
Resource Disconnection Management in MANET
Driven by Process Time Plan

Massimiliano de Leoni
Sapienza-Università di Roma,
Dipartimento di Informatica e

Sistemistica
via Salaria 113 (2nd floor)

I-00198 Roma, Italy
deleoni@dis.uniroma1.it

Fabio De Rosa
Sapienza-Università di Roma,
Dipartimento di Informatica e

Sistemistica
via Salaria 113 (2nd floor)

I-00198 Roma, Italy
derosa@dis.uniroma1.it

Schahram Dustdar
Vienna University of

Technology, Distributed
Systems Group (DSG),

Information Systems Institute
Argentinierstrasse 8/184-1

A-1040 Wien, Austria
dustdar@infosys.tuwien.ac.at

Massimo Mecella
Sapienza-Università di Roma,
Dipartimento di Informatica e

Sistemistica
via Salaria 113 (2nd floor)

I-00198 Roma, Italy
mecella@dis.uniroma1.it

ABSTRACT
The use of mobile ad hoc networks (manets) and of adap-
tive process management systems, able (i) to enact coop-
erative processes among the on-the-field operators and (ii)
to cope with disconnection anomalies, is an effective tool in
emergency management. In this paper, we present the ar-
chitecture of MOBIDIS, a novel manet-based process man-
agement system for emergencies, and we describe the novel
techniques proposed for adaptiveness of the process enact-
ment. A prototype implementation and experiments are
presented.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.5 [Software Engineering]: Miscellaneous

Keywords
adaptive process management, mobile ad hoc network, emer-
gency response, cooperative work, disaster analysis and man-
agement, homeland security-related application

1. INTRODUCTION
The widespread availability of network-enabled hand-held
devices (e.g., PDAs with WiFi - the 802.11x-based standard
- capabilities) has made the development of pervasive com-
puting environments an emerging reality. Pervasive comput-

ing allows to build adaptive peer-to-peer software infrastruc-
tures for supporting coordination and management of pro-
cesses in mobile and dynamic scenarios such as we have in
emergency/disaster situations. Generally, in such scenarios,
different teams belonging to different organizations need to
collaborate for making disaster analysis. Each team member
is equipped with hand-held devices (PDAs) and communi-
cation technologies, and should carry on specific tasks. In
such a way, it is possible to see the whole team as carrying
on a process. As an example, let us consider the following
disaster analysis scenario. After an earthquake, a team (e.g.,
belonging to the Homeland Security Department) equipped
with mobile devices (laptops and PDAs) is sent to the af-
fected area to evaluate the state of specific sites. Their goal
is to document the damage directly on a situation map, and
to schedule following activities (e.g., evacuation for probable
collapses, rebuilding jobs, and so on). Before recovery phase
starts, the team leader stores all area details, including site
map, list of the most important objects at the site, and some
previous reports and materials on his/her personal assistant.
All such details are provided by some back-end center of the
Homeland Security Department, which assembled them by
integrating information, knowledge and content stored by
many other peer organizations (e.g., the Ministry of Inter-
nal Affairs, some basic spatial data provided by different
public and private organizations, etc.).

The team constitutes a manet in which the team leader’s
device coordinates the other team members devices1 by pro-
viding appropriate information (for example, maps, impor-
tant objects, and so on) and assigning activities. Mobile
(or Multi-hop) Ad hoc NETworks (manets, [1]) are net-
works of mobile devices that communicate with one another
via wireless links without relying on a wired infrastructure.

1Devices can be laptops (for specific requirements) or mostly
PDAs

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.AUTONOMICS 2007, 28-30 October 2007, Rome, ItalyCopyright © 2007 ICST 978-963-9799-09-7DOI 10.4108/ICST.AUTONOMICS2007.2188

Compile
Questionnaire 1

Photos

Matching

Compile
Report

Result

Data Q1

Team LeaderTeam Member 1 Team Member 2 Team Member 3

Take Pictures
Compile

Questionnaire 2Data Q2
Compile

Questionnaire 1

Photos

Matching

Compile
Report

Result

Data Q1

Team LeaderTeam Member 1 Team Member 2 Team Member 3

Take Pictures
Compile

Questionnaire 2Data Q2

Figure 1: Process to be enacted.

Affected Area

Museum

Bell-Tower
Building

Church

TM 2

TM 1

TM 4

TM 3

Team Leader (The
Coordinator)

Castle

Affected Area

Museum

Bell-Tower
Building

Church

TM 2

TM 1

TM 4TM 4

TM 3TM 3

Team Leader (The
Coordinator)

Castle

Figure 2: Resource disconnection.

To establish communication in a manet, each device acts
as an endpoint and as a router forwarding messages to de-
vices within radio range. manets are a sound alternative to
infrastructure-based networks whenever an infrastructure is
no longer available, or cannot be used, as in emergency sce-
narios.

In Figure 1 is depicted a possible process we can have in
emergency scenarios: after visual analysis of a building, sup-
ported by some map-based application, team member 1 (us-
ing her/his device, i.e., a PDA) fills out a report and enters
attributes and data related to the damage. The team leader
will analyze these reports and spatial data, with the help
of specific software, to schedule the next activities. Team
member 3 takes pictures of precarious buildings, whereas the
team member 2 is in charge of image processing of older and
recent photos of the site. The execution of this task should
be done as soon as possible, as identification of architectural
anomalies might highlight the danger of some collapse. In
that case the time response of all team work is crucial. Nev-
ertheless, the device/PDA with the high-resolution camera
and the device/PDA with the older stored pictures must be
connected in order that the image processing task can be
carried out.

Compile
Questionnaire 1

Photos
Matching

Compile
Report ResultData Q1

Team LeaderTeam Member 1
(non-idle peer)

Team Member 2 Team Member 3

Take Pictures
Compile

Questionnaire 2Data Q2

Undo Compile
Questionnaire 1

Follow Team
Member 2

Compile
Questionnaire 1

Follow Team
Member 3

Team Member 4
(idle peer)

Compile
Questionnaire 1

Photos
Matching

Compile
Report ResultData Q1

Team LeaderTeam Member 1
(non-idle peer)

Team Member 2 Team Member 3

Take Pictures
Compile

Questionnaire 2Data Q2

Undo Compile
Questionnaire 1

Follow Team
Member 2

Compile
Questionnaire 1

Follow Team
Member 3

Team Member 4
(idle peer)

Figure 3: Modified process.

But in a scenario such as the one in Figure 2, the camera-
equipped device/PDA’s movement might result in its discon-
nection from other devices, giving situation of stalling dur-
ing process execution. That could be unacceptable overall
in situations where temporal constrains for task or process
execution are needed, such as one above described.

Therefore, a pervasive architecture supporting process man-
agement in manet contexts should be able to predict such
disconnection situations in order to alert the coordination
layer. The coordination layer, in turn, should direct a “bridge”
device (team member 4’s PDA) to follow the actor/PDA
that is going out of range, maintaining the connection and
ensuring a path between devices. In this way, the coor-
dination layer, on the basis of a disconnection prediction,
schedules the execution of new and not previously sched-
uled activities, as shown in Figure 3 (note the new activity
for team member 4).

In this paper we focus on process management issues de-
riving from probable peer (resource) disconnections we have
in manet contexts, and we present a pervasive architecture
suitable in emergency scenarios for process management in
manet, constituted by (i) a predictive layer for disconnec-
tion anomalies and (ii) an adaptive coordination layer able
to carry out processes and change them when peer discon-
nections are raised. In particular this work proposes a pro-
cess model for adaptive process management in cases of peer
disconnections, and an algorithm for choosing a bridge based
on a priority concept between tasks. Differently to [8], the
proposed process model takes into account also time infor-
mation such as expected duration for each task and statis-
tically weighted values for each conditional branch. This
information allows us to define time plans calculated start-
ing from a probabilistic timed graph associated to process
schema [4].

More in details the paper is organized as follows: in Sec-
tion 2 some considerations on emergency management to-
gether with requirements and issues for process management
on manets are discussed; starting from that, two transfor-
mation rules for adaptive process management are given.
In following Section 3 we present our approach, named MO-
BIDIS2, for adaptive process management on manets, whereas

2MOBIDIS: MOBile at Dipartimento di Informatica e Sis-

Section 4 presents the proposed collaborative process model
and the bridge algorithm. In Section 5 related works are
considered, and Section 6 presents some preliminary exper-
imental results. Finally Section 7 concludes the paper by
discussing future work.

2. RESOURCE DISCONNECTION MANAGE-
MENT

In manet scenarios, actors (peers) have to exchange infor-
mation (i.e., objects) needed to carry out assigned tasks.
Such an exchange may occur only if peers are connected to
network. For instance, in the presented collaborative sce-
nario a path has to exist between the peer having the high-
resolution camera and the one containing the stored pictures
in order that the former can send the latter new images. In
these cases, if the two nodes are going to disconnect, the
process could be not terminated (by lacking input data for
some task) leading to situation of stalling in the system; that
could be unacceptable overall when temporal constraints on
task and process execution are required. “Bridging” actions
may be used in process management to avoid those situa-
tions, and to support time plans for process execution [4].
They can be seen as adding new tasks in process instances
to support other ones which, otherwise, could not be carried
out. We term new added tasks as “supporting tasks” and
process tasks defined by designer as “primary tasks”, e.g.:
the task “follow the Team Member 3”, in the Figure 3, is a
supporting task for the primary one “Send Photos”.

Supporting tasks may be added in parallel or in sequence
with primary ones during the process execution, leading to
ad-hoc changes. The particular arrangement adopted for the
process restructuring depends strongly on the bridge choice.
Let X be the peer who is going to disconnect, and let t be
the task that peer X is going to carry out. If the choice is
an idle peer (i.e., actually it is not executing task) then the
process manager assigns to it supporting task such as “Fol-
low X”. Such an operation requires a change in the process
instance by adding one task “Follow peer” (in our case peer
X) in parallel with the task t, as depicted in Figure 4.(a).
We term this rule R1. In cases, instead, where the chosen
bridge is carrying out a task tb, the process management
system could apply additional restructuring operations in
the process instance besides those ones required by rule R1.
Indeed, if the task tb can be compensated then the process
manager introduces in sequence the corresponding recovery
task t∗b (making the undo of tb) and postpones the task tb

in the process. That transformation rule is depicted in Fig-
ure 4.(b), and we term it R2.

In Figure 3 is reported the modified process of Figure 1 ob-
tained by applying a combination of the two proposed rules:
in the first case (disconnection of team member 2) both the
rules R1 and R2 are applied, since the chosen bridge (team
member 1) is performing a task (“Compile Questionnaire
1”). In the second case (disconnection of team member
3) only rule R1 is applied, since the chosen bridge (team
member 4) is an idle peer. Note that the two changes of
the process are independent each other since the involved
tasks (“Compile Questionnaire 1”, “Compile Questionnaire

temistica (DIS), of the University of Rome “La Sapienza”,
Italy.

t Follow Peert

R1

t Follow Peert

R1

t Follow Peert Follow Peert Follow Peertt

R1

(a) Rule R1 used in cases of idle
peer.

tb

R2

tb

tb*

tb

tb

R2

tb

tb*

tb

tbtb

R2

tb

tb*

tb

tb

tb*

tb

(b) Rule R2 used in cases of non-
idle peer.

Figure 4: Transformation rules for process adapta-

tion.

2”, and “Take Pictures”) are in parallel.

In choosing a bridge, several aspects have to be taken into
account, such as: assignment of tasks to peers at any time,
task execution time, dependencies between tasks3, and net-
work topology. Task assignment allows to distinguish be-
tween idle and non-idle peers as well as to know which tasks
are executed by whom. Execution time, in particular task
time plan (time intervals for possible task execution [4]), to-
gether with dependencies between tasks (expressed in quan-
titative manner through a positive number) are needed for
knowing which tasks can be delayed (postponed) without
(or at least to have lower probability of4) violating process
time constraints. That information is necessary when all
possible candidate bridges are executing a task ti. Indeed,
in those cases if P (ti) represents the execution time of pro-
cess P that we obtain by postponing the performing of task
ti and δ is the process execution deadline, then the task tk,
such that P (tk) − δ ≤ P (ti) − δ for each considered task ti,
will be stopped (undone) and the assigned peer is chosen
as bridge. Finally, topology network information – specif-
ically, number of neighbours and distance between neigh-
bours – is used to choose between more candidate bridges
(peers with the lowest number of neighbours are preferred,

3In this work we focus principally on dependencies between
tasks deriving from process control flow.
4A tuple (p, s, e) in the time plan associated to a task de-
fines the probability p that no time-constrained is violated
when the task starts and ends in the time-interval [s..e]. In
some cases it might be necessary to execute the task in time
interval with probability p 6= 1.0, which means that the task
execution can produce constraint-violation with probability
1 − p.

Mobile Device j
Service 3 Service 4

Network Service Interface

Wireless Stack (HW/SW)

Mobile Device i

Service 1 Service 2

Network Service Interface

Wireless Stack (HW/SW)

Mobile Device Coordinator

Network Service Interface

Predictive Layer

Rewriting
Rules

Workflow
Schema

Wireless Stack (HW/SW)

Coordination Layer

Workflow
Execution

Engine

Workflow Adapter

Workflow
Rewriter

Disconnection
Manager

Mobile Device j
Service 3 Service 4

Network Service Interface

Wireless Stack (HW/SW)

Mobile Device j
Service 3 Service 4

Network Service Interface

Wireless Stack (HW/SW)

Mobile Device i

Service 1 Service 2

Network Service Interface

Wireless Stack (HW/SW)

Mobile Device i

Service 1 Service 2

Network Service Interface

Wireless Stack (HW/SW)

Mobile Device Coordinator

Network Service Interface

Predictive Layer

Rewriting
Rules

Workflow
Schema

Rewriting
Rules

Workflow
Schema

Wireless Stack (HW/SW)

Coordination Layer

Workflow
Execution

Engine

Workflow Adapter

Workflow
Rewriter

Disconnection
Manager

Coordination Layer

Workflow
Execution

Engine

Workflow Adapter

Workflow
Rewriter

Disconnection
Manager

Workflow Adapter

Workflow
Rewriter

Disconnection
Manager

Figure 5: The MOBIDIS Architecture.

since the probability of new disconnections due to bridge
movements is minimized) as well as to know the number of
bridges needed to manage the disconnections. In Section 4
it is presented in more detail the algorithm for the bridge
choice. It takes into account criteria above discussed.

3. MOBIDIS FRAMEWORK & APPROACH
In this section we give an overview on our approach, named
MOBIDIS, for adaptive process management systems (PMSs)
on manets. For more details, the reader is referred to [9].

With respect to resource disconnection management, the
MOBIDIS approach combines local connection management
among devices with global management of both network
topology and task assignment. Local connection manage-
ment consists of monitoring and checking one-hop commu-
nications between a device and its neighbours. It is realized
as special services running on hand-held devices that im-
plement techniques for estimating and calculating distances
and relative positions (angle and direction of arrival) be-
tween a specific device and its direct neighbours. Global
management maintains a consistent state of the network
and of each peer in the network. It manages the network
topology (and its predicted next states) and tasks each peer
is in charge of, as well as services that peers offer (that
is, it provides a service registry). On the basis of that in-
formation, the coordinator applies algorithms for choosing
a bridge and/or executes process task reassignment when
needed.

As regard process adaptation, MOBIDIS uses an ECA (Event
/ Condition / Action [2]) based approach to specify which
events (peer disconnections) can produce probable process
restructuring, and a set of transformation rules stating which
control action have to be performed for process adapta-
tion (i.e., which tasks have to be added, postponed, un-
done, etc.). Furthermore, a predictive approach is used to
catch probable peer disconnection events and possible fu-
ture service unavailability. Such a rule-based approach is
highly flexible as rules are able to react on events at any
time during process execution without making assumptions
about when these events occur. This is in contrast to an
approach based on adding conditional branches to process
definitions [28], that cannot be proposed for very frequently
changing environments such as ones of manets.

Figure 5 shows the proposed architecture: each device has a
wireless stack consisting of a wireless network interface (the
wireless channel with hardware for calculating distances from
neighbours. On top, a network service interface [5, 6] offers
to upper layers the basic services for sending and receiv-
ing messages (through multihop paths) to and from other
devices, by abstracting over the specific routing protocols.
Offered services (i.e., specific applications supporting tasks
of human users) are accessible to other devices and can be
coordinated and composed cooperatively. Some of these ser-
vices are applications that do not require human interven-
tion (for example, an image-processing utility). Others act
as proxies for humans (for example, the service for instruct-
ing human users to follow a peer is a simple GUI that alerts
the user by displaying a pop-up window on his or her device
and emitting a signal).

In contrast, the coordinator device presents the predictive
layer on top of the network service interface, signalling any
probable disconnection to the upper coordination layer. The
predictive layer implements a probabilistic technique [7] which
can predict if all devices will still be connected in the next
instant. The coordination layer manages situations when
a peer is going to disconnect, by applying algorithms for
choosing a bridge, and by executing process instance restruc-
turing and process task reassignment when needed (e.g.,
it assigns the activity “Follow X” to the selected bridge).
Specifically, the Workflow Adapter module is in charge of
catching disconnection events incoming from the Predictive
Layer and, on the basis of the current process execution
state (taken from the Workflow Execution Engine module,
which also is in charge of managing activity assignments),
applies transformation rules, modifying the process instance
of the cooperative work. In the next Section we describe the
algorithms used in these phases.

4. COORDINATION LAYER
The coordination layer is in charge of enacting process in-
stances taking into account peers jointed5 in every instant
to manet and relative services offered by them. Specifically,
the coordinator manages the current execution state of run-
ning process instance, in particular the state of every task
constituting it; when a task is ready to be undertaken by
some peer (i.e., the task preconditions are fulfilled), it per-
forms a specific algorithm to select a peer of the network
and assigns to it the task. When a disconnection event tak-
ing place, the coordinator executes the algorithm to select
the corresponding bridge. Concurrently, it changes both
the states of involved tasks and the assignment of tasks to
peers; in addition, it modifies the process instance applying
the relative restructuring rules.

The section is organized as follows: in subsection 4.1 we de-
scribe the process model and relative data structures used
in the coordination layer. We then present in subsection
4.2 and subsection 4.3 the bridge algorithm and relative as-
sociated techniques and data structures, respectively, used
to choose the bridge when disconnection events take place.
Finally, in subsection 4.4 we report the algorithm used by
coordinator to assign “primary tasks” to peers.

5When a peer wants join to team he/she contacts the coor-
dinator and begins a joining procedure.

4.1 Process Model
In this work we have used directed graph as process schema
language in modeling processes, and we have supposed that
processes are structured [29] i.e.: each OR-split has a corre-
sponding OR-join and each AND-split has a corresponding
AND-join. In addition, the model contains the expected
duration for each task and statistically weighted values for
each conditional branch; that information can be estab-
lished throughout process mining techniques and tools such
as Caramba and TeamLog [10]. Therefore, each task can
have multiple start-times and end-times due to conditional
branches depending on the execution path. To represent
probabilistic values of possible start-times and end-times of
a task we use time plans calculated starting from a proba-
bilistic timed graph associated to process schema [4]. A time
plan TA on a task A is a set of tuples (p, s, e); each tuple
(p, s, e) defines the probability p that no time-constrained
is violated (deadline) when the task starts and ends in the
time-interval [s..e]. Finally, in our model, each graph node
represents a particular process construct, specifically: task,
parallel routing, selective routing and N-join6.

As far as loops within process schema, we refer to only ones
named structured cycles [3], that is cycles can have only one
entry point to the loop and one exit point from the loop and
they cannot be interleaved.

Two special tasks, named Start and End Task, exist which
represent, respectively, initial and final task of the process.

Beside to design-time information, deriving principally from
the process structure and causal relationship among process
tasks, the adaptive coordination layer needs additional in-
formation, taken at run-time, to enact processes. That in-
formation concerns overall: (i) the knowledge of the set of
peers joined in every instant to the team (manet), together
with the set of roles each peer overlays, so to establish which
peer can carry out which tasks; (ii) the state of every task
constituting the process instance. A task can be in one
of the following possible states [11]: Not enabled, Enabled,
Running (or fired), and Completed.

The “bridging” actions needed to maintain the topology con-
straints can be seen as supporting tasks associated to pri-
mary ones, added or deleted during the execution of the
process instance. Therefore, at run-time, it is possible to
establish a relation between primary task and one or more
tasks which are supporting it. That relation is modified by
considering information available at design and run time,
such as: the graph process; process execution state; assign-
ment of task to resources, and peer disconnection events in-
coming from the Predictive layer. The support relation and
its modifications together with task states represent the pro-
cess instance restructuring. In [9] a more formal definition
of the support relation is reported.

4.2 Bridge Choice Algorithm
The algorithm for choosing a bridge is used by coordina-
tor when a peer is going to disconnect. It is based on the

6A N-join node is the corresponding for both OR-join and
AND-join control flow constructs; it is a point within the
process where two or more alternative process branches re-
converge to a single common task

following criteria:

– Idle neighbours are preferred.

– If each neighbour is carrying out a task, then the one
associated with the highest priority is chosen.

– With same priority values, the preferred bridge is one
having the smallest number of neighbours. The bridge
role likely leads to movement of the node and this
might cause new disconnections. By selecting a node
with the lowest number of neighbours, the probability
of new disconnections is minimized.

– With same number of neighbours, it is preferred the
nearest one.

The algorithm is as follows: let A be the set of peers con-
stituting the manet, and let ta be the task assigned to peer
a ∈ A. For each idle peer it is supposed to be assigned a
null task (i.e., a task doing nothing) with priority value δ+1
(i.e., P (ta) = δ + 1, see Section 4.3). Further, let n(a) be
the neighbours’ set of peer a (i.e., n(a) = {b|b ∈ A ∧ b is
in the radio range of a}), and let d be the peer is going to
disconnect. The procedure for computing the bridge is the
following:

– Step 1: Compute B = {b|b ∈ n(d)∧P (tb) = max{P (ta)|
∀a ∈ n(d)}};

– Step 2: Compute B
′

= {b|b ∈ B∧|n(b)| = min{|n(a)| :
a ∈ B}};

– Step 3: Compute B
′′

= {b|b ∈ B
′

∧rd(b) = min{rd(a) :

a ∈ B
′

}}; 7

– Step 4: Select one peer b ∈ B
′′

.

4.3 Priority Algorithm
The goal of the priority algorithm is to assign a weight (pri-
ority) to each process task in order to know which tasks can
be delayed (postponed) without violating process time con-
straints. It is used by coordinator when all candidate peers
for bridge action are executing a task.

The proposed algorithm is based on both task time plan,
obtained by applying the algorithm reported in [4], and the
number of tasks depending by execution of involved task.
Specifically: let [αi..βi] be a time interval in the time plan
associated to task ti with the maximum probability. Let
N(P) be the number of tasks constituting the process, and
let N(ti) the number of depending tasks of task ti. The
priority of task ti is calculated as follows:

P (ti) = βi(1 −
N(ti)

N(P)
) (1)

It is possible to observe as:

7rd(a) is the distance between the peers d and a.

– 0 ≤ P (ti) ≤ δ, with δ the process deadline which
can be calculated either as structural deadline [4] or in
experimental manner.

– If a task ti comes before a task tj in the process control
flow then the priority assigned to tj is grater than one
assigned to ti, that is P (ti) < P (tj). That directly
derives from time plan and weight constructions (see
Note 3 in Appendix).

– When N(ti) = N(tj) the priority value depends by βi

and βj values as well as when βi = βj the priority
value depends by number of depending tasks.

– When P (ti) = P (tj), we consider P
′

(ti) = p × P (ti)

and P
′

(tj) = q × P (tj), with p the probability asso-
ciated to time interval [αi..βi] and q the probability
associated to time interval [αj ..βj].

Algorithm for calculating the number of depending tasks.

The algorithm for computing the number of the depending
tasks of a specific task is based on the property that a struc-
tured process can be considered as a composition of several
sub-processes, in turn decomposable in other smaller ones
(with respect to number of tasks making them up), and so
on up to elementary processes, that is tasks. In addition, it
is assumed that AND/OR split nodes have the same com-
plexity than any task and thus they will be considered in
the computation. This hypothesis is justified because more
often a split operation (differently to join one) requires a
non-zero computation time (i.e., it can require the compu-
tation of some operations).

The algorithm is constituted of two phases. In the first one,
it is built a n-ary tree, named process tree, starting from
the graph model representing the structured process. Each
tree node is a process (elementary or not) whose children
are nodes representing the sub-processes in which it can be
decomposed in. More in detail:

– if (sub)process P is an elementary one (i.e., task), then
the corresponding tree contains only one node (root)
labelled with P (P corresponds to the task name).

– if (sub)process P can be divided in a sequence of two
subprocess P1 and P2, then corresponding tree has a
“sequence”-type node as root (labelled with P) and
two children nodes labelled with P1 and P2, respec-
tively.

– if the (sub)process P can be seen as parallel of many
sub-processes P1, P2, . . ., Pn, the corresponding tree
has a “parallel”-type node as root (labelled with P),
and n children nodes labelled with P1, P2, . . ., Pn.

– if the (sub)process P is composed by a selection of sev-
eral subprocess P1, P2, . . ., Pn, then the corresponding
tree has a “selective”-type node as root (labelled with
P), and n children nodes labelled with P1, P2, . . ., Pn.

– If the (sub)process P is a type-A loop (sub)process and
n is the number of its iterations, then the correspond-
ing tree has an “A loop”-type node as root (labelled

with P) and n “sequence”-type node as children la-
belled with P11

, P12
, . . ., P1n .

– If the (sub)process P is a type-B loop (sub)process and
n is the number of its iterations, then the correspond-
ing tree has an “B loop”-type node as root (labelled
with P) and n “sequence”-type node as children la-
belled with P11

, P22
, P13

, P24
, . . ., P2n−1

, P1n .

Referring to the last two (sub)process cases, if it is not
known the number of loop iterations but only the proba-
bility p to exit from one cycle and its next iteration, then it
is possible to approximate n as n = round(1

p
)8 (see [9]).

The algorithm for building the process tree starts from the
whole process P by analyzing how P can be decomposed in
P1, P2, . . ., Pn sub-processes. According to possible decom-
position, the corresponding initial process tree is built: a
root node P and its children P1, P2, . . ., Pn. For each sub-
process Pi, if Pi is an elementary process, then no additional
decomposition is done. Otherwise, the algorithm analyses
how the sub-process Pi can be further decomposed. Accord-
ing to corresponding translation case, the node Pi is replaced
by relative sub-tree. The algorithm stops when every leaf
node is an elementary process (i.e., task).

In the second phase, the structure built in the first phase
is used as basic information to compute the number of the
depending tasks of a task. More in detail: following the
decomposable characteristic of a structured process, we can
recursively define the number of tasks (P .Weight) associated
to a (sub)process P as follows:

– The number of tasks of a elementary process (task) is
1;

– The number of tasks of a sequence (sub)process com-
posed by (sub)processes P1 and P2 is P1.Weight +
P2.Weight ;

– The number of tasks of a Parallel routing (sub)process
composed by n branches is 1 +

∑n

i=1
Pi.Weight, with

Pi the (sub)process of the branch i;

– The number of tasks of a Selective routing (sub)process
composed by n branches is 1+Maxi=1,...,n{Pi.Weight},
with Pi the (sub)process of the branch i;

Starting from the process tree it is possible to assign a weight
N(·) to each tree node Pi as follows:

N(Pi) =

1 leaf

N(Pi1) + N(Pi2) sequence

1 +
∑n

j=1
N(Pij) parallel

1 + Maxj=1,...,n{N(Pij)} selective

(2)

Finally, for each sequence-type node Pi if N(Pileft
) < N(Pi)

(with Pileft
the left child node of Pi) then N(Pileft

) =

8p may be estimated by examining the execution of many
process cases.

N(Pileft
) + (N(Pi) − N(Pileft

), and N(Pk) = N(Pk) +
(N(Pi)−N(Pileft

)) for all node Pk belonging to the sub-tree
whose root is Pileft

.

The leaf node weights so far obtained are the numbers of
depending tasks of the task associated to leaf node. Note
that if a task ti comes before a task tj in the process control
flow then N(ti) > N(tj).

4.4 Algorithm for Task Assignment
In this section we report the algorithm used by coordinator
to assign “primary tasks” to manet peers. “Supporting
task” such as “Follow peer” are assigned to bridges in push
manner (i.e., unconditionally) by coordination layer.

When a primary task changes its state from “not enabled”
to “enabled”, it is added to the worklist so to be undertaken
by peers. Each task in the worklist (work-item) is marked
by a timestamp representing the instant when it has been
added to the list.

The assignment approach used in MOBIDIS is based on a
Role-Based Allocation pattern9 [12] for defining the range
of resources that may execute the work item, and a com-
bination of PUSH and PULL approaches [12] for offering
and allocating tasks to peers. Specifically, when a peer
a is ready to carry out a task, it looks up the worklist
stored in the coordinator device. Let R(a) be the set of
roles overlayed by the peer a and W the current worklist
upon the a’s query. The coordinator returns a work-item
set SW = {w ∈ W |R(w) ⊆ R(a)} where R(w) is the set of
roles a peer has to overlay in order to carry out the work-
item w. After the SW set is obtained, the peer can choose
any task belonging to it (PULL procedure).

A work-item w cannot be stored in the worklist for an un-
limited time. If a task w is stored in the worklist for a period
greater than an α time, then the coordinator decides to al-
locate (push) it to a peer. That is done by using a protocol
derived from the Contract Network Protocol [42] for task
assignment in Multi-Agent System (MAS) [43]. The idea is
to send a Call For Proposal (CFP) message to offer the task
w to each free peer able to carry out it. A set of acknowl-
edges is collected in a given time interval after which the
coordinator chooses the peer accordingly to some execution
metrics. When a peer sends a positive acknowledge, it stays
on waiting for a positive (PUSH) or negative (NOPUSH)
reply from coordinator and may pick up no task. That is,
by positively acknowledging, peers subscribe a sort of con-
tract imposing not to accept any task until they receive a
positive or negative reply. Negative replies are sent not only

to acknowledged peers but also to each peer in A
′

because
there might be a peer which sent an acknowledge arriving
to coordinator after timeout expiring. In that case, the peer

is not in A
′′

but, anyway, it is waiting for a reply.

5. RELATED WORK
The adaptation of process to possible exceptional cases or
to changes in management policies has been soon recog-
nised as a necessity for practical uses of process manage-

9At design time it is specified that a task can only be exe-
cuted by resources which correspond to a given role.

ment systems [3,16,20]. Solutions to the related problem of
dynamic change i.e., how to transform the process without
suspending all its instances or waiting for all instances to
have come to conclusion, of the possibility of creating in-
consistent states of process instances have been studied in
formal frameworks, typically defined by Petri nets. Exam-
ples of them are: WF-nets [13, 15], Flow Nets [16, 17], and
MILANO nets [18,19] (that is, marked, acyclic Free-Choice
Petri Nets).

Moreover, adaptations of single process instances become
necessary when exceptional situations occur or the struc-
ture of a workflow process dynamically evolves. More of-
ten, necessary changes and their scope for process evolution
are known at design time. Examples of systems supporting
such kinds of changes are: DYNAMITE [23], EPOS [24] and
AgenWork [25]. Consequently, respective adaptations can
be pre-planned and automated. In contrast ad-hoc changes
have to be applied as response to unforeseen exceptions [26].
Relevant work on ad-hoc change in process management are
ADEPT [26], Breeze [27] and WASA2 [30] approaches. In
them, authors address issues of manually modifying pro-
cess instances in order to insure that none of the guarantees
which have been achieved by formal checks at build time are
violated. A detailed discussion of all these approaches can
be found in [9, 22].

The MOBIDIS framework uses an ECA (Event / Condition
/ Action [2]) based approach to specify which events (peer
disconnections) can produce probable process restructuring,
and a set of transformation rules stating which control ac-
tion have to be performed for process adaptation (i.e., which
tasks have to be added, postponed, and undone). Differ-
ently to ad-hoc approaches present in literature, MOBIDIS
supports an automatic and non-preplanned process adapta-
tion due to the unforeseen and very frequently disconnection
events we can have in manet contexts.

In recent years, research in the manet area has mainly
focused on the development of appropriate routing proto-
cols, security and reliability of the communications, methods
for energy preservation, and other issues on the lower four
ISO/OSI layers [35–39,41]. Effective routing in ad hoc net-
works is still an actively-addressed open problem [33,35,37],
with some interesting proposals presented in the literature
(e.g., Dynamic Source Routing - DSR, Ad hoc On demand
Distance Vector - AODV routing, Zone Routing Protocol -
Z-RP, etc.). Researchers in this area assert that a sound
technical basis for manets exists and it is thus time to
start thinking about how to support applications based on
manets. In order to enable the development of applica-
tion layer software (and thus of any information system for
manet), abstractions on the specific characteristics of the
routing algorithms and, more generally, on the services and
data provided by the lower network layers, are required. [5]
proposes a network service interface to be used as the basic
layer on which to build application software, starting from
the analysis and abstraction of current routing protocols.

6. EXPERIMENTAL RESULTS
This section illustrates the preliminary set of experiments
we have considered to evaluate the MOBIDIS approach and
framework. The goal has been that to determinate and ver-

Figure 6: System Architecture for experiments.

ify the accuracy of the system in managing disconnections;
note that a peer disconnection to the manet could lead
to resource unavailability which might generate stalling or
deadlock situations in the system (e.g, the disconnection to
the manet of an unique peer equipped with photo-camera
can yield stalling situation as no other manet peer can exe-
cute the task “Take Pictures”). Therefore, the focus of these
preliminary experiments has been that to evaluate the good-
ness of the bridge choice algorithm under simplified network
circumstances. That is, in this phase, we have not consid-
ered network parameters such as control overhead and alike.
These metrics will be taken into account in future experi-
ments in order to better evaluate the proposed algorithm
under more realistic situations.

The section is structured as follows: firstly, we give an
overview on the system architecture we have set up for our
experiments; secondly, we report on the preliminary exper-
iments with relative results10

6.1 System Architecture
For our experiments we have set up a particular environ-
ment able to emulate moving of manet peers according to
a specific movement model. The emulator is deployed on a
specific PC, and each peer device is connected to it. Each
network peer has no knowledge about the existence of the
emulator. When the software running on the peer device
sends packets to another peer, it really sends data to emula-
tor. If nodes are in the same radio-range then emulator for-
wards data to destination. Otherwise, packets are dropped.
Peers in the emulated area can move towards a destination
(a tower, a street and so on) according to a specific move-
ment models implemented within the emulator. In Figure 6
is depicted the system architecture.

In realising our network emulator (named Octopus Server)
[8], we have used a modified version of the network simu-
lator NS-2 [44] with the Magdeburg patch [45] needed for
establishing wireless emulations. Since NS-2 does not sup-
port any integration with external software, we have written
a TCL11 TCP/IP server. This server enables client software
to be able to contact NS-2 via standard socket. As model of

10For more details about this section, the reader
is referred to [8], in particular to the appendix
of the paper which is available at the site
http://www.dis.uniroma1.it/∼deleoni/documents/
AppendixDMC2006.pdf.

11TCL is the scripting language which NS-2 uses to configure
emulations and simulations

movement we have implemented the Voronoi mobility [40].

6.2 Tuning
The purpose of the first part of experiments has been that
to tune some parameters of the algorithms realised in MO-
BIDIS framework in realistic situations. In particular, these
parameters allow us to tune the reactivity of the system to
disconnections. We recall that, doing that, we do not con-
sider information about network overhead and alike. These
will be taken into account in future experiments.

The first tuning metric is the Polling Time, i.e. the spent
time in monitoring possible changes in network topology;
lover value means more reactivity in doing corrective ac-
tions12. The second parameter is β, i.e. the fraction of the
radio-range within the predictive technique [7]. As an exam-
ple, in IEEE 802.11 with 100 meters radio-range, β equal to
0.3 means after 70 meters the prediction algorithm signals
a probable disconnection.

Table 1: Experimental results.

β 0.3 0.5 0.7

polling time 3 sec 1% 0.09% 0.02%
polling time 5 sec 32% 4% 0,88%

The result of experiments is depicted in Table 6.2. In making
that, we chose polling time between 3 and 5 seconds and β

between 0.3 and 0.7. The polling time values have been
chosen on the basis of the mean speed of a human walker,
as well as the β values have been chosen to have stronger
(0.7) or weaker (0.3) connections.

Reported results are the ratio (in percent) between the stalling
time and total time (stalling time + execution time). Smaller
values of β or greater polling time means lower, respectively,
in number and in frequency of corrective actions, that is
more freedom in moving. In the experiments, ratio decays
with the decrease of the freedom. Little freedom brings to a
greater number of rollback actions and then to inefficiency
in process progress. The choice of β and polling time equal,
respectively, 0.3 and 5 sec shows that stalling time is unac-
ceptably around a third of total time. The results suggest
that less often corrective actions are, more the stalling time
is. A good tuning trade-off is polling time equal 3 seconds
and beta between 0.3 and 0.5. In the following section we
show some preliminary results obtained by considering such
values.

6.3 Preliminary results
Our preliminary experiments concern how many predicted
disconnections have been resolved. Specifically doing that,
we wanted to evaluate the effectiveness of the bridge choice
algorithm. The result is depicted in Figure 7; it shows the
total number of disconnections in all experiments (the ver-
tical axis). We can note that the number of disconnections
resolved by bridging or task rolling-back (blue colour) is in-
variant with respect to the chosen values for beta (0.3 and
0.5), and closely to half of disconnections are correctly han-

12A corrective action is the application of one transformation
rule, i.e.: R1 or R1.

Figure 7: The total number of managed and non-

managed disconnections.

Figure 8: The mean value of the obtained connected

components.

dled (the other half has not been managed because of dis-
connection events have not been captured).

The goodness of combination of both prediction and bridge
algorithm is confirmed by another set of experiments, sum-
marized in Figure 8. This set analyses the number of average
connected components created during experiments. Note
that the best situation is one connected component (all re-
source are connected in the network). For β = 0.5 the mean
value of created connected components is just over 2; that
implies that less than 10 nodes goes out of manet range in
a whole process performance.

6.4 Future Experiments
For a more accurate evaluation of our approach, we are go-
ing to make another set of experiments. Firstly, we will con-
sider network parameters such as control overhead and alike
in order to better evaluate the effectiveness of the proposed
bridge algorithm; secondly, more effort will be devoted to
the resource management: in this direction, we will use a
resource distribution r over network peers in order to model
situations in which some peers can carry out more process
tasks. For instance, if 100 is the number of process tasks,
and p is a manet peer then with r(p) = 20 we indicate that
p can carry out the 20% of process tasks. Thus, the exper-
iment plan will be the following: for each fixed number of
peers and considered resource distributions, we will execute
100 cases for each defined process schema (we will use 10
process schemas having both basic and complex constructs
i.e., AND/OR split, and loops): the first time without any
supporting actions; the second time with supporting actions.
From the obtained results, it will be interesting to analyse
the number of terminated processes and the time differences

between process deadlines and the real time when processes
are terminated. Finally, during our experiments, we will
consider scenarios in which some points of the hit area are
insecure. That will allow us to know how the system reacts
to situations in which peers are unavailable (i.e., impossibil-
ity in moving) due to the around circumstances.

7. CONCLUSION AND FUTURE WORK
In this paper we have presented a pervasive architecture
suitable in emergency scenarios for workflow management
on manets, that through (i) a basic predictive layer for
disconnection anomalies and (ii) an adaptive coordination
layer able to change the process schema when disconnection
anomalies are raised. We discussed the basic techniques de-
veloped and some preliminary experimental results validat-
ing our approach.

We also plan to evolve the coordination layer from a central-
ized to a distributed one (i.e., having a subset of devices act
as coordinators). At the moment, the centralized architec-
ture might be a bottleneck, but the current dimensions of a
typical manet for the considered scenarios (tens of devices)
don’t pose critical scalability issues.

Nevertheless, our results are based on synthetic data, and
thus are only a preliminary validation of our approach. Fu-
ture work will be devoted to enhance our techniques and
to validate our approach in the context of some research
projects we are currently involved13.

8. REFERENCES
[1] D.P. Agrawal, and Q.A. Zeng. Introduction to

Wireless and Mobile Systems. Thomson Brooks/Cole,
2003.

[2] N. Paton (Ed.). Active Rules in Database Systems.
Springer, Berlin, 1999.

[3] W.M.P. van der Aalst and K. van Hee. Workflow
Management: Models, Methods, and Systems. MIT
Press, 2001.

[4] J. Eder, H. Pichler, W. Gruber, and M. Ninaus.
Personal Schedules for Workflow Systems. Proc. BPM,
LNCS 2678, Springer-Verlag Berlin Heidelberg, 2003.

[5] F. De Rosa, V. Di Martino, L. Paglione, and
M. Mecella. Mobile Adaptive Information Systems on
MANET: What We Need as Basic Layer?. Proc. IEEE
MMIS’03, 2003.

[6] F. De Rosa, and M. Mecella. Designing and
Implementing a MANET Network Service Interface
with Compact .NET on Pocket PC. Proc.
International Conference on .NET Technologies,
UNION Agency - Science Press, 2005.

[7] F. De Rosa, A. Malizia, and M. Mecella.
Disconnection Prediction in Mobile Ad hoc Networks
for Supporting Cooperative Work. Pervasive
Computing, IEEE, Vol.4, N. 3, 2005.

[8] M. de Leoni, F. De Rosa, and M. Mecella. MOBIDIS:
A Pervasive Architecture for Emergency Management.
Proc. DMC, 2006.

13MAIS - http://www.mais-project.it, and the IST FP6
WORKPAD -
http://www.workpad-project.eu

[9] F. De Rosa. Adaptive process management in mobile
and dynamic scenarios. PhD thesis, SAPIENZA -
Università di Roma, Department of Computer
Science, Italy, 2007.

[10] S. Dustdar, T. Hoffmann, and W.M.P. van der Aalst.
Mining of ad-hoc business processes with TeamLog.
DKE, Elsevier, Vol. 55, 2005.

[11] Workflow Management Coalition. Terminology &
Glossary. Document Number WFMC-TC-1011,
Document Status - Issue 3.0, December 2005.
www.wfmc.org

[12] N. Russell, W.M.P. van der Aalst,
A.H.M. ter Hofstede, and D. Edmond. Workflow
Resource Patterns: Identification, Representation and
Tool Support. Proc. CAiSE 2005, LNCS 3520,
Springer-Verlag Berlin Heidelberg, 2005.

[13] W.M.P. van der Aalst, M. Weske, and G. Wirtz.
Advanced topics in workflow management: Issues,
requirements, and solutions. IJIDP, Vol. 7(3), 2003.

[14] W.M.P. van der Aalst, A.H.M. ter Hofstede, and
B. Kiepuszewski Fundamentals of control flow in
workflows. AI, Springer-Verlag, Vol. 39, 2003.

[15] W.M.P. van der Aalst, and T. Basten Inheritance of
Workflows: an approach to tackling problems related
to change. TCS, Elsevier Science Publishers Ltd., Vol.
270, 2002.

[16] C. Ellis, K. Keddara, and G. Rozenberg Dynamic
Change Within Workflow Systems. Proc. COOCS,
ACM Press, 1995.

[17] C.A. Ellis, and K. Keddara. A workflow change is a
workflow. Proc. BPM, LNCS, vol. 1806, 2000.

[18] A. Agostini, and G. De Michelis. Improving flexibility
of workflow management systems. Proc.BPM, LNCS,
vol. 1806, 2000.

[19] A. Agostini, and G. De Michelis. A light workflow
management system using simple process models.
Proc. Int. J. Collab. Comp., M. Klein, C. Dellarocas,
A. Bernstein (Eds.), Vol. 9 (34), 2000 (Special issue on
adaptive workflow systems).

[20] L. Baresi, F. Casati, S. Castano, I. Mirbel, and
B. Pernici. WIDE Workflow Development
Methodology. Proc. WACC, 1999.

[21] F. Casati and M.C. Shan. Dynamic and Adaptive
Composition of e-Services. IS, Vol 3(6), 2001.

[22] S. Rinderle, M. Reichert, and P. Dadam. Correctness
criteria for dynamic changes in workflow systems a
survey. DKE, Elsevier, Vol. 50, 2004.

[23] P. Heimann, G. Joeris, C. Krapp, and B. Westfechtel.
DYNAMITE: dynamic task nets for software process
management. Proc. ICSE, Berlin, 1996.

[24] C. Liu, and R. Conradi. Automatic replanning of task
networks for process model evolution. Proc. ESEC,
1993.

[25] R. Müller, U. Greiner, and E. Rahm. AGENTWORK:
A Workflow-System Supporting Rule-Based Workflow
Adaptation. DKE, Vol. 51(2), 2004.

[26] M. Reichert, and P. Dadam. ADEPTflex supporting
dynamic changes of workflows without losing control.
JIIS, Vol. 10, 1998.

[27] S. Sadiq, O. Marjanovic, and M.E. Orlowska.
Managing change and time in dynamic workflow

processes. IJCIS, Vol. 9 (12), 2000.

[28] S.W. Sadiq, W. Sadiq, and M.E. Orlowska. Pockets of
flexibility in workflow specification. Proc. ER, Lecture
Notes in Computer Science, vol. 2224, Springer,
Berlin, 2001.

[29] B. Kiepuszewski, A. H. M. ter Hofstede, and
C. J. Bussler. On Structured Workflow Modelling.
Proc. CAiSE 2000, Springer-Verlag Berlin Heidelberg,
LNCS 1789, 2000.

[30] M. Weske. Formal foundation and conceptual design
of dynamic adaptations in a workflow management
system. Proc. HICSS-34, 2001.

[31] D.B. Johnson and D.A. Maltz. Dynamic Source
Routing in Ad-hoc Wireless Networks. MC, Imielinski
and Korth eds., Vol. 353, Kluwer Academic
Publishers, 1996.

[32] N.B. Priyantha, A. Miu, H. Balakrishnan, and
S. Teller. The Cricket Compass for Context-aware
Mobile Applications. Proc. ACM MOBICOM
Conference, 2001.

[33] R. Beraldi, and R. Baldoni. Unicast Routing
Techniques for Mobile Ad Hoc Networks. in The
Handbook of Mobile Ad Hoc Networks, CRC Press,
2002.

[34] D. Niculescu, and B. Nath. Error Characteristics of
Ad hoc Positioning Systems (APS). Proc. ACM
MobiHoc Conference, 2004.

[35] Nitin H. Vaidya. Mobile Ad Hoc Networks: Routing,
MAC and Transport Issues. Tutorial on Mobile Ad
Hoc Networks, http://www.crhc.uiuc.edu/ nhv,
University of Illinois at Urbana-Champaign, USA,
July 2006.

[36] T. Salonidis, and L. Tassiulas. Distributed Dynamic
Scheduling For End-to-end Rate Guarantees In
Wireless Ad Hoc Networks. Proc. ACM MobiHoc,
2005.

[37] J. Kong, X. Hong, Y. Yi, J. S. Park, J. Liu., and
M. Gerla. A Secure Ad-hoc Routing Approach using
Localized Self-healing Communities. Proc. ACM
MobiHoc, 2005.

[38] K. Nahm, A. Helmy, and C. C .J. Kuo. TCP over
Multihop 802.11 Networks: Issues and Performance
Enhancement. Proc. ACM MobiHoc, 2005.

[39] W. Su, S.J. Lee, and M. Gerla. Mobility Prediction
and Routing in Ad hoc Wireless Networks. IJNM, Vol.
11(1), 2001.

[40] A. Jardosh, E.M. BeldingRoyer, K.C. Almeroth, and
S. Suri. Towards Realistic Mobility Models For Mobile
Ad hoc Networks. Proc. MobiCom, 2003.

[41] L. Zhow, and Z. J. Haas Securing Ad Hoc Network.
IEEE Network, 1999.

[42] R. G. Smith. The contract net protocol. IEEE
transaction on computers, Vol. 29(12), 1980.

[43] J. Ferber. Multi-Agent Systems. Addison-Wesley,
1999.

[44] The network simulator NS-2,
http://www.isi.edu/nsnam/ns

[45] D. Mahrenholz, and S. Ivanov. Real-Time Network
Emulation with ns-2”. University of Magdeburg,
Germany.

