
A Security Policy System for Mobile Autonomic Networks

Mohamad Aljnidi
CNRS - UMR 5141 (LTCI)

TELECOM PARIS - INFRES Department
37/39, rue Dareau - 75014 Paris - France

+33(0)1 45 81 71 56
mohamad.aljnidi@enst.fr

Jean Leneutre
CNRS - UMR 5141 (LTCI)

TELECOM PARIS - INFRES Department
46, rue Barrault - 75013 Paris - France

+33(0)1 45 81 78 81
jean.leneutre@enst.fr

ABSTRACT
An autonomic security system is indispensable for the op-
eration of an autonomic network. Policies are basic stones
in building autonomic systems. In this paper, we introduce
our model of mobile autonomic networks. Accordingly, we
propose a security framework for building autonomic secu-
rity systems. In this framework, we discuss a trust model
based on node communities, an authentication model based
on node categorization, and a secure relation model based on
both trust and node capabilities. A network evolution model
is eventually presented as the working context of an auto-
nomic security system. Afterwards, we explain our vision of
autonomic policy systems, and relevantly present solutions
for security policy representation and manipulation. Finally,
we define an authorization model for mobile autonomic net-
works, before elaborating an example of the implementation
and the negotiation of a relevant access control policy.

Keywords
Autonomic Computing, Ad-Hoc Networks, Autonomic Net-
works, Security Models, Security Policy Management.

1. INTRODUCTION
In most of nowadays complex systems and environments,

traditional human-driven management is not efficient any
more for reaching certain required performance or behavior.
For instance, in mobile ad hoc networks, it is often desired
to have a continuous adaptation to unpredicted changes in
the topology, the population and the high-level reconfigu-
ration performed by end-users. It is virtually impossible
for humans to traditionally manage the different systems of
the mobile ad hoc network or its components, to get such
behavior. This is due to the complex nature of mobile ad
hoc environments, represented by many aspects, such as the
heterogeneity of devices and technologies, the lack of in-
frastructure and the decentralized structure. In such cases,
relevant systems should be able to reconfigure themselves,
and when necessary to optimize themselves. Moreover, they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Autonomics’07, October 28-30, 2007, Rome, Italy.
Copyright 2007 ICST 978-963-9799-09-7

should be able to protect themselves, and in case of dam-
age, to survive by themselves. In other words, they should
be self-managing systems, which are able to monitor their
contexts and environments, detect unpredicted changes in
them, analyze the detected events and the related gathered
information, identify the sources of anomalies, and accord-
ingly adapt their configuration, immunity or functionality,
or eventually repair themselves.

The need for self-management solutions had already been
recognized by several specialists in different relevant do-
mains, and many corresponding initiatives were launched,
as elaborated in [5]. In our research, which is in confor-
mity with the initiative of IBM [13], we study the realiza-
tion of Autonomic Computing properties as defined in [6],
depending on high-level policies, to build an autonomic se-
curity system for mobile ad hoc networks. We believe that
seeking autonomic security solutions is a necessary step to-
wards autonomic networks, rather than dealing with secu-
rity as an afterthought, as usually happened in most of the
research efforts of computer networks. As explained above,
a mobile ad hoc network can be complex enough to achieve
its desired functionality depending on human administrators
only. Therefore, it would rather depend on autonomic sys-
tems as well, if not exclusively, at different communication
levels, and in terms of hardware, middleware and software.
Nevertheless, complexity is not our only motivation for au-
tonomically securing mobile ad hoc networks. We consider
as well specific characteristics, such as the potential large-
scale nature, the mobility, and the possibility of assuming
high-level administration tasks by non-expert users.

Different aspects of autonomy, such as self-organization [1,
19], self-adaptation [18] and spontaneous behavior [7], were
already addressed in certain types of networks. These latter
were not originally created as autonomic networks. Envi-
ronment requirements, application goals or network eventual
behavior were, among others, the reasons behind implement-
ing autonomic solutions in later optimizations. Relatively
recent studies tried to define what an autonomic network is,
such as [17]. In general, the field of Autonomic Communi-
cations [14] raises challenges for interesting future research
efforts. We intend to contribute to the future solutions in
this domain, and as a basis for our research, we propose
the following definition for an Autonomic Network: it is a
network that can evolve autonomously, in terms of popu-
lation and topology, and its evolution is self-controlled by
a set of autonomic systems, which constitute together the
autonomic manager of the network. An autonomic system
of an autonomic network is supposed to detect unpredicted

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.AUTONOMICS 2007, 28-30 October 2007, Rome, ItalyCopyright © 2007 ICST 978-963-9799-09-7DOI 10.4108/ICST.AUTONOMICS2007.2205

changes to population or topology, which are relevant to its
context, and eventually adapt itself and the network to cope
with those changes. Our ultimate goal is to develop an au-
tonomic security system for mobile autonomic networks.

Our model of mobile autonomic networks is based on a
specific type of wireless mobile ad hoc networks. Accord-
ing to this type, a network is created without a preexisting
infrastructure, and evolves in an ad hoc manner in terms
of population and topology. Its nodes are not supposed to
be homogeneous devices in computing performance, storage
capabilities or electrical power availability. It can employ a
multitude of underlying networking technologies. It is not
supposed to be managed by expert administrators. Subnet-
works can be exported for certain periods, and reintegrated
in the mother network when they are back. We consider
this as a centralization functionality that we impose in a
supposedly-decentralized type of networks, and we call it
semi-centralization. In brief, we call MAutoNet (Mobile
Autonomic Network) a semi-centralized, wireless, mobile,
ad hoc, autonomic network of heterogeneous nodes used by
non-expert users. This can be for example a home wire-
less network, a SOHO wireless network, a business meeting
spontaneous network, an emergency service ad hoc network,
a mobile sensor network or a military tactic ad hoc network.

MAutoNets have the same security requirements as those
of conventional networks, in addition to the security needs
specific to wireless mobile ad hoc networks. Therefore, we
can say that security solutions proposed for wireless, mobile
and ad hoc networks might be implemented in MAutoNets,
with the necessary adaptation wherever needed. However,
existing security solutions, such as those proposed in [8, 3, 2],
do not appear to be compatible with the behavior required in
autonomic networks. Even if certain of the existing security
solutions have self-management aspects, such as those pro-
posed in [4, 16], they generally aim at realizing an autonomic
behavior in certain components or services, rather than be-
ing developed for a network built on autonomic basis. We
are therefore working on new security models, architectures
and protocols for MAutoNets [10, 9, 11], to propose a secu-
rity framework for designing autonomic security systems, to
be implemented in the future autonomic networks.

2. SECURITY FRAMEWORK
In this section, we introduce in brief some of the features

and components of the security framework that we propose
for MAutoNets. This will help understanding the security
policy system and example, elaborated later in this paper.

We believe that a specific security architecture, designed
on basis of autonomic computing, must be embedded in a
MAutoNet node. We propose here an Autonomic Security
Architecture, which is designed to be compatible with the
heterogeneity of nodes, transparent to the end-user and irre-
spective of the underlying networking technologies. Its main
components, as illustrated in figure 1, are the following: 1)
Security Agents: a set of software agents providing security
services, such as data confidentiality and integrity, and self-
management support, such as a security policy negotiation
module. 2) Security Management Kit: a set of management
modules that can be used either by a human administrator
to perform ordinary planned management tasks, or in an au-
tonomic context to perform self-management tasks. 3) Au-
tonomic Security Manager: the autonomic security engine,
which is responsible of self-management tasks on the node

Figure 1: Autonomic Security Architecture

Figure 2: Virtual Security Structure

level, and on the network level in certain nodes having spe-
cial roles. It is also responsible of the secure data exchange
between applications of communicating nodes. Moreover, it
manages the security database of the node, which provides
its device capability parameters, such as storage capacity,
and saves security materials, such as key information. In
certain special nodes, this database stores also network se-
curity management data, such as network evolution manage-
ment policies. 4) Autonomic Security Layer: an application-
support layer encapsulating the previous three components.
5) Security User Interface: a set of user-friendly configura-
tion and specification languages, to be used by security ex-
pert administrators, and to a certain extent, by non-expert
end-users in the form of high-level tools.

We propose for MAutoNets a trust model built on a mu-
tual trust between each couple of nodes. This trust is estab-
lished once a secure relation is created between two nodes,
and remains as long as this secure relation lasts. MAu-
toNet secure relations are presented later in this section.
The nodes of a MAutoNet are virtually distributed on a
set of communities, so that the level of trust between two
nodes of the same community is the highest in the network.
Different levels of inter-community trust are then defined,
so that the level of trust between two nodes of two differ-
ent communities is the same as the level of trust between
their communities. A variable set of MAutoNet nodes rep-
resents a board of security managers. They are together

responsible of the self-management of the network in the se-
curity context. Besides, they represent the authentication
and authorization board of servers of the network. We call
them authority nodes. Each community has one author-
ity node, but one authority node can be assigned to many
communities. This is because the authority role implies cer-
tain capabilities, and a given community may not include
nodes having these capabilities. The set of authority nodes
is supposed to vary in an autonomic manner, in terms of the
involved nodes and their number. The first action to take
to set up a MAutoNet is to designate a qualified node as
the authority node of the first community. Afterwards, we
can use this authority node to insert other nodes in the first
community. We can similarly create other communities and
integrate them in the network using the existing authority
nodes. The network evolves in terms of population when
communities are integrated or revoked and when each com-
munity evolves in terms of node membership. Obviously,
this evolution of population might be decided and managed
by network administrators, and sometimes by network end-
users, but it rather takes place in an autonomic context as
we will see later in this paper.

A node is within the security perimeter of a MAutoNet
when it belongs to one of its communities, where it might
also belong to the set of authority nodes of the network.
Each MAutoNet node has at least one secure relation with
another MAutoNet node. Otherwise, we will have a single
node, which is the first authority node, and this does not
represent a network. In other words, for a non-authority
node, there is at least one secure relation with the authority
node which was used to insert the former in a community.
For an authority node, there is at least one secure relation
with another authority node, created after the integration
of a community, and in case of a MAutoNet composed of
one community, there is at least a secure relation with a
non-authority node in this single community, created after
the insertion of the non-authority node. We will see later in
this section other types of MAutoNet secure relations. Fig-
ure 2 illustrates what we call a MAutoNet virtual security
structure, which is characterized by a security perimeter and
the encapsulated communities, nodes and secure relations.
Geographically speaking, because a MAutoNet is a mobile
wireless ad hoc network, this security perimeter is delim-
ited by the union of the coverage areas of all the MAutoNet
nodes, considering a multi-hop routing context.

We categorize the MAutoNet nodes according to their ca-
pabilities in terms of computing performance, storage capac-
ity and electrical power availability. This should help, as we
will see later, to identify the possible types of secure relations
that a node can assume. This categorization is configurable,
but a default one is used, according to which, a node can be
a heavy-duty device or a light-duty device. A heavy-duty
device is capable of performing asymmetric cryptography
and storing the associated cryptographic materials, and it
is relatively always on. A light-duty device is capable of
performing only symmetric cryptography and storing only
the corresponding security information, and it might be off
or in a sleep mode at any time. As for an authority node,
it is a heavy-duty device which has server capabilities, such
as multithreading support and the storage capacity required
to assume the designated server role. Moreover, even that
we work on self-healing mechanisms to efficiently replace a
leaving, a lost or a damaged authority node, it is always

advised to assign the authority role to a node of a limited
mobility and a long-life membership. Other categories can
be defined later, like for example a category of average-duty
devices that cannot run a complete asymmetric encryption
scheme, but can at least verify signatures in a light version
of the RSA public-key system.

A mutual authentication should take place before a se-
cure relation is established between two MAutoNet nodes.
Authentication between a new node and an authority node
takes place implicitly during the node insertion operation.
Node insertion takes place through a single-hop communi-
cation between the new node and the authority node of the
selected community, and using a protected short-distance
channel. The result is an ADR (Authority-Device secure
Relation). According to the category of the new node, it
is assigned either a public-key certificate, or a secret key
shared uniquely with the authority node of its community.
In the first case, the new node generates its key pair, and
the authority node sends its public key to the new node, and
assumes the role of the certification authority. In the second
case, the authority node generates the ADR secret key and
sends it to the new node. Similarly, authentication between
two authority nodes takes place implicitly during a com-
munity integration operation. Community integration takes
place through a single-hop communication between the au-
thority node of the new community and an existing authority
node, and using a protected short-distance channel. The re-
sult is an AAR (Authority-Authority secure Relation). The
involved authority nodes exchange public keys and public-
key certificates, assuming each the role of certification au-
thority for the other. As for authentication between two
non-authority nodes belonging to the same community, ei-
ther they have certificates assigned by the authority node
of the community and they use them in a certificate-based
mutual authentication protocol, or one at least could not
be assigned a certificate and the authority node intervenes
as an authentication server. Finally, for authentication be-
tween two non-authority nodes belonging to two different
communities, either both nodes were assigned certificates
by the relevant authority nodes and a mutual authentica-
tion protocol based on chaining of certificates is used, or
one at least could not be assigned a certificate and relevant
authority nodes can intervene and assume together the role
of an authentication server. We are currently working on dif-
ferent authentication protocols in this context, and specify
them in conformity with the autonomic behavior. In other
words, their specification methods will allow certain auto-
nomic modules to adapt them to unpredicted changes in the
security environment. For example, they can be optimized
by a self-healing module after a successful attack revealing
a vulnerability in the authentication system.

A MAutoNet secure relation is a contract between two
MAutoNet nodes. It establishes an agreement on securing
data exchange in terms of confidentiality and integrity. It
starts when a mutual authentication takes place between
the two nodes as belonging to the same MAutoNet. It ends
when one of the two nodes does not belong to the MAutoNet
any more. Once created, the secure relation is based on a
mutual trust between the two nodes of a certain level as ex-
plained above. According to the level of trust, there could
be authorization rules controlling the communications in a
secure relation. Such access control rules are based on the
roles of the both nodes and on the level of trust between

them. Moreover, the choice of the cryptographic materials
used to secure the data exchange depends on the categories
of the both nodes. Hence, secure relations are classified de-
pending on node roles and categories and on the trust levels.
For example, figure 2 illustrates a virtual security structure
that we already defined for a home MAutoNet [10]. In this
MAutoNet, default node categorization is used and only two
trust levels are defined: either a high trust between nodes of
the same community or a low trust between nodes of differ-
ent communities. This is why a first classification of secure
relations defines two relation types: LTR for a Low-Trust
Relation and HTR for a High-Trust Relation. A second clas-
sification based on the roles of the MAutoNet nodes defines
three relation types: ADR for an Authority-Device Rela-
tion, AAR for an Authority-Authority Relation and DDR
for a Device-Device Relation. A DDR secure relation class
is an abstract one. It is not used directly. A third classifica-
tion based on the categories of the home devices (MAutoNet
nodes) derives three more relation types from DDR: HHR for
a relation between two heavy-duty devices, HLR for a rela-
tion between two non-authority nodes of different categories
and LLR for a relation between two light-duty devices. As
for relations classified as ADR or AAR, the cryptographic
materials shared with or between authorities will be used by
default, so there is no need for a further classification based
on device categories in these two cases.

The autonomic security system is automatically set up
when the initial virtual security structure of the MAutoNet
is created. In other words, when the following initial steps
are done: 1)The autonomic security architecture is installed
in the different nodes before inserting them in the MAu-
toNet. 2)The initial trust levels, node categories, crypto-
graphic material types and security policies are specified, or
the default ones are utilized. 3)The first communities are
created, populated and integrated. 4)The first secure re-
lations are established, in addition to those resulting from
node insertion and community integration operations. We
suppose that all those initial steps are driven by end-users
through a simple set up operation based on well-configured
initial software and hardware components. Expert adminis-
trators may also participate in the accomplishment of these
steps, such as for specifying security policies other than the
default ones. Nevertheless, once the initial security perime-
ter is materialized, the autonomic security system assumes
the self-management of the virtual security structure, and
the employed security components. It should be able to
detect the network evolution events related to security, and
respond to them by adapting the virtual structure or its com-
ponents in terms of reconfiguration, protection, optimization
or repair. As a result, we will have an autonomic system that
manages the MAutoNet evolution of population and topol-
ogy in a security context. It manages its evolution as well,
which makes it also responsible of a set of security evolu-
tion events. We mention hereinafter the different evolution
events to be handled by the autonomic security system.

We identify six events of population evolution: the inser-
tion, removal, banishment and reinsertion of a node, and
the integration and revocation of a community. Node ban-
ishment might be needed when a node is out of the security
perimeter for a period greater than an allowed maximum,
and node reinsertion is applied to cancel the banishment of
a node.
We identify two events of topology evolution: the merging

and splitting of a community.
We identify four events that affect population and topology
together: the exportation and reintegration of a subnetwork,
and the merging and splitting of entire MAutoNets. Expor-
tation of a subnetwork might be needed when a set of MAu-
toNet nodes are supposed to leave the security perimeter for
a predefined period which might be greater than the allowed
maximum period of absence, and reintegration of a subnet-
work is needed when such a set of nodes is back, given the
fact that a subnetwork of MAutoNet may evolve as freely as
an independent MAutoNet during its absence. See [11] for
more details about subnetwork exportation.
All the previous events might represent a security evolution
as well, but we identify six more events that explicitly have
such effect: the acquisition, dispossession, delegation and
retirement of the authority role, and the establishment and
termination of a secure relation. Dispossession of an au-
thority role is needed when an authority node is normally
removed or banished. Authority delegation is needed in the
exportation of a subnetwork, and authority retirement is
needed to end an authority delegation during the reintegra-
tion of a returning subnetwork. See [11] for more details
about authority delegation.
Note that a human action, either normal or malicious, might
be the trigger of any of the previous eighteen events, which
may imply an autonomic reaction. However, the ad hoc
mobility of MAutoNet nodes, and the ad hoc nature of the
MAutoNet in general, are mainly the triggers of those events
in an autonomic context. This is why the Autonomic Secu-
rity System must monitor the valid functionality of the net-
work, the mobility of its nodes, the actions of its users and
administrators, and the signs of attacks in its environment.
We are currently working on evolution event detection and
handling. In fact, it is up to the authority nodes to perform
the cycle of monitoring, detection, event analysis, decision
and finally autonomic reaction to a detected evolution event.
For certain evolution cases, authority nodes collaborate to
achieve the required autonomic reaction. For example, they
might negotiate optimizing one of the security policies in re-
sponse to merging two communities as we will see in a later
section in this paper.

3. POLICY SUBSYSTEM
A policy subsystem is a main component of an autonomic

system. It translates high-level objectives, usually through
several intermediary rule specifications, into low-level ele-
mentary rules, upon which autonomic decision are based.
We introduce in this section our design of MAutoNet secu-
rity policy subsystem.

An autonomic system necessarily has initial policies, which
are supposed to be provided by default. Default policies
would be already enforced at low level, but also they will
have copy representations in form of rule specifications at
the administrator level and high-level objectives at the end-
user level. This is to provide a current view of the autonomic
system functionality to the both types of users. Usually, de-
fault policies are modified later, in response to the evolution
or self-maintenance of the encapsulating autonomic system
or its environment. For instance, we identify in our design
of the MAutoNet security policy subsystem, which is elabo-
rated in figure 3, three sources of modification for a security
policy in an autonomic security system: end-users, admin-
istrators and authority nodes. End-users may want to make

Figure 3: Security Policy Subsystem

changes to their high-level security objectives, which may
affect security policies. Administrators may want to explic-
itly optimize or repair some part of the autonomic security
system by means of security policy management. Author-
ity nodes may need to analyze, negotiate and recompose a
security policy, or a certain part of it, in the context of an
autonomic operation. The last functionality is the one we
expect to take place so often. In an autonomic system, hu-
man intervention is expected to be as reduced as possible. It
is like the autonomic systems of the human body, where the
owner of the body (end-user) is not supposed to intervene in
their functionality, and doctors and human body specialists
(administrators) may be called only when those systems are
not able to manage themselves in some cases.

Figure 3 illustrates the design and functionality of the
MAutoNet security policy subsystem. Policy manipulation
after initial enforcement might go through different tracks
before modifications are enforced in low-level forms. The hu-
man specification track may be launched by an end-user or
an administrator as already explained. This kind of manip-
ulation is transparent for the end-user. In other words, he is
not necessarily aware of the fact that security policies are be-
ing changed. All he knows is that he is acting on his security
objectives. He does so by means of a high-level language,
through a user-friendly interface, which is in relation with
the configuration of the security environment as a whole. We
call this language HSSI for Human / Security System Inter-
face. As for administrators, they are completely aware of
what they are changing. This is why they use a specific lan-
guage for manipulating policies. For now, we work on this
language in the security context and we call it SPML for
Security Policy Management Language. In a human specifi-
cation track, policies are modified through HSSI or SPML,
and when the user confirms his modifications, a built-in in-
terpreter transforms the corresponding SPML instance into
one or more Java applications, which in their turn will be
compiled into security agents (see figure 1), and distributed
on the nodes where the relevant policy should be enforced.
Obviously, an HSSI/SPML translator is needed when the
human specification is driven by an end-user. Nevertheless,
the system state should be always represented through high-
level objectives, so an SPML/HSSI translator is also needed
in a human specification driven by an administrator. The
autonomic analysis track is launched automatically by an
authority node which needs to negotiate policies with other
authorities to modify them in the context of an autonomic
operation. An authority node can access SPML instances,

search them for specific information needed in the negoti-
ation process, and reformat the extracted data in a logic
language specific to autonomic manipulation. The use of
such language is necessary for representing the logic of the
policy rules, which is not possible by SPML, because the
latter is an XML language used to specify syntax and ac-
tions. On the other side, SPML can not be replaced by the
logic language used by authorities, because SPML is easier
to interpret into Java code, and because the logic language
is not supposed to represent every aspect of a policy. For
now, we work on a logic language in the security context
and we call it SPLS for Security Policy Logic-based Specifi-
cation. After reformatting the needed information in SPLS,
an authority node uses them in a negotiation process aim-
ing at the modification of the relevant security policy as an
autonomic reaction to some detected event. At the end of
a negotiation process, an autonomic recomposition track is
launched, aiming at gathering the SPLS-formatted modified
policy parts, reformatting them in SPML and reintegrating
them in the original SPML instance of the policy. From
one side, the built-in SPML interpreter is called to enforce
the new version of the policy, and from the other side, the
SPML/HSSI translator is called to update the state of the
security system configuration at the end-user high level. Au-
tonomically modified policies are eventually enforced on the
involved authority nodes, and distributed to the nodes need-
ing them. We are working on policy distribution considering
node availability in a multi-hop routing context.

According to [12], policies define choices in behavior in
terms of the conditions under which predefined operations or
actions can be invoked rather than changing the functional-
ity of the actual operations themselves. Security policies are
required in the autonomic security system of a MAutoNet
to reflect the different functionalities encapsulated in the
virtual security structure and how it should evolve, which
allows for monitoring, controlling and managing the MAu-
toNet security. In terms of functionality, we define for each
node of the MAutoNet an Authentication policy to specify
rules of mutual authentication between two nodes before be-
ing bound by a secure relation, an Authorization policy to
specify rules for access control between two nodes bound by
a secure relation, and a Communication policy to specify
security materials employed during a communication ses-
sion between two nodes in the context of a secure relation.
In terms of evolution management, we define for authority
nodes exclusively a Certification policy to specify rules for
assuming the authentication server role during the establish-
ment of secure relations, a Collaboration policy to specify
when and how to inter-operate with other authority nodes,
a separate Evolution policy for each evolution type to spec-
ify when and how to respond to the relevant detected event
and how to achieve and manage the required evolution, and
a Self-healing policy to specify the actions to be taken when
detecting security violations or signs of a successful attack
on the MAutoNet. It is useful to specify policies relating
to groups and nested groups of entities, and to group the
policies pertaining to the rights and duties of a role or po-
sition [12]. Therefore, we distinguish, in terms of policy
specification, between policies having the same specification
in all the network, such as those used for self-management
purposes (the self-healing policy for instance), and policies
that may vary from a community to another, such as those
used to control secure relations (the authorization policy

Figure 4: Access Control Model

for instance). Besides, we distinguish between policies used
by all nodes and those used by authority nodes exclusively,
as could be noted in the policy definitions above. Policies
employed exclusively by authority nodes can also be called
obligation policies [12], because they specify event-triggered
rules, which are conditioned by certain actions and used to
define adaptable management operations.

Modification of security policies might be needed for syn-
chronization, enhancement or optimization purposes after a
certain network evolution, or in the context of self-healing
operations. A need for negotiation in this case might arise,
either from a possible conflict with the properties of the secu-
rity environment of certain communities in case of changing
network-level policies, or from possible conflicts with pre-
existing policies in general. Nevertheless, there are cases,
other than conflicts, that imply negotiating security poli-
cies, of which we can mention the following network evo-
lution types: 1) Community integration (a new community
might have different network-level policies). 2) Delegation
termination (the returning subnetwork might have changed
its policies). 3) Merging communities (merged communities
might have different community-level policies). 4) Import-
ing parts from other MAutoNets (potential differences in
any of the security policies). 5) Merging two MAutoNets (it
is necessary to negotiate the best policy specification for the
resulting network). To accomplish a security policy negoti-
ation, each authority node will compute the SPLS instance
of the needed information from the specified policy and in-
puts it to the security agent which is responsible of security
policy negotiation in the autonomic security layer (figure
1). SPLS-formatted information will be then exchanged be-
tween authority nodes in the context of a Security Policy
Negotiation Protocol (SPNP). After having negotiated the
specified policy data, and decided about its new specifica-
tion, the autonomic recomposition track is followed. We
are currently working on the different issues of the secu-
rity policy negotiation. We study the potential assets and
components of this operation, define different specification
languages, develop the corresponding translators and inter-
pretors, design the security policy negotiation algorithm and
specify and validate the SPNP protocol.

4. ACCESS CONTROL
A MAutoNet node may operate out of the security perime-

ter in the context of what we call external applications. An
external application does not use the autonomic security sys-
tem, and it might involve components from outside the net-
work. It might be secure or not according to its context,
but it is anyway non-secure for the MAutoNet. Therefore, it
should be isolated by the MAutoNet security perimeter. In
other words, although a MAutoNet node is allowed to host
objects that can be accessed in the context of an external

application, the objects that are handled within the secu-
rity perimeter, which we call classified objects, must not be
available in such context. Nevertheless, a node may classify
an unclassified object to restrict its availability to internal
applications only, which are the applications involving MAu-
toNet secure relations. On the contrary, a classified object
can never be changed to be unclassified. This is to guaran-
tee the confidentiality and the integrity of the data handled
within the security perimeter. The MAutoNet access con-
trol model (figure 4) concerns internal applications exclu-
sively. In other words, it represents authorization rules for
a MAutoNet node willing to access classified objects hosted
by another MAutoNet node, within a session of a secure re-
lation already established between the both nodes. In such a
communication session, remote objects are accessed on their
hosts or through a data exchange. In both cases, the access
aims at performing a certain action on the remote object.
According to our access control model, a right is a permis-
sion given to a node to perform an action on an object hosted
by another node, in the context of a secure relation binding
the both nodes, provided that the required access is already
authorized. So, we need first to make a binary check to see
if the access is authorized or not, and if authorized, we can
then verify the access rights.

An access may be authorized or not, after a self-organizing
control operation, which is based on what we call OBA
model (Object-Based Authorization). Objects hosted by a
MAutoNet node are classified in OBA model as:

• Private (inaccessible objects): access is unauthorized
by default.

• Accessible objects:

– Protected : either the hosting node has no author-
ity role and access is authorized only for the au-
thority node or a delegated authority node of the
community, or the hosting node has an authority
role and access is authorized for all the nodes it
manages in its community.

– Friendly : access is authorized only for the nodes
belonging to the same community.

– Administrative: the hosting node has an author-
ity role, and access is authorized only for other
authorities and delegated authorities.

– Public: access is authorized for all the MAutoNet
nodes.

We inspired the OBA model from the scope management in
Java object oriented programming. We use an analogy, in
which we consider the whole MAutoNet as a Java applica-
tion, a community as a package and a node as an instance of
one of three classes representing the three possible roles for
a node: authority, delegated authority and device, and they
are respectively related by inheritance. Moreover, in order
to make this analogy useful in implementation terms, we see
node categories as interfaces and node relations as attributes
which are instances of classes representing the different re-
lation types. A correspondence is then possible between
the autonomic control of network evolution and the event-
driven self-management methods in a relevant Java applica-
tion. Actually, we assume that Protected and Administrative
objects are created and classified during the autonomic ma-
nipulation of the network evolution and their classifications

must not be altered, while the other objects are by default
Public when created, and their classification can be recon-
figured later if necessary. The three object classes Public,
Friendly and Private are considered respectively as ordered
security levels. The Public object class represents the low-
est security level. A node can change the ordered classes
of the objects it hosts upwards only. For example, a node
can reconfigure a Public file as a Friendly one in order to
restrict its access to the nodes of its community only. This
is necessary to protect the confidentiality and integrity of
accessed objects with regards to data flow between commu-
nities within the security perimeter.

As illustrated in figure 4, once the access is authorized
according to the OBA model, if the access concerns a pri-
vate object, the hosting node can apply its own discretionary
access control based on the identity of the accessing node.
Otherwise, if the access concerns an accessible object, rights
are determined depending on the roles of the accessing node
and the node hosting the object, and on the trust level of
the relevant secure relation. For example, in an authority
delegation session, an authority node has the permission to
change the role of a node of its community (protected data
of the node) to make of it a delegated authority, and then
to copy administrative data on it. However, a node has the
permission to verify the role of the authority node of its
community (protected data of the authority node), but not
to change it. We are developing SRBAC (Secure Relation
Based Access Control) out of RBAC for modeling this phase
of MAutoNet access control. Actually, SRBAC is an RBAC
applied in the context of a secure relation, and depends on its
characteristics. Because the role of a same node might differ
from a secure relation to another, we can make a correspon-
dence with the varying role of the subject from a session to
another in the flat RBAC model. We also might be able to
use the hierarchy support in the hierarchical RBAC model
to represent the relation between permissions assigned to a
delegated authority and permissions assigned to an author-
ity. Nevertheless, according to our model, the trust level of
the secure relation should be taken into account, and the
role and the class of the object should be considered as well.
So, we have more differences between access sessions to care
about than in RBAC model. Maybe, the use of constraints
in the constrained RBAC model would give a solution by
introducing conditions related to the characteristics of the
secure relation encapsulating the access session. So either
we will be able to utilize the symmetrical RBAC model (hi-
erarchical and constrained at the same time), or we will
have to introduce an enhanced model of RBAC. We are still
working on SRBAC model formalization, but we can cur-
rently expect, to a certain extent, how an SRBAC policy
specification should look like, as elaborated hereafter.

We will consider in the following the example of the home
MAutoNet [10] (see figure 2) to discuss the implementation
and negotiation of an SRBAC policy. The configuration
of the autonomic security system depends mainly upon the
following parameters: node categories (heavy-duty or light-
duty) - trust levels (high or low) - node roles (authority,
delegated authority or device) - duty-based relation classifi-
cation (HHR, LLR and HLR) - trust-based relation classi-
fication (HTR and LTR) - role-based relation classification
(AAR, DDR and ADR) - object classes (private, accessi-
ble or unclassified). In terms of access control, we are not
concerned about node categories or duty-based relation clas-

Figure 5: Access Control Implementation

Figure 6: SRBAC Policy Enforcement

sification. On the other hand, SRBAC deals with objects of
the abstract class ”Accessible” only. This is why only cer-
tain parameters are taken into consideration in the following
explanation.

In the context of a given secure relation, the autonomic
security manager (see figure 5) receives a request for access-
ing an object. The request would indicate the identifiers of
the subject (requesting node) and the object, in addition to
the desired action. The autonomic security manager uses
its security database to look up the class of the object, the
role of the hosting node in the context of the relevant secure
relation, and the trust-based and the role-based classifica-
tions of the secure relation. It then calls the security service
agent that is responsible of the access control, passing the
retrieved information to it as parameters. The agent is com-
posed of three main modules representing the two phases of
the MAutoNet access control model. The OBA module is
launched first, and then it launches the DAC module or the
SRBAC module according to the object access class. The
second-phase module (DAC or SRBAC) uses its access con-
trol policy to verify if the asking subject has the right to
perform the desired action on the specified object. Figure
6 illustrates how the SRBAC module receives the necessary
parameters for consulting the SRBAC policy, which is imple-
mented as one of its components, before giving a decision of
permission or denial. The relevant thread of the autonomic
manager waits meanwhile for the answer. Once arrived, ei-
ther it sends a rejection to the subject in case of access
denial, or it forwards the access request with a confirmation
to the relevant application in the higher layer.

A part of the SRBAC policy, which controls the access
in the context of an ADR relation, may have the following
default specification, represented in SPML language:

<SRBAC>

<relation category=ADR level=HTR>

<object role=device>

<access class=any>

<permission action=all />

</class>

</object>

<object role=authority>

<access class=public>

<permission action=all />

<denial action=delete />

</class>

<access class=any>

<permission action=read />

</class>

</object>

</relation>

</SRBAC>

An end-user is generally not able to interpret it, and he needs
a corresponding HSSI representation in order to understand
it. We are still working on the definition of HSSI and the
development of the corresponding tools, which we will keep
out of the scope of this paper. As for a MAutoNet adminis-
trator, he should be able to interpret the above specification
and understand the following: in a secure relation between
an authority and a device (ADR), based on a mutual trust of
the high level (HTR), if the accessed object is hosted by the
device, the accessing authority node is allowed all actions
whatever the class of the accessed object is, while if the ac-
cessed object is hosted by the authority node, the accessing
device is allowed all actions except delete if the accessed ob-
ject is of class public, and it is allowed to read the accessed
object whatever its class is.

We will not talk here about an operation performed by an
administrator. We will try to clarify how and when author-
ity nodes might negotiate an SRBAC policy. As explained
earlier, SPLS instances are used in security policy negoti-
ation. In fact, we still study the best use of the existing
logic-based languages, with necessary adaptation, to define
the SPLS language. Anyway, we can use one of the studied
languages to continue our example. It is the ASL language
(Authorization Specification Language), which is a strati-
fied first-order logic language [15]. Given a predicate called
cando used for representing an access rule, taking respec-
tively as parameters the object class, the accessing subject
and an action preceded by a sign indicating permission (+)
or denial (-), and given that relation types and trust lev-
els are handled as sets to which a relation may belong or
not, the above SRBAC policy could be represented by the
following SPLS rules:

cando(any, authority, +all)

<- in(r, ADR) & in(r, HTR)

cando(public, device, +all)

<- in(r, ADR) & in(r, HTR)

cando(public, device, -delete)

<- in(r, ADR) & in(r, HTR)

cando(any, device, +read)

<- in(r, ADR) & in(r, HTR)

Let us suppose now that SRBAC policies differ between
communities, and that the above policy is enforced in the
community C1. Suppose that there is another community

C2, in which the authority has more restricted access rights,
so that the corresponding parts of the SPML specification
looks as follows:

..

<object role=device>

<access class=any>

<permission action=read />

</class>

</object>

..

Suppose now that for a certain reason C1 and C2 should be
merged. By some technique, which is still under research,
one of the two involved authority nodes detects the conflict
between the SRBAC policies of C1 and C2. It reacts by con-
tacting the other authority for launching a security policy
negotiation process to resolve the detected conflict. We will
not go into the very details of the negotiation protocol. We
just want to emphasize here the steps that are interesting
for us in the scope of this paper. Each authority will ex-
tract the needed information from the SPML instance of its
community, reformat it in SPLS, and send it to the other
authority. Each one will have then the both following SPLS
rules representing the conflict:

cando(any, authority, +all)

<- in(r, ADR) & in(r, HTR)

cando(any, authority, +read)

<- in(r, ADR) & in(r, HTR)

On each authority node, the conflict will be resolved by first
unifying the both rules:

cando(any, authority, (+all)&(+read))

<- in(r, ADR) & in(r, HTR)

And then by applying the two conflict resolution rules

(+x)&(+y) = +(x&y)

all&read = read

which should make part of the configuration of the security
policy negotiation module, each authority will decide to use
the resulting rule:

cando(any, authority, +read)

<- in(r, ADR) & in(r, HTR)

which is in this case identical to the rule used in the SRBAC
policy of C2. The two authorities exchange and validate
their decisions, and as a result the authority of C1 recom-
pose and distribute the SRBAC policy of its community,
according to the functionality of the security policy system
(see figure 3), before executing the community merging.

5. CONCLUSION
We defined our model of mobile autonomic networks that

we call MAutoNet. Through this definition, we explained
our paradigm for autonomic networks, and we elaborated
the relation between such environments and the autonomic
computing systems. We also explained why mobile ad-hoc
networks are the most likely to behave as autonomic net-
works, and accordingly cited MAutoNet application fields.

We introduced a framework for building autonomic secu-
rity systems in MAutoNets, in which we presented an auto-
nomic security architecture and a virtual security structure.

In terms of architecture, we proposed a design for an au-
tonomic security layer to be integrated as a secure session
layer right under the application layer in the communication
stack. In terms of security models, we showed that the vir-
tual security structure reflects a trust model based on node
communities, an authentication model based on node het-
erogeneity, and a secure relation model based on both trust
and node categorization. These security models eventually
allowed us to propose a MAutoNet evolution model as a
working context for the desired autonomic security system.

Because handling policies is a must in autonomic systems,
we focused on the autonomic security policy subsystem and
its specification languages and autonomic components. We
showed how we made use of existing technologies in addition
to a set of new specification languages. As a contribution
to modern solutions dedicated to autonomic systems, we
introduced one of our ongoing works, by which we intend to
propose a Security Policy Negotiation Protocol (SPNP).

We opted for working on a MAutoNet authorization model
as a basis for studying the autonomic handling of security
policies. After defining our authorization system and ex-
plaining a part of its implementation, we explored in this
paper an example of an autonomic operation which implies
a negotiation of an access control policy after merging two
MAutoNet communities. Through this example, we intro-
duced a new access control model, we employed some in-
structions of the initial definitions of our policy specification
languages, and we proposed some preliminary ideas about
how the security policy negotiation algorithm could work.

We thought about an autonomic security system for the
first time during a work on home network security [10], due
to a need for self-management based on high-level policies.
We wanted then to expand our work to similar networks
in this perspective, so we started to study security in auto-
nomic networks in general [9]. We directed then our main
efforts to a couple of fields, namely security policy autonomic
processing and collaboration between nodes in MAutoNets
[11]. In this paper, we introduced the different concepts of
our research in general and presented the latest work in the
first field using the case of authorization policies.

We are currently working, according to specific applica-
tions and scenarios, on a representative set of high-level se-
curity policies specified in HSSI. Those policies should give
a wide view of autonomic network needs, which would help
reaching a formal definition of SRBAC with respect to ex-
isting access control models. SPLS language can be then
fully elaborated on a good basis, in addition to a prelimi-
nary definition of SPML. At that point, we will implement a
MAutoNet prototype and use it to test the autonomic secu-
rity system on the most challenging events of the evolution
model, such as merging two communities or two networks.

6. REFERENCES
[1] A.Datta and K.Aberer. The challenges of merging two

similar structured overlays: A tale of two networks. In
the First International Workshop on Self-Organizing
Systems (IWSOS 2006), 2006.

[2] D.Balfanz, D.Smetters, P.Stewart, and H.Wong.
Talking to strangers: Authentication in ad hoc
wireless networks. In Symposium on Network and
Distributed Systems Security (NDSS ’02), 2002.

[3] F.Stajano and R.J.Anderson. The resurrecting

duckling: Security issues for ad-hoc wireless networks.
In the 7th International Workshop on Security
Protocols, 1999.

[4] H.Luo, P.Zerfos, J.Kong, S.Lu, and L.Zhang.
Self-securing ad hoc wireless networks. In the 7th
IEEE Symposium on Computers and
Communications, 2002.

[5] J.O.Kephart. Research challenges of autonomic
computing. In the 27th International Conference on
Software Engineering, 2005.

[6] J.O.Kephart and D.M.Chess. The vision of autonomic
computing. Computer, 2003.

[7] L.M.Feeney, B.Ahlgren, and A.Westerlund.
Spontaneous networking: an application-oriented
approach to ad hoc networking. Communications
Magazine, IEEE, 39(6):176–181, 2001.

[8] L.Zhou and Z.J.Haas. Securing ad hoc networks. IEEE
Network, 1999.

[9] M.Aljnidi. Sécurité des réseaux mobiles autonomes. In
Premier workshop GET sur les réseaux spontanés,
pages 17–18, Rennes, France, November 2006.

[10] M.Aljnidi and J.Leneutre. Autonomic security for
home networks. In the First International Workshop
on Self-Organizing Systems (IWSOS 2006), pages
239–242, Passau, Germany, September 2006.

[11] M.Aljnidi and J.Leneutre. Towards an autonomic
security system for mobile ad hoc networks. In The
Third International Symposium on Information
Assurance and Security (IAS 2007), Manchester,
United Kingdom, August 2007.

[12] N.Damianou, A.Bandara, M.Sloman, and E.Lupu. A
survey of policy specification approaches, 2002.

[13] P.Horn. Autonomic computing: Ibm’s perspective on
the state of information technology. Technical report,
IBM Research, 2001.

[14] S.Dobson, S.Denazis, A.Fernandez, D.Gaiti,
E.Gelenbe, F.Massacci, P.Nixon, F.Saffre, N.Schmidt,
and F.Zambonelli. A survey of autonomic
communications. ACM Transactions on Autonomous
and Adaptive Systems, 2006.

[15] S.Jajodia, P.Samarati, and V.S.Subrahmanian. A
logical language for expressing authorisations. In
IEEE Symposium on Security and Privacy, Oakland,
USA, 1997.

[16] S.L.Keoh and E.Lupu. Towards flexible credintial
verification in mobile ad-hoc networks. In the 2nd
ACM Annual Workshop on Principles of Mobile
Computing (POMC’02), 2002.

[17] S.Schmid, M.Sifalakis, and D.Hutchison. Towards
autonomic networks. In the First International IFIP
TC6 Conference on Autonomic Networking(AN 2006),
2006.

[18] S.S.Yau, Y.Yao, Z.Chen, and L.Zhu. An adaptable
security framework for service-based systems. In the
10th IEEE International Workshop on Object-oriented
Real-time Dependable Systems (WORDS’05), 2005.

[19] T.Messerges, J.Curkier, T.Kevenaar, L.Puhl, R.Struik,
and E.Callaway. A security design for a general
purpose, self-organizing, multi-hop ad-hoc wireless
network. In the First ACM Workshop on Security of
Ad-hoc and Sensor Networks, Fairfax, Virginia, 2003.

