database based
on the Replica Location Service (RLS) of the Globus toolkit
but are additionally cached by hosting nodes, [3, 4].
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Figure 4: Replica Hierarchy
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Replicas associated with a particular replica policy form a
replica group, where consistency within a group is governed
by the replica policy. Excluding the replica group to which
the primary copy belongs, each replica group has a parent
replica group and zero or more child groups. These replica
groups are organised into a logical hierarchy. This hierarchy
indirectly groups nodes hosting replicas based on the group
to which a policy belongs. Figure 4 shows the replication
hierarchy for a single logical data item. The root replica
group contains a single replica (primary copy) and offers
the most stringent set of requirements defined by the data
item policy. The root policy has two child groups, each
of which is governed by a less stringent replica policy than
that governing the root group. As a child group receives
update requests after its parent, each group necessarily offers
a less consistent view of the data item than the root group.
Thus, consistency within a group is determined solely by
the replica policy governing the group, and consistency of a
group is determined by its ancestors.

3.2 Data Structures

Each node in the system maintains a record of: (i) the
bandwidth experienced between itself and nodes it has had
contact with (bpsRecord), (ii) nodes it frequently relays re-
quests to due to an inability to satisfy them locally, and (iii)
nodes that have sent request to host messages (rthRecord).
Receipt of a request to host message signifies a nodes inter-
est in hosting a replica of data item it is receiving requests
for but is unable to satisfy, see (ii). Combined, these records
form a list of known hosts. Though intended only as a place—
holder for future work, a trivial algorithm using these data

structures has been developed to handle replica placement
[7].

Though replication and distributed data management of-
fer advantages to distributed NM in future networks, the
complexity of managing such a system is comparable to that
of the NM system it supports. Active creation and mainte-
nance of replicas and replication schemes by administrators
is possible, the necessary expertise and time involved in ‘op-
timally’ administering a system of the expected complexity
and magnitude represents a non-trivial cost. We apply au-
tonomic control mechanisms, such that the system can self-
monitor and adjust policies so that the QoS/SLA constraints
are maintained.

4. AUTONOMIC REPLICA
MANAGEMENT

Replication affords the possibility of increased ‘performance’
and robustness of client applications as well as a degree of
failure transparency. The appropriate measure of ‘perfor-
mance’ is subjective with respect to the system; it may re-
late to system—wide characteristics such as response time,
throughput or utilisation of nodes in a distributed database
management scenario; or in a grid environment, replication
may be motivated by the high likelihood of node failure and
quantified by availability. Our work specialises to the first
scenario. We are interested in maintaining a desired level of
performance, measured in terms of throughput or response
time, as well as data consistency, under changing workload
conditions.

In the context of the state-of-the-art, our problem area is
interesting in that we wish to support update accesses as well
as read accesses. Replication necessarily requires updates
to be propagated to all replicas, an overhead not incurred
in read-only systems. However, for optimal performance,
update propagation will not necessarily be performed as an
atomic operation for every update, thus we allow replicas to
be inconsistent with the most up-to-date instance for some
period of time and will trade some tolerance to inconsistency
for shorter response times. The challenge then is to monitor
the conditions under which the system is operating, and
modify the replication strategy when system performance
falls outside a desired tolerance.

In an attempt to increase scalability, avoid a single point
of failure, and increase autonomy, each node makes indepen-
dent, integrated, replica management decisions based on a
partial view of the system. That is, each node shares the
responsibility of replica management, performance monitor-
ing and logging and autonomically adapts to its environ-
ment, thus precluding the need for administrator interven-
tion or centralised control. We are interested in autonomi-
cally reconfiguring replication schemes in response to chang-
ing workload using feedback control.

4.1 Feedback Control

Feedback control aims to manipulate measured output or
output characteristics of a system through alteration of con-
trol inputs. The key component in a feedback control loop
is the controller, which is responsible for comparing the ref-
erence input, yr, to the measured output, y, and altering
control inputs, u, such that the difference between y and y,,
the control error, e, is minimised, that is, y = y,.

Though y could conceivable represent any of the perfor-
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Figure 5: Feedback control loop

mance metrics specified in the policies described in Sec-
tion 3.1, the current emphasis of our research is dynamic
replication. Thus, y is restricted to those metrics specified
in data centric polices. Similarly, u could represent vari-
ous aspects or parameters of the system but is limited to
those concerning replication schemes. The reference input,
yr, is determined by the desired QoS metrics specified in
the data centric policies. We use average message response
time (MRT), as an output signal and the percentage of log-
ical data items fully replicated (REP) as the input signal.
In particular, if a data item is replicated, then a replica is
stored on every node. Changes in traffic mix are modelled
as disturbances, d to the system.

Conceptually, the feedback control loop works as follows:
the desired average response time, y,-, for a particular replica
group (see Section 3.1) is specified as part of the replica
policy for that group. At the end of every sampling period
the controller compares the measured output signal y to y,
and produces a control signal, u, representing the change in
REP needed to correct the difference, e, between y and y,.

4.2 Controller Design

This section describes production of the control signal.

Let y(k) and u(k) respectively denote the output and in-
put signal in the k'" sampling period. Controller design
begins with constructing a model of the system to quantify
the relationship between control inputs and measured out-
puts. This model takes the form of a difference equation and
relates current and past outputs to current and past inputs.
We adopt a first—order model, though higher order mod-
els are possible the results presented in the following section
demonstrate that a first—order model successfully models the
system. The relationship between REP and MRT is mod-
elled as a linear difference equation of the form:

y(k+1) = ay(k) + bu(k) (1)

Where a and b are specific to the system being modelled
and are estimated from training data collected from the sys-
tem being modelled. Such training data consists of a set of
(y(7),u(k)) pairs. Using least squares regression, Equation 1
for our system and the selected operating point, REP = 49
and MRT = 4981, is found to be:

y(k + 1) = 0.73y(k) + 45.18u(k) (2)

The next step is to determine and model how an input sig-
nal is transformed into an output signal by the system un-
der study. This transformation is referred to as the trans-
fer function of the system and can be found by taking the
Z-transform of both sides of the difference equation (Equa-
tion 2), setting all initial conditions to zero, solving for Y'(z)
in terms of U(z) and computing the ratio of Y (z) to U(z),
G(z):

Z ylk+1)z7% = Z ay(k)z"" + Z bu(k)z""

k

—0 k=0 k=0
2Y (z) — 2Y (0) = aY (z) + bU(2)

Setting initial conditions to zero:

2Y (z) = aY (z) + bU(2)

2Y(2) = 0.73Y (2) + 45.18U(2)
 45.18U(2)

Y = o)

Computing the ratio of Y (z) to U(z):

Y(z) 4518
U(z)  2-0.73 (3)

The transfer function has one pole (root) at z = 0.73
which is inside the unit circle, |z < 1 and hence the
model is BIBO stable. That is, for any bounded input
(0 < REP < 100), the output, MRT, is also bounded.
Steady—state gain characterises the effect of a constant input
uss on steady state output, yss and is defined to be the ra-
tio yss/uss. Steady—state gain is more commonly computed
using the transfer function G(z) and a unit input increase
[11].

G(z) =

Yss 0.73
¢ = wee  1-4518 002

As the gain is negative, an increase of 1 in REP, will cause an

decrease in MRT of 0.02. Note that as this is a linear model,

accuracy of this relationship is greatest near the specified

operating point, see Table 1.

The parameter b describes the relationship between the
input REP and the output MRT, as b > 0, a positive cor-
relation between REP and MRT is expected. That is, an
increase in REP will lead to an increase in MRT. This con-
clusion is only valid within the context of this model and is
in part due to the relative expense of write access when com-
pared to read access. As a write access to a replicated data—
item involves additional (propagation) writes to all replicas,
the response time of a write access increases by a factor of 1
with every new replica. The reduced response time of read
accesses with replication are dominated by the expense of
write accesses.

The role of the controller as the component responsible
for determining the control input w given the current and
past control error e is now formalised through specification
of a control law. A proportional control law is used in this
model:

u(k) = Kpe(k) (4)

where K, is a constant referred to as the controller gain and
e(k) denotes the error signal in the k' sampling period,
ie. e(k) = yr — y(k). Designing a proportional controller
requires selection of K, such that the closed loop system has
the desired properties for stability, steadty—state gain and
transient response. To assess these properties, the transfer
function Fy.(z) is constructed.

Finally, to complete the controller design the closed—loop
transfer function is found to be:

0.73K,

Fr —
R 4518+ K,0.73

()



K T [ 2 |- ] 25 | 26 | 27 |---] 50 51
Gk) || 0 | 2 |---| 48 | 50 | 52 |--- | 98 | 100
y(k) || 176 | 263 2297 | 2744 | 1261 24166 | 28589

Table 1: Subset of data used in developing model.

Since the closed—loop function is first—order, there is only one
closed-loop pole, p; = 45.18 — 0.73K,,. In order to ensure a
stable system, it must be ensured that this pole lies within
the unit circle |45.18 — 0.73K,| < 1, thus we solve for these
conditions on Kj:

1
0< K, < ta
140.73
0< Kp <53
0< K, <004

4.3 Experimental Results

In order to investigate the applicability of feedback con-
trol to autonomic replica management, the system described
in Section 3 was simulated and the control loop depicted
in Figure 5 and developed in Section 4.2 was implemented
therein.

The system under study is a 15 node network maintain-
ing 750 logical data items, with each node playing primary
host to 50 distinct data items. Each access handled by the
system refers to a single logical data item and may arrive
at any node with redirects as necessary. Data access pat-
terns are modelled using Zipf’s Law. A Zipfian distribution
models relative popularity of data where some items are ac-
cessed very frequently and others very rarely [1]. Placement
of data items was such that in the absence of replication
and in the presence of a steady arrival stream, all nodes
would be equally loaded. Inter—arrival times are taken from
an exponential distribution, thus creating a Poisson stream
which are known to be a good approximation of independent
arrivals from a large number of users [12, 13].

As a simple demonstration of the feedback control loop
and its ability to maintain the desired response time, we
compare system performance with feedback control (Fig-
ure 7) to performance experienced when no control is applied
(Figure 6). In both cases the system runs through 20 sam-
pling periods (k < 20) with a static stable configuration.
Each sampling period is fixed at 15 minutes. This stable
configuration consists of an inter arrival mean of 30ms, a
traffic mix consisting of 50% read accesses and 50% write
access, and 50% of data fully replicated. At the start of the
21°" sampling period, a disturbance is introduced; the ar-
rival rate of write accesses is increased by 50% and remains
at this new rate.

Due to the fact that write accesses are more expensive
than read access and replication necessarily increases the
cost of write accesses, a jump in average message response
time is seen when the arrival rate is altered at & = 20. As ex-
pected, this jump in response time persists when no control
mechanism is applied, Figure 6. In Figure 7 the feedback
control loop alters (reduces) the percentage of data repli-
cated and in so doing reduces the average cost of an update
access, and restores average message response time to the
desired value.

Figure 8 depicts the systems response to a temporary dis-
turbance, an impulse. The system is in the same static sta-
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Figure 6: Without feedback control
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Figure 7: With feedback control

ble configuration as described above for the first 20 sampling
periods. At the start of the 21°% sampling period the arrival
rate of write accesses is increased to 60% and reverts back
to 50% thereafter.

5. RELATED WORK

Though much research has been done in the area of dis-
tributed data management and replication, comparatively
little considers update traflic [18] and fewer still consider
a scenario where multiple distinct replication schemes are
simultaneously applied to a single logical data item.

As a peer—to—peer system grows, so too do its resources,
including bandwidth, storage space, and compute power.
When combined with replication, this scalability and the
inherently distributed environment yields a degree of fail-
ure transparency. Furthermore, when structured, a peer—
to—peer network or Distributed Hash Table (DHT) not only
offers a guarantee of an efficient route to every data item,
but continues to do so in the face of changes in network
topology. Though seemingly well suited to the milieu, sys-
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tems built on top of DHTs (PAST [9], CFS [5]) are typically
constrained by the decentralisation integral to peer—to—peer
systems and do not maintain consistency. That is, data is
read—only and is essentially cached as a means improving
data availability and fault tolerance. As such, many of the
more difficult issues relating to replication are ignored. Sys-
tems such as Ivy [16] accept updates but offer only relaxed
consistency guarantees.

In direct contrast to the scalability and restrictive con-
sistency guarantees of peer—to—peer systems, there exists
a range of more centralised alternatives providing a wider
range of consistency guarantees (Bayou [6], fluid replica-
tion [17], TACT [19]). The global information necessary
for these systems, restricts scalability and applicability to
a dynamic environment due to the possibility of frequent
changes. Though these systems offer a multitude of con-
sistency semantics across data—items, none offer a range of
consistency guarantees for a single logical data item, Sec-
tion 3.

6. CONCLUSIONS & FUTURE WORK

This paper has shown that autonomic control of replica-
tion schemes is possible, using a feedback control loop that
monitors the mean response time of the system and adjusts
the level of replication in order to maintain the response
time close to a pre-determined reference value. In the simple
scheme presented here, the replication management system
is determined by a single controllable parameter, namely the
percentage of data items that are fully replicated. A first-
order difference model is sufficient to describe the relation-
ship between the control input and the system output and a
proportional controller succeeds in adjusting the replication
scheme in response to changes in the output. In practice,
there are far more facets to replication management. The
following describes future work.

To date, optimisation through autonomic control in the
distributed data layer has been predominantly data centric.
How data is replicated and how consistency is maintained is
altered to achieve desired performance metrics. Future work
will also include feedback control of node parameterisations.
Nodes in the system may not necessarily be dedicated, that
is a node may have an alternate primary role in the sys-
tem supported by the distributed data layer but additional
resources allow said node to adopt a secondary role and con-

tribute to both the data layer and the system it supports. In
this respect, node resources could additionally be controlled
using feedback control.

The selection of which data items are replicated has the
potential to impact significantly on system performance, un-
used data—items selected for replication add nothing to per-
formance and serve merely to consume storage. Conversely,
a very heavily used data-item experiencing predominantly
update traffic would degrade performance. Replica place-
ment has the capacity to effect performance in a similar
fashion. A data—item replicated in order relieve heavy load
on one node that is placed on another heavily used node will
offer little in terms of performance gains. As both replica se-
lection and placement represent a high dimensional problem
area (n data—items could be replicated to any permutation
of m nodes), we are currently investigating the application of
feedback control to the parameterisation of replica selection
and placement algorithms. Feedback control is additionally
used to determine the frequency with which a particular al-
gorithm is run.

Application of feedback control to algorithm parameter-
isation and execution is being extended to apply to other
aspects of replication management: including maintaining,
response times, availability, resource usage and load balanc-
ing.
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