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ABSTRACT
We have designed a novel positioning system, the Coopera-
tive Location-sensing system (CLS) that employs the peer-
to-peer paradigm and a probabilistic framework to estimate
the position of wireless-enabled devices in an iterative man-
ner without the need for an extensive infrastructure or time-
strenuous training. CLS can incorporate signal-strength maps
of the environment to improve the position estimates. Such
maps have been built using measurements that were ac-
quired from Access Points (APs) and peers during a train-
ing phase. This paper makes three important contributions.
First, it uses a particle-filters-based framework to model the-
oretically CLS. Second, it proposes new algorithms that in-
corporate real-life signal strength measurements from (APs)
and peers to estimate position and distance. Third, it evalu-
ates the performance of CLS via real-life measurements and
extensive simulation, and compares it with other positioning
systems. We have implemented and evaluated the CLS pro-
totype along with its variants using IEEE802.11 and Blue-
tooth, and compared its performance with other positioning
systems.

1. INTRODUCTION
Location-sensing has been impelled by the emergence of
location-based services in the transportation industry, emer-
gency situations for disaster relief, entertainment industry
and assistive technology in the medical community. To sup-
port location-dependent services, a device needs to estimate
its position. For example, the GPS-enabled navigation sys-
tems allow users to compute a route to guide them. How-
ever, GPS typically breaks down near obstacles, such as trees
and buildings, and does not work indoors.

Location-sensing systems can be classified according to their
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dependency on, and use of, an infrastructure, specialized
hardware, signal modalities, training, methodology and mod-
els for estimating distances, orientation, and position, co-
ordination system, location description, localized or remote
computation, scale, device identification, classification, recog-
nition, cost, privacy, and accuracy and precision require-
ments [21]. The distance can be estimated using time of ar-

rival (e.g., PinPoint [41]) or signal strength measurements,
if the velocity of the signal and a signal attenuation model
for the given environment, respectively, are known.

To infer the position, location-sensing systems devices may
employ different modality, such as radio (Radar [8, 18],
Ubisense[3], Ekahau [1]), infrared (Active Badge [36]), ul-
trasonic (Cricket [31, 32], Active Bat [33]), Bluetooth [19,
9, 16, 34, 10, 6, 18], 4G [35], or vision (EasyLiving [27, 2]),
while others physical contact with pressure (Smart Floor),
touch sensors or capacitive detectors.

A location-sensing system may infer the position using sta-
tistical analysis or pattern matching techniques on measure-
ments acquired during training and run-time phase.

The wide popularity of the IEEE802.11 network, low de-
ployment cost, and advantages of using it for both com-
munication and positioning, make it an attractive choice.
Most of the signal-strength based localization systems can
be classified into the following two categories, namely the
signature or map-based and the distance-prediction based.
The first type creates a signal-strength signature or map of
the physical space during a training phase and compares it
with analogous run-time measurements [8, 28, 40]. To build
such maps, signal strength data is gathered from beacons
received from APs at various predefined checkpoints during
a training phase. Thus, each checkpoint in the map asso-
ciates the corresponding position of the physical space with
statistical measurements based on signal strength values ac-
quired at those positions. Such maps can be extended with
data from different sources or signal modalities, such as ul-
trasound from deployed sensors to improve location-sensing
[31, 19].

In other situations, a dense deployment of a wireless infras-
tructure for communication and location sensing may not be
feasible due to environmental, cost, and regulatory barriers.
Ad hoc networks exploit cooperation by enabling devices to
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share positioning estimates [38, 22, 11, 29, 12, 15, 41].

CLS is a novel location-sensing system using two features:

• the peer-to-peer paradigm

• probabilistic-based frameworks for transforming mea-
surements from various sources to position and dis-
tance estimates

CLS applies the peer-to-peer paradigm by enabling devices
to gather positioning information from other neighboring
peers, estimate their distance from their peers based on sig-
nal strength measurements, and position themselves accord-
ingly[17]. Periodically, CLS can refine its positioning esti-
mations by incorporating newly received information from
other devices.

CLS adopts a grid-based representation of the physical space;
each cell of the grid corresponds to a physical position of
the physical space. The cell size reflects the spatial granu-
larity/scale. Each cell of the grid is associated with a value
that indicates the likelihood that the node is in that cell.
These values are computed iteratively using one of the fol-
lowing approaches:

• A simple voting algorithm, through which a local CLS
instance casts votes on cells of the grid. A vote on
a cell indicates the likelihood that the local device is
located in the corresponding area of that cell.

• A particle filter-based model.

CLS can incorporate additional information to improve its
location estimates. Examples of such information are: posi-
tion estimates from different network interfaces (e.g., Blue-
tooth, RF tags, IEEE802.11), contextual semantics (e.g.,
topological information about the environment, mobility pat-
terns, hotspots of the area), and signal-strength-based sig-
natures of the physical space, to improve the location esti-
mation.

This paper makes three important contributions. First, it
employs a particle-filters-based framework to model CLS
theoretically. Second, it proposes new algorithms that incor-
porate real-life IEEE802.11- and Bluetooth- signal strength
measurements from wireless enabled devices to estimate the
position. Third, it presents the CLS implementation and
evaluates its performance via extensive simulations and real-
life measurements.

Section 2 presents the communication protocol and section 3
the main CLS algorithms. Section 4 presents the particle fil-
ters based framework for CLS. In Section 5, we analyze the
impact of the density of peers, and landmarks on the perfor-
mance of CLS via simulations. Section 6 presents the pro-
totype and main empirical-based performance results. Sec-
tion 7 discusses related work and compares CLS with other
location-sensing systems. Finally, Section 8 summarizes our
main conclusions and plans for future work.

2. OVERVIEW OF CLS
CLS aims to enable devices to determine their location in
a self-organizing manner without the need of an extensive
infrastructure or training. The design of CLS was motivated
by the following attractive properties, namely, tolerance to
multiple network failures (e.g., AP failures or disconnec-
tions) and changes in the environment due to node mobility,
ability to incorporate application-dependent semantics and
various types of measurements, relative low computational
complexity, use in both indoor and outdoor environments
with pedestrian mobility, and scalability.

CLS can be integrated with a broad range of applications
running on devices of different computing capabilities. Some
of these devices may have a priori knowledge of their loca-
tion that they can provide reliably. We refer to them as
landmarks. A device that runs CLS to position itself is re-
ferred to as node or non-landmark peer.

3. VOTING ALGORITHM
A node tries to position itself on its local grid through a vot-
ing process in which devices participate by sending position
information and casting votes on specific cells.

Each iteration of a local CLS instance (i.e., running at a
peer) consists of the following steps:

Algorithm 1 An iteration of the voting process at a CLS
instance
1. Gather position information from other peers
2. Record measurements from the received messages
3. Transform this information to a probability of being at a
certain cell of its local grid
4. Add this probability to the existing value that this cell
already has
5. Report a position that corresponds to the centroid of the
set of cells with maximal weight

The process that transforms the acquired measurements into
probability of being at a certain location can be implemented
in different ways, described later on.

At the beginning of a run (Table 3), each peer broadcasts
messages to its one-hop neighbors that include its positioning

information, namely, its local id, maximum wireless range,
and position, if known or computed. We refer to this broad-
cast update as positioning message.

We assume that an AP can act as a landmark and send posi-
tioning messages in the form of beacons. A peer records the
signal strength values with which it receives these messages
and responds by broadcasting its own position estimates.

Each local CLS instance employs an algorithm that trans-
forms (maps) these signal strength values to either distance
or position estimates. The transformation algorithm can be
based on a radio attenuation model or a pattern matching
algorithm. Such algorithms relate signal strength measure-
ments acquired from messages exchanged between devices
to their position on the terrain or their distance. Based
on the position information of the sender and this distance
estimation, the receiver estimates its own position on the
local grid. When the local CLS estimates its own position,



it broadcasts this set of information, i.e., CLS entry, to its
neighbors. Each node maintains a table with all the received
CLS entries.

Figure 1: An example of the accumulation of votes
on the grid cells of a host at different time steps. In
each picture, the brighter an area, the more voting
weight has been accumulated on the corresponding
grid cells. The brightest area corresponds to a po-
tential solution.

We denote the grid of the node k as Gk and as v(i, j) the
probability that the cell (i, j) ∈ Gk is the position of node
k. The region of the grid, Gh,k, i.e., set of cells for which
peer k votes as possible region of node h.

Each node tries to position itself on its local grid. To deter-
mine its location, each node h gathers position estimations
from other peers, and computes its own location using the
following algorithm:

Algorithm 2 Position estimation at node h

1. Initialize the values of the grid Gh with all cells con-
taining zeros.

2. If a signature of the environment is available, compare
it with run-time measurements, and for each cell c of
the grid, assign a vote of weight w(c) (according to
specified criteria).

3. For each received distance estimation at a peer k with
a known or estimated position, perform the following
steps:

(a) Transform the coordinates of peer k to the coor-
dinate system of the grid

(b) Determine the region of the grid, Gh,k, i.e., set
of cells for which peer k votes as possible region
of node h. The determination can be based on a
position-based or distance-based algorithm. If the
peer k is a non-landmark, the distance between
the two peers can be computed according to Eq.
2.

(c) Increase the value of each cell in Gh,k by vk, where
vk is the voting weight of node k.

4. Assess the values of the cells in the grid and accept or
reject the attempt for location sensing.

This is essentially a voting process, in which a node casts
votes on the cells of its grid on behalf of other peers. Votes
may have different weights. The larger voting weight a cell
has acquired, the more likely it is for the local node to be

located in the region that corresponds to that cell. The set
of cells in the grid with maximal value indicates the poten-

tial region. Figure 1 shows a snapshot of the grid as three
landmarks vote on the location of an unsolved host. The
brighter an area, the more voting weight has been accumu-
lated on the corresponding grid cells. The brightest area
corresponds to a potential solution.

When a training phase prior to voting is feasible, CLS can
build a map or signature of a physical space, which is a
grid-based structure of the space augmented with measure-
ments from peers. This paper explores two such signa-
ture types, namely, position-level and distance-level signal-
strength based signatures.

At run-time, the local CLS instance acquires signal-strength
measurements from peers, constructs a run-time signature,
and compares this run-time signature with the ones that
have been generated during the training phase. We explore
two different criteria for the comparison, namely, a confi-

dence interval-based and a percentiles-based criteria.

3.1 Confidence interval-based criteria
During training, a position-level signature based on confi-
dence intervals associates each position of the terrain (cell
of the grid) with a vector of confidence intervals. Each entry
of the vector corresponds to an AP and its associated con-
fidence interval of the RSSI values that were recorded from
beacons received from that AP during the training phase.
Beacons are messages broadcast by APs periodically.

At run time, a local CLS instance acquires a number of
beacons from APs and computes a confidence interval for
each AP.

The algorithm assigns a weight at cell c w(c) as,

w(c) =
n

∑

i=1

(1 −
(T−

i − R−
i ) + (R+

i − T+
i )

R+
i − R−

i

) (1)

where n is the total number of APs, R+
i and R−

i and T+
i and

T−
i the upper and lower bound of the run-time and training

confidence interval of APi, respectively.

Distance-based signatures are employed only when non-landmark
peers participate in voting and training is possible. They re-
late distances with signal strength measurements recorded
by the local CLS instance at the reception of messages from
other non-landmark peers at the respective distances during
training phase. During training, devices located at vari-
ous positions participate in CLS by sending messages and
recording the signal strength value with which each of these
messages was captured and the distance between the two de-
vices. Specifically, a training set is composed of entries, each
including a distance and a confidence interval of the signal
strength values recorded from messages exchanged between
peers at that distance.

At run-time, the distance D between two peers is estimated



using the following formula:

D =
k

∑

i=1

Di ∗
√

(R− − T−
i )2 + (R+ − T+

i )2

∑k

i=1

√

(R− − T−
i )2 + (R+ − T+

i )2
(2)

where k is the number of entries in the training set, Di is
the i-th distance from the training set, [R−, R+] is the run-
time confidence interval and [T−

i , T+
i ] is the i-th confidence

interval from the training set.

3.2 Percentiles-based criteria
Like the confidence interval, the percentile-based criteria
uses also signal strength measurements. However, it cap-
tures more detailed information about their distribution,
and thus, allows for more accurate comparisons. The weight
of a cell c, w(c), is computed as follows:

w(c) =

k
∑

i=1

√

√

√

√

p
∑

j=1

(Rj − T i
j (c))2 (3)

where k is the number of samples in the training set, p the
number of percentiles, Rj the j-th real time percentile and
T i

j (c) the j-th percentile from the i-th cell in the training
set.

3.3 Discussion
Landmarks and nodes that are first to position themselves
determine–to some extent–the accuracy of the location esti-
mation of the remaining nodes, since their positioning esti-
mates and errors are propagated in the network through the
voting process. To minimize the impact of such errors, CLS
imposes the following two conditions:

• The number of votes in each cell of the potential region
must be above a threshold. We refer to this threshold
as the solution threshold (ST).

• The number of cells in the potential region must be
below a threshold, denoted as the local error control

threshold (LECT).

In effect, ST controls how many nodes with known location
must agree with the proposed solution. High ST reduces
the error propagation throughout the network, but delays
the positioning estimation. On the other hand, LECT deter-
mines the precision of each step. Another metric for filtering
the local error can be the diameter of the region that corre-
sponds to the maximum Euclidean of cells with the maximal
value in voting weight.

Additional distance estimations from nodes with known lo-
cation increase the voting weight and narrow down the po-
tential region. The values for ST and LECT should be deter-
mined based on network characteristics, such as the density

of nodes, and landmarks, and accuracy of the distance esti-

mations. To prevent CLS from failing to report a position,
both thresholds can be adaptively relaxed after rejecting po-
tential solutions. Once the above conditions are satisfied,
CLS reports the centroid of the potential region as the esti-
mated location of the device.

CLS can be implemented in a centralized or distributed fash-
ion, depending on whether or not the computations are per-
formed on a server or peers. Furthermore, in the centralized
case one or more servers can be deployed depending on the
topography of the terrain.

4. PARTICLE FILTER-BASED FRAMEWORK
In probabilistic terms, CLS can be formulated as the prob-
lem of determining the probability of a node being at a
certain location given a sequence of signal strengths. As-
suming first-order Markov dynamics, the above problem can
be expressed using the network graph depicted in Figure 2,
where xk is the node location (system state) at time instant
k = 1, . . . , T . xk cannot be observed directly (it is“hidden”).
Yet, for each location xk, a measurement vector yk (signal
strength) is available that depends on the hidden variable
according to a known observation function.

x2 x3 xT

y1 y2 y3 yT

x1

Figure 2: State space model for the proposed loca-
tion sensing system. Clear circles indicate hidden
state variables, grayed circles indicate observations,
horizontal arrows indicate state transition functions
and vertical arrows indicate observation functions.

Due to the Markov assumption, each node location, given its
immediately previous location, is conditionally independent
of all earlier locations, that is

P (xk|x0, x1, . . . , xk−1) = P (xk|xk−1). (4)

Similarly, the observation at the k-th time instant, given the
current state, is conditionally independent of all other states

P (yk|x0, x1, . . . , xk) = P (yk|xk). (5)

Based on the this model, location-sensing can be formulated
as the problem of computing the location xk of a node at
time k, given the sequence of observations y1, y2, ...yk, up
to time k, that is, determining the a posteriori distribution
P (xk|y1, y2, . . . , yk).

To estimate the above a posteriori, which is actually a den-
sity over the whole state space, we use particle filter. Particle
filter is a technique for implementing a recursive Bayesian
filter by Monte Carlo sampling. According to this technique,
the a posteriori P (xk|y1, y2, . . . , yk) is expressed as a set of
samples

x(L) = (x, y)(L), L = 1, 2, . . . , N (6)

distributed among the whole state-space. The denser the
samples in a certain region of the state-space, the higher the
probability that the node is located in that region.

Unlike Kalman-filter, particle filter does not impose any con-
straints on the format of the involved distributions and noise
models, or on linearity of the involved functions. This makes
them particularly well-suited to location-sensing.



4.1 Sampling/Importance Resampling (SIR) al-
gorithm

To generate and maintain the samples (particles), we uti-
lize the Sampling/Importance Resampling (SIR) algorithm
introduced by Rubin [37]. According to SIR, instead of sam-
pling the true a posteriori distribution (which is not possi-
ble because this distribution is not available in closed form),
samples are drawn from the so-called proposal distribution
π(xk|y1, y2, . . . , yk). To compensate for this difference, each

sample s(L) is also assigned a weight w(L), which is com-
puted, according to the Importance Sampling Principle:

w
(L)
t =

P (xk|y1, y2, . . . , yk)

π(xk|y1, y2, . . . , yk)
(7)

By choosing the proposal distribution to be the transition
prior P (xk|xk−1), the weights can be computed as

w
(L)
t = P (xk|y1,y2,...,yk)

π(xk|y1,y2,...,yk)
(8)

≈
P (yk|xk)P (xk|xk−1)

P (xk|xk−1)
w

(L)
t−1 (9)

= P (yk|xk)w
(L)
t−1 (10)

To avoid degenerate situations in which large numbers of
samples have weights close to zero, after a few iterations, SIR
also includes a resampling step which ensures that unlikely
samples are replaced with more likely ones. The following
pseudocode describes our implementation of SIR.

Algorithm 3 SIR algorithm

1: For L = 1, . . . , P

2: Transition step: Draw a new sample x
(L)
k from the

transition prior of sample x
(L)
k−1 according to P (x

(L)
k |x

(L)
k−1)

3: Observation step: Calculate the weight w
(L)
k of sample

x
(L)
k , according to the importance sampling principle. That

is, w
(L)
k = w

(L)
k−1 · P (yk|x

(L)
k )

4: End for loop
5: Normalize weights
6: Resample
7: Goto Step 1

Initially, all particles are uniformly distributed among the
state space. Particles whose their validity is confirmed by
observations tend to get larger weights, so after a few resam-
pling steps, particles are expected to gather around certain
regions. If sufficient input is available to resolve all ambigu-
ities, all particles will eventually gather in one region only.

The density of particles in a specific region of the state-
space indicates the probability of the node to be in that
region. The expected node location is defined as the loca-
tion within the state-space with the highest particle density
and is computed iteratively using the highest particle density

algorithm. In this algorithm, the particle with the highest
number of other particles within a certain radius is initially
chosen as the circle center. The centroid of these support-
ing particles is then calculated and the process is repeated

with this calculated centroid being the circle center until
convergence is achieved.

4.2 Computation of transition prior
Motivated by the observation that nodes located in offices
tend to remain mostly stationary while nodes in corridors
tend to be in motion, we segment the state space into two
different types of area: corridor and office areas.

To compute the transition prior P (x
(L)
k |x

(L)
k−1) for the Step

2 of SIR, we consider the following cases:

1. the particle’s current position estimate x
(L)
k being in-

side an office area

2. the particle’s current position estimate x
(L)
k being in a

corridor area

The transition prior for office areas is assumed to be a gaus-
sian distribution, centered at the previous position estimate

x
(L)
k−1 and having a standard deviation of σoff . For corridor

areas, the transition prior was assumed to be uniform within
a radius δcor around the previous position estimate defined
as follows:

P (x
(L)
k |x

(L)
k−1) =

1
πδ2

cor

, if ||x
(L)
k − x

(L)
k−1|| ≤ δcor

0, otherwise
(11)

The standard deviation σoff of the “office” transition prior
and the radius δcor for the “corridor” transition prior were
found experimentally and were set to be 0.5m and 1m, re-
spectively.

4.3 Computation of observation probability
To compute the observation probability P (yk|x

(L)
k ), required

for Step 3 of the SIR algorithm, we utilize observations from
both APs and other peers.

For APs, observation models were extracted and stored off-
line during training, as described in Section 3. That is, the
state-space is discretized into a finite number of cells. For
each state-cell, the mean signal strength of each AP and its
corresponding standard deviation is computed and stored.
For cells with no measurements, we apply interpolation and
store the reported values.

For peers, signal strength values measured during train-
ing are stored as a function of distance. As in the case
of APs, the distance-space is discretized, and for each dis-
tance, the mean and standard deviation of the observed sig-
nal strengths are stored. It is important that the gathered
training data captures all the variation in different positions
within the state space.

Although peer training data exhibits large variation, it can
improve the accuracy by considering that the distance of
two peers is likely to exceed a certain threshold, when the
corresponding signal strength measurements drop to zero.
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Figure 3: Accuracy level as a function of the range
error. 10% of peers are landmarks.

Based on the assumption that signal strength measurements
are independent, at run-time, all available signal strength
measurements are combined to compute the joint observa-
tion probability as:

p(yk|xk) = p((yk1, yk2, . . . , ykn)|xk) (12)

= p(yk1|xk) · p(yk2|xk) · . . . · p(ykn|xk), (13)

where n is the number of measurements.

5. SIMULATION-BASED EVALUATION
For the evaluation of CLS, we investigated the impact of
the range error in distance estimation, connectivity degree,
and percentage of landmarks, grid size, and mobility on the
accuracy level through extensive simulations using the ns-2.

The simulated network included N peers that had been dis-
tributed independently of each other with coordinates se-
lected according to a uniform distribution using a pseudo-
random generator in a grid of size AxA cells. Two peers can
communicate if they are within a distance of r. The average
degree of connectivity is λ (see Appendix).

We set the voting weight of the landmarks equal to 100 and
of the remaining peers equal to one. Both the location and
range error are expressed in terms of the transmission range.
For example, 50% location error means an error equal to half
of the transmission range of the wireless infrastructure.

For the simulations, we assumed that CLS can estimate the
distance between two peers with a given range error that
remains fixed in each simulation scenario. To evaluate its
impact, we varied its value to be equal to 10%, 20% and 30%
of the transmission range. Unless otherwise stated, a range
error of 10% is assumed. Finally, for each different scenario,
100 simulation runs were performed and their average value
was reported.

In the case of a 10% range error, 85% of peers have 10% at
most location error. 80% of peers have 20% (30%) at most
location error, for range error equal to 20% (30%) range
error, respectively (Figure 3). For a high range error equal
to the half of the transmission range, the average position
error is 25% of the transmission range, and for a range error
equal to 10%, 20% and 30%, the average location error is
5%, 10% and 18%, respectively.
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To investigate the impact of the degree of connectivity and
percentage of landmarks, we fixed the total number of peers
and range error, and varied the transmission range and per-
centage of landmarks. The lower the connectivity degree and
fewer the landmarks, the higher the location error. However,
in the case of 10% landmarks or more, and connectivity de-
gree of at least 7, the location error is reduced considerably.
As illustrated in Figure 4, landmarks have a strong impact
on the accuracy level of CLS. More particularly, when the
number of landmarks is 10% or higher, the location error
decreases dramatically. In addition, the average connectiv-
ity degree has a higher impact on the average location error
when the percentage of landmarks is less than a threshold
of 10%. For instance, in the case of 10% landmarks, a 50%
increase in the average connectivity degree corresponds to a
decrease of a location error higher than 50%, whereas, for a
5% landmarks, the decrease is dramatic.

The smaller the cell size in the grid, the higher the accuracy
but also the memory and CPU power requirements. We
found that a grid resolution of 100x100 cells balances the
computational complexity and accuracy tradeoff.

6. EMPIRICAL-BASED EVALUATION
6.1 Testbed description
The training and run-time experiments took place in the
Telecommunication and Networks Lab (TNL) at the Foun-



dation for Research and Technology-Hellas (FORTH) in Greece,
an area of 7m × 12m. For this area, a grid-based structured
was considered with cells of size 50cm×50cm.

To generate the signal strength signatures for training, CLS
acquiers 30 samples of signal strength values for each cell of
the grid in which signatures were generated (shown in Fig-
ure 6). In these cells, the trainer waited for approximately
one minute to acquire the training signal strength measure-
ments. There were 11 APs in total, out of which 3.5 APs,
on average, can be detected at a given cell.

To capture signal strength values, the following monitoring
tools were used:

1. iwlist [5], which polls each channel and acquires the
mac address and signal strength measurements from
each AP (in dBm).

2. tcpdump[4], a passive scanner relying on libpcap [4]
for the retrieval of each packet.

The experiments were conducted around 3pm on several
weekdays throughout the semester, during which there were
at least five people in the laboratory, and several others
walking in the hallways outside. A Sony Vaio and Fujitsu
Siemens Tablet PC with the same wireless adapter were used
for both the training and run-time experiments. Figure 6
shows a map of the TNL, where the CLS implementations
and Ekahau were tested.

Figure 6: TNL floorplan. Dots indicate the positions
at which measurements in the training phase were
acquired and crosses the Bluetooth hotspots.

CLS was implemented in C++ and evaluated with real-life
measurements. Specifically, the following CLS variations
were developed: Like CLS, Ekahau also uses the IEEE802.11
infrastructure, creates a map with calibration data, and
compares the training and run-time measurements to esti-
mate the position.

We found that CLS-10 has a median location error of 1.8 m
while for 90% of the experiments, the location error is at

CLS-1 which uses the confidence interval
based criteria, in which only APs vote to estimate

the position of the local device. It performs
one iteration and reports the position estimate.

CLS-10 which uses the confidence interval based
criteria in which only APs vote to estimate the

position of the local device. It performs
ten consecutive iterations, and reports the mode of the

estimated positions.
CLS-p2p which includes an additional

em non-landmark peer in experiments and employs
distance-level measurements to estimate its distance

from each other. Thus, apart from APs, there are two
peers participating in the evaluation.

CLS-particles which uses the particle filter-based
model. Only APs vote.

CLS-percentiles which has only one difference from
CLS-1: CLS-percentiles uses percentiles of signal

strength values instead of confidence interval-based
criteria in voting.

Table 1: CLS variations.
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Figure 7: Location error of CLS-10, CLS-1, CLS-
particles and Ekahau v3.1 in the TNL.

most 3.5 m (Figure 7). For 90% of the tested positions, the
location error of Ekahau v3.1 is at most 4.6 m, with a median
location error of 2.3 m. As expected, CLS-1 has a higher
location error than CLS-10, trading accuracy with response
time. Specifically, the median location error of CLS-10 and
CLS-1 are 1.8 m and 2.4 m, respectively.

CLS-percentiles uses more detailed information about the
signal strength, and thus, performs better than CLS-1. The
experiments confirm that observation, indicating a median
location error of 2m, with a 95% confidence interval of [1.88,
2.44] (for the experiment 1). We repeated the CLS exper-
iment one week later, during a different time of day (ex-
periment 2). As shown in Figure 9, there is no significant
performance difference of CLS-percentile between these two
experiments.

To evaluate the impact of the number of peers on the per-
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Figure 8: Impact of one peer on the accuracy of
location estimation.
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Figure 9: Difference in the location error of CLS-
percentile when one AP is absent at run time.

formance, we ran CLS experiments varying the number of
participating peers (at run-time). Specifically, in one set of
experiments, there was one AP absent in the run-time mea-
surements. In this case, the median location error is 3.5 m
compared to 2 m when the AP is present.

In a different scenario, a non-landmark peer is added and
new experiments were performed with a total of 11 APs and
two non-landmark peers running the CLS-p2p. The two
non-landmark peers perform the distance-based signatures.
As shown in Figure 8, this improves the CLS performance;
80% of the experiments reported an error up to 4 m com-
pared to 5 m for CLS-1.

7. RELATED WORK
Recently, significant work has been published in the area
of location-sensing using RF signals. Like CLS, Radar [8]
employs signal strength maps that integrate signal strength
measurements acquired during the training phase from APs
at different positions with the physical coordinates of each
position. Each measured signal strength vector is compared

against the reference map and the coordinates of the best
match will be reported as the estimated position. 90% of
the time the hosts can be located with at most six meters of
error with a sampling density of one sample every 13.9m2

and 19.1m2 of their testbed using the signal from three and
five APs, respectively.

Bahl et al. extended Radar to alleviate side effects that
are inherent properties of the signal strength nature, such
as aliasing and multipath [7]. The extended Radar testbed
with the Cisco Aironet 4800 series had a mean of 2.37 m and
a 90% percentile of 5.97 m.

Ladd et al. [28] proposed another location-sensing algorithm
that utilizes the IEEE802.11 infrastructure. In its first step,
a host employs a probabilistic model to compute the con-
ditional probability of its location for a number of different
locations, based on the received signal strength from nine
APs. The second step exploits the limited maximum speed
of mobile users to refine the results and reject solutions with
significant change in the location of the mobile host. De-
pending on whether the second step is used or not, 83%
and 77% of the time, hosts can predict their location within
1.5m.

Niculescu and Badri Nath [30] designed and evaluated a co-
operative location-sensing system that uses specialized hard-
ware for calculating the angle between two hosts in an ad hoc
network. This can be done through antenna arrays or ultra-
sound receivers. Hosts gather data, compute their solutions,
and propagate them throughout the network. It is not easy
to compare their results with ours due to the different met-
ric used, namely distances vs. angles. Previously, these au-
thors [29] introduced a cooperative location-sensing system
in which position information of landmarks is propagated
towards hosts that are further away while at the same time
closer hosts enrich this information by determining their own
location. They evaluated three variations, namely the “DV-
hop”, “DV-distance”, and“Euclidian”. Though CLS is closer
to “DV-distance” in that it uses signal strength information
to estimate the distance between hosts, its performance more
closely resembles the performance of the“Euclidian”scheme,
but with always 100% solved hosts. CLS differs from this
work mainly in the grid-based representation of the environ-
ment and voting algorithm.

Another location-sensing system in ad hoc networks per-
forms positioning without the use of landmarks or GPS and
presents the tradeoffs among internal parameters of the sys-
tem [11]. The location-sensing systems presented in [38] and
[20] are the closest to CLS and are compared in detail in [17].

Active Badge uses diffuse infrared technology, and requires
each person to wear a small infrared badge that emits a
globally unique identifier every ten seconds or on demand.
A central server collects this data from fixed infrared sensors
around the building, aggregates it and provides an applica-
tion programming interface for using the data. The system
suffers in the case of fluorescent lightning and direct sun-
light, because of the spurious infrared emissions these light
sources generate.

SmartFloor employs a pressure sensor grid installed in all



floors to determine presence information. It can accurately
determine positions in a building without requiring from
users to wear tags or carry devices, but also not able to
specifically identify individuals. UbiSense provides an accu-
racy of 15 cm using a network of ultra wide band (UWB)
sensors (17 cm×12 cm×5 cm) installed and connected into a
building’s existing network (four sensors in a typical office
environment of 625 m2). The UWB sensors use Ethernet
for timing and synchronization. They detect and react to
the position of tags based on time difference of arrival and
angle of arrival. An RF tag is a silicon chip that emits an
electronic signal in the presence of the energy field created
by a reader device in proximity. Location can be deduced by
considering the last reader to see the card. RFID proxim-
ity cards are in widespread use, especially in access control
systems.

The Active Bats system consists of a controller that sends a
radio signal and a synchronized reset signal simultaneously
to the ceiling sensors using a wired serial network. Bats re-
spond to the radio request with an ultrasonic beacon. Ceil-
ing sensors measure time-of-flight from reset to ultrasonic
pulse. ActiveBat applies statistical pruning to eliminate er-
roneous sensor measurements caused by a sensor hearing a
reflected pulse instead of one that travelled along the direct
path from the Bat to the sensor. A relatiVely dense deploy-
ment of ultrasound sensors in the ceiling can provide within
9 cm of true position 95% of the measurements.

Zaruba et al. [39] performed localization based on the Re-
ceived Signal Strength Indication (RSSI) of signal measure-
ments gathered from two APs at various predefined locations
and orientations of an indoor environment. Based on them,
they built a grid-based signal strength map and used the
SIR algorithm of particle filters. In particularly, they de-
ployed 3000 particles in an area of 88 cells, and reported
a mean location error of at most 2.1m. In their real-time
tests, the mean location error was at most 6m using 5000
particles. Their training phase has a large overhead, be-
cause it takes place at each cell of the map and for different
orientations.

Evennou and Marx [13] employed Kalman and particle fil-
ters with the Motley-Keenan propagation model. They built
a signal strength map acquiring one measurement in each
room and one measurement in every two meters in a corri-
dor of a 35x35m2 area with four APs placed at each corner.
Kalman and particle filters reported a mean positioning ac-
curacy of 2.29m and 1.86m, respectively. However, some-
times after a re-sampling step all the particles were trapped
in a part of the building and always bumped into a wall
after then. In [14], they incorporated additional informa-
tion from Inertial Navigation Systems (INS), improving the
mean location error to 1.53m using 10,000 particles.

Hightower and Borriello [23] also applied particle filters that
use the Sequential Importance Sample with Resampling (SISR)
algorithm for indoor positioning. The appropriate number of
samples is determined at each step using a procedure called
KLD adaptation. The authors used a robot that walks with
a speed in the range of [0,2] m/s and collects measurements
from a WiFi client device, an ultrasound badge, two types
of infrared badges, RFID tags and then tested the system in

a 900m2 office building. The estimated position was com-
puted as the weighted mean of its samples. The 80% location
error was at most 1.8m. They experimented with particle
filter algorithms running on devices ranging from high-end
servers to PDAs.

In robotics, localization has been a research topic of signif-
icant interest. For example, Howard et al. [24], considered
IEEE802.11-enabled mobile robots armed only with a signal
strength map and odometry, that can localize themselves us-
ing a variant of the standard Monte Carlo Localization algo-
rithm. They encoded the signal strength map using a regular
grid and compared the results achieved using IEEE802.11,
contact, and a combination of them. Letchner et al. [26] in-
troduced a hierarchical Bayesian technique for learning local
Gaussian likelihood models of signal strength and integrated
their model into a graph-based location estimation system.
They experimented in IEEE802.11 indoor and outdoor en-
vironments.

In [18], Gwon et al. proposed two indoor location-estimation
algorithms based on RF technology that merge information
from other location-estimation techniques to improve loca-
tion accuracy. Their first algorithm combines multiple infor-
mation sources to find the location of stationary users while
the second addresses the problem of aliasing when two loca-
tions have similar RF characteristics. They evaluated their
algorithms in a corporate environment that includes cubicles
and small offices using four IEEE802.11 APs, three Blue-
tooth APs and a laptop. Their algorithms improved the
location accuracy by 24% or more.

Ekahau Positioning Engine (EPE) [1] is primarily used for
indoor tracking, but could be also used within outdoor appli-
cations. Like CLS, Ekahau also uses the IEEE802.11 wireless
infrastructure, creates a map, records site calibration data,
and compares the training and run-time measurements to
estimate the position.

Hu and Evans adapted the Sequential Monte Carlo localiza-
tion and particle filters in a setting with landmarks and hosts
that estimate their location from messages they receive[25].

Like CLS, Horus WLAN [40] operates in two phases: the
training phase and the online phase. The main difference
between the two systems lies in the number of samples they
require in each phase for the creation of the training map.
As Horus WLAN attempts to find the correlation between
consecutive samples using an autoregressive model, a high
number of samples are required for the creation of a valid
model. However, the authors do not provide extensive re-
sults on the number of samples or the impact of the sample
size to the location estimation. Furthermore, a high number
of samples stresses the amount of time it takes for the sys-
tem to be trained and also to estimate the user’s location.
CLS requires only 30 samples for each cell of the training set
(Figure 6), during the training phase, and 10 or 30 samples
in runtime depending on the location estimation algorithm.
The trainer needs to wait for approximately 1 minute in each
cell during the training phase. In a 11.8 m by 35.9m area
with a total coverage of 5 APs and an average of 4 APs per
cell, Horus WLAN has a 90th percentile of 1.32 m estima-
tion error. In a similar area, with a total of 11 APs and an



average of 3.5 APs per cell CLS has a 90th percentile of 3m
estimation error and 6 to 15 seconds to reach a conclusion
on the user’s location.

8. CONCLUSIONS AND FUTURE WORK
CLS uses the peer-to-peer paradigm and a probabilistic-
based framework to position wireless-enabled devices in a
self-organizing manner. These features allow CLS to easily
incorporate information from various sources, such as con-
textual information, measurements from heterogeneous de-
vices (e.g., Bluetooth and IEEE802.11 wireless interfaces),
positioning information from other peers, signal-strength maps
of the environment, to enhance its positioning accuracy. The
probabilistic-based framework uses a grid-like representation
of the environment and a voting algorithm.

Several CLS variants have been implemented and evalu-
ated via extensive simulations and empirical-based measure-
ments. For the empirical-based evaluation, we run experi-
ments using IEEE802.11 signal strength measurements. CLS
has a satisfactory accuracy level without the need of spe-
cialized hardware and extensive training. It can be easily
extended for outdoor environments and different mobility
patterns.

We found that the density of landmarks and peers has a
dominant impact on positioning. CLS can utilize signal
strength maps of the physical space by superimposing statis-
tical properties of the signal strength values acquired during
the training phase on their corresponding positions. Such
maps can significantly improve its performance. Through
empirical-based experiments, we showed how the different
statistical analysis properties of signal-strength, the particle-
filters model, the AP failures and additional peers affect the
performance of CLS. Currently, the training is static, in that
it does not consider the placement of rogue or new APs and
changes in the configuration, position or orientation of APs
and density of users or objects in the area. Such changes may
affect the signal strength and the signal strength matching
process. One of our objectives is to enable CLS to per-
form a calibration phase dynamically to detect some of these
changes and incorporates them in the map. The tradeoff be-
tween the increased complexity and overhead of the training
and runtime phases and the improvements in the accuracy
and precision needs to be addressed.

Also, it would be interesting to use criteria based on chi-
square tests and the Kullback-Leiber divergence in the vot-
ing process and evaluate their performance. Chi-square tests
will allow us to compare the training and run-time signal
strength distributions in more detail.

Our simulation results indicate that topological information
about the environment (e.g., about hotspot areas, presence
information of users, existence of walls, user mobility pat-
terns) can have a dramatic impact in the performance of the
system. Part of our future research effort is to incorporate
such heuristics in the probabilistic frameworks of CLS and
extend the performance analysis study.

9. APPENDIX
A geometric random graph, G(N, r) can model such net-
works. By holding λ to be a constant equal to (N−1)πr2/A2,

the probability of a node having degree k can be calculated
as p(k), where

p(k) ≈ e−λ(λ)k/k!, (14)

with the last approximate equality becoming exact in the
limit of large A and N , and fixed k. The average degree of
connectivity is λ.

10. ACKNOWLEDGMENT
This work was supported by the Greek General Secretariat
for Research and Technology (05NON-EU-238 and CRETE-
WISE KP-18), and the European Commission (MIRG-CT-
2005-029186). We would also like to thank Konstantinos
Mastorakis for his contribution to the extension of CLS using
the Bluetooth technology.

11. REFERENCES
[1] Ekahau v.3.1. (http://www.ekahau.com).

[2] Microsoft EasyLiving.
http://research.microsoft.com/easyliving/.

[3] Precise Real-time Location. http://www.ubisense.net/.

[4] tcpdump/libpcap. (http://www.tcpdump.org/).

[5] Wireless tools for linux. (http://www.hpl.hp.com/personal/).

[6] S. Asthana and D. Kalofonos. The problem of bluetooth
pollution and accelerating connectivity in bluetooth ad-hoc
networks. In Proc. of IEEE International Conference on
Pervasive Computing and Communications (Percom), New
York, NY, Mar. 2005.

[7] P. Bahl, V. N. Padmanabhan, and A. Balachandran.
Enhancements to the radar user location and tracking system,
Feb. 2000.

[8] P. V. Bahl and V. Padmanabhan. Radar: An in-building
rf-based user location and tracking system. In IEEE
Conference on Computer Communications (Infocom), Tel
Aviv, Israel, Mar. 2000.

[9] U. Bandara, M. Hasegawa, M. Inoue, H. Morikawa, and
T. Aoyama. Design and implementation of a bluetooth signal
strength based location sensing system. In IEEE Radio and
Wireless Conference (RAWCON), Atlanta, GA, Sept. 2004.

[10] R. Bruno and F. Delmastro. Design and analysis of a
bluetooth-based indoor localization system. Technical report,
Pisa,Italy, 1999.

[11] S. Capkun, M. Hamdi, and J. P. Hubaux. GPS-Free Positioning
in Mobile Ad-Hoc Networks. In Proceedings of HICSS, Hawaii,
Jan. 2001.

[12] K. Chintalapudi, R. Govindan, G. Sukhatme, and A. Dhariwal.
Ad-hoc localization using ranging and sectoring. In IEEE
Conference on Computer Communications (Infocom), March
2004.

[13] F. Evennou and F. Marx. Improving positioning capabilities for
indoor environments with WiFi. In EUSIPCO 2005, Antalya,
Turkey, Sept. 2005. IST.

[14] F. Evennou and F. Marx. Advanced integration of wifi and
inertial navigation systems for indoor mobile positioning, 2006.
EURASIP Journal on Applied Signal Processing.

[15] L. Fang, W. Du, and P. Ning. A beacon-less location discovery
scheme for wireless sensor networks. In IEEE Conference on
Computer Communications (Infocom), pages 161–171, Miami,
Florida, Mar. 2005.

[16] S. Feldmann, K. Kyamakya, A. Zapater, and Z. Lue. An indoor
Bluetooth-based positioning system: concept, implementation
and experimental evaluation. Technical report, University of
Hannover, 2003.

[17] C. Fretzagias and M. Papadopouli. Cooperative Location
Sensing for Wireless Networks. In Second IEEE International
conference on Pervasive Computing and Communications,
Orlando, Florida, Mar. 2004.

[18] Y. Gwon, R. Jain, and T. Kawahara. Robust indoor location
estimation of stationary and mobile users. In IEEE Conference
on Computer Communications (Infocom), Mar. 2004.

[19] Y. Gwon, R. Jain, and T. Kawahara. Robust indoor location
estimation of stationary and mobile users. In IEEE Conference
on Computer Communications (Infocom), March 2004.

[20] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and
T. Abdelzaher. Range-free localization schemes for large scale



sensor networks. In ACM International Conference on Mobile
Computing and Networking (MobiCom), San Diego, Sept.
2003.

[21] J. Hightower and G. Borriello. A Survey and Taxonomy of
Location Sensing Systems for Ubiquitous Computing. Technical
Report, University of Washington, Department of Computer
Science and Engineering UW CSE 01-08-03, Seattle, WA, 2001.

[22] J. Hightower, R. Want, and G. Borriello. SpotON: An indoor
3D location sensing technology based on RF signal strength.
UW CSE tech report 2000-02-02, University of Washington,
Seattle, WA, Feb. 2000.

[23] Hightower, J. and Borriello, G. Particle Filters for Location
Estimation in Ubiquitous Computing: A C ase Study. In
Proceedings of the Sixth International Conference on
Ubiquitous Computing (Ubicomp ’04), Nottingham, England,
September 2004.

[24] A. Howard, S. Siddiqi, and G. Sukhatme. An experimental
study of localization using wireless ethernet. In International
Conference on Field and Service Robotics, Yamanaka, Japan,
July 2003.

[25] L. Hu and D. Evans. Localization for mobile sensor networks.
In ACM International Conference on Mobile Computing and
Networking (MobiCom), 2004.

[26] Julie Letchner and Dieter Fox and Anthony LaMarca.
Large-Scale Localization from Wireless Signal Strength. In
AAAI, Pittsburgh, Pennsylvania, USA, July 2005.

[27] J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, and
S. Shafer. Multi-camera multi-person tracking for easyliving. In
Proceedings of the Third IEEE International Workshop on
Visual Surveillance, Washington, DC, USA, 2000. IEEE
Computer Society.

[28] A. M. Ladd, K. Bekris, A. Rudys, G. Marceau, L. E. Kavraki,
and D. Wallach. Robotics-based location sensing using wireless
ethernet. In ACM International Conference on Mobile
Computing and Networking (MobiCom), Atlanta, GE, Sept.
2002. ACM Press.

[29] D. Niculescu and B. Nath. Ad Hoc Positioning System (APS).
In IEEE Conference on Global Communications
(GLOBECOM), San Antonio, Nov. 2001.

[30] D. Niculescu and B. Nath. Ad Hoc Positioning System (APS)
using AoA. In IEEE Conference on Computer
Communications (Infocom), San Francisco,CA, Apr. 2003.

[31] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The
cricket location-support system. Boston, MA, Aug. 2000.

[32] N. B. Priyantha, A. K. L. Miu, H. Balakrishnan, and S. Teller.
The cricket compass for context-aware mobile applications. In
ACM International Conference on Mobile Computing and
Networking (MobiCom), pages 1–14, Rome, Italy, July 2001.

[33] R. Harle, A. Ward, and A. Hopper. Single reflection spatial
voting. In Proceedings of the First International Conference
on Mobile S ystems, Applications, and Services, San
Francisco, May 2003.

[34] M. Rodriguez, J. P. Pece, and C. J. Escudero. In-building
location using bluetooth. In International Workshop on
Wireless Ad-hoc Networks 2005, Coruna,Spain, May 2005.

[35] A. Roy, A. Misra, and S. K. Das. An information-theoretic
framework for optimal location tracking in multi-system 4G
wireless networks. In IEEE Conference on Computer
Communications (Infocom), Hong Kong, Mar. 2004.

[36] Roy Want and Andy Hopper and Veronica Falcao and Jon
Gibbons. The Active Badge Location System. 1992. ACM
Transactions on Information Systems.

[37] Rubin, D. B. Using the SIR algorithm to simulate posterior
distributions. in Bayesian Statistics 3, eds. J.M. Bernardo,
M.H. DeGroot, D.V. Lindley, and A.F.M. Smith, Cambridge,
MA: Oxford University Press, pp. 395–402.

[38] C. Savarese, J. Rabaey, and K. Langendoen. Robust positioning
algorithms for distributed ad-hoc wirleess sensor networks. In
Proc. of Usenix Annual Technical Conference, Monterey,
California, June 2002.

[39] V. Seshadri, G. V. Zaruba, and M. Huber. A bayesian sampling
approach to in-door localization of wireless devices using
received signal strength indication. In Proc. of IEEE
International Conference on Pervasive Computing and
Communications (Percom), Kauai Island, Hawaii, Mar. 2005.

[40] M. Youssef and A. Agrawala. The horus wlan location
determination system. In International onference on Mobile
Systems, Applications and Services (MobiSys), Seattle, USA,
2005.

[41] M. Youssef, A. Youssef, C. Rieger, U. Shankar, and

A. Agrawala. PinPoint: An asynchronous time-based location
determination system. In International onference on Mobile
Systems, Applications and Services (MobiSys), pages 165–176,
2006.




