
Multi-hop Broadcast from Theory to Reality: Practical
Design for Ad Hoc Networks

Alaeddine El Fawal
EPFL, I&C

CH-1015 Lausanne,
Switzerland

alaeddine.elfawal@epfl.ch

Jean-Yves Le Boudec
EPFL, I&C

CH-1015 Lausanne,
Switzerland

jean-
yves.leboudec@epfl.ch

Kave Salamatian
EPFL, I&C

CH-1015 Lausanne,
Switzerland

kave.salamatian@epfl.ch

ABSTRACT
We propose a complete design for a scope limited, multi-
hop broadcast middleware, which is adapted to the vari-
ability of the ad-hoc environment and works in unlimited
ad-hoc networks such as a crowd in a city, or car passen-
gers in a busy highway system. We address practical prob-
lems posed by: the impossibility to set the TTL correctly
at all times, the poor performance of multiple access pro-
tocols in broadcast mode, flow control when there is no ac-
knowledgment and scheduling of multiple concurrent broad-
casts. Our design, called “Self Limiting Epidemic Forward-
ing” (SLEF), automatically adapts its behavior from single
hop MAC layer broadcast to epidemic forwarding when the
environment changes from being extremely dense to sparse,
sporadically connected. A main feature of SLEF is a non-
classical manipulation of the TTL field, which combines the
usual decrement-when-sending to many very small decre-
ments when receiving. SLEF is intended as a replacement of
k-hop limited broadcast for the unlimited ad-hoc setting.

1. INTRODUCTION
Broadcast exists inherently in the wireless channel and is

used by several communication systems in ad hoc networks.
It can either be single hop (the native MAC layer broad-
cast), or multihop. In static scenarios, multihop broadcast
can simply be implemented as follows: The source gener-
ates an IP packet with TTL=k and sends it as a MAC layer
broadcast; any node that receives it decrements its TTL and
if the result is positive, schedules it for a new transmission
as a MAC layer broadcast. In Disruption Tolerant ad-hoc
Networks (DTNs), multihop broadcast is implemented by
some form of epidemic forwarding: Nodes repeat packets
they receive with some probability, possibly more than once,
in order to extend the spread (number of nodes that receive
the packets) while mitigating redundancy. In single-hop or
multi-hop forms, broadcast is used to disseminate informa-
tion in quickly varying environments (e.g. opportunistic
networks), where mobility and self-organization make the
classical methods based on distribution trees non-practical.
Also, it can be used to support routing, resource discovery
protocols or in bootstrapping phases for application layer
protocols: for instance the “Spray” phase in the Spray-and-
Focus protocol [10] is a form of multi-hop broadcast.

We consider open ad-hoc networks, such as a crowd in a
city, or car passengers in a busy highway system. A common
feature here is that there is no practical bound on the num-

ber of users (unlimited network), and contact times may be
short and unpredictable. In practice, implementing multi-
hop broadcast in such settings poses a number of practical
challenges, which, if not correctly addressed, may lead to
very poor performance. A first issue is how to set the TTL
correctly. Consider for example an application that uses
multihop broadcast in a vehicular network; the connectivity
may range from sparse and sporadic (lightly loaded high-
way) to very dense (traffic jam, city center). Furthermore,
changes from one setting to another may be very sudden.
We show in our performance studies that, in a traffic jam
with realistic parameters, there are around 200 nodes within
range, and any TTL setting k > 1 results in congestion col-
lapse. In contrast, in a sparse setting, k = 1 results in practi-
cally no dissemination. Thus, the TTL, if used in that form,
should be set adaptively. A second issue is the absence of ac-
knowledgment in MAC layer broadcasts (e.g. with 802.11).
A node cannot know if its transmitted packet is received by
someone else, it simply undergoes a collision or it is trans-
mitted in a vacuum. Also, mutual exclusion mechanisms
(as CSMA/CA) that manage collisions are usually not im-
plemented in broadcast mode (for example in IEEE 802.11).
Therefore, accessing the medium in broadcast mode is sim-
ilar to ALOHA that performs poorly. A third issue is flow
control, i.e. how to control the packet injection rate of the
application. This is normally done end-to-end by TCP, but
here this probably does not apply. If the injection rate is
not adapted to the network conditions, this may result in
congestion collapses and failure of the broadcast. A fourth
issue is scheduling among competing broadcasts. It is likely
that more than one broadcast packets are competing for re-
transmission at one node, and some form of mechanism is
required to know which packet to select next.

In this paper we propose a complete design for a scope
limited, multi-hop broadcast middleware that is adapted to
the ad-hoc environment and addresses all of the above is-
sues. It performs well in DTNs, as well as in other settings,
in particular in very dense networks (as in a traffic jam).
We call our system “Self Limiting Epidemic Forwarding”
(SLEF). SLEF adapts to a rapidly varying environment in a
way that is completely transparent to the application. In a
very dense environment, SLEF is equivalent to a single hop
broadcast; in a sparse environment, to a k-hop broadcast,
with k automatically adapted to the network conditions.
In DTNs, it performs as an epidemic system, i.e. packets
may be re-transmitted more than once if this is required
to achieve a good performance. SLEF achieves these goals

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use isgranted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.  To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.AUTONOMICS 2007, 28-30 October 2007, Rome, ItalyCopyright © 2007 ICST 978-963-9799-09-7DOI 10.4108/ICST.AUTONOMICS2007.2172



by a number of mechanisms, described in the next section.
A main feature of SLEF is a non-classical manipulation of
the TTL field, which combines the usual decrement-when-
sending with many very small decrements when receiving.

The SLEF middleware offers the following service to the
application. It delivers packets as a limited multi-hop broad-
cast, without the application having to bother about what
the current state of the ad-hoc environment is. The service
interface is flow controlled, i.e. the application can send
only up to a maximum rate determined by SLEF. This rate
is controlled so as to ensure a reasonable balance between
spread (number of nodes that receive the broadcast) and
rate, in an open, unlimited environment.

When using SLEF, an application has to specify two pa-
rameters, K0 and K1, which control the spread-rate bal-
ance. We provide default values for K0, K1, which we show
by analysis and simulation to perform well; we also give
some guidelines on how to set K0, K1 if one wished to de-
part from the default values (in order for example to reach
higher spread at the expense of lower rate). As to other
SLEF parameters, they are fixed and they are chosen as
explained in Sect. 3.3.

This paper is organized as follows. In Section 2, we define
the functions achieved by SLEF and explain how they are
implemented, which covers the whole design. In section 3,
we derive an analytical model in order to tune the design
parameters and explain the interaction among its different
components. This section ends by giving default values to
the parameters of our design. In section 4, we give guidelines
on how to set K0 and K1 to adjust the spread-rate balance.
In section 5, we validate our design through simulations. In
section 6, we conclude this paper.

2. FUNCTIONS
In order to achieve its goal as a practical broadcast mid-

dleware, SLEF has to implement six mandatory functions.
The first function is inhibition, which aims at mitigating re-
dundancy. It adapts the forwarding factor (i.e. the number
of times a node forwards a packet) based on the send/receive
events seen on the same packet: A packet that is seen for
the first time, has a high chance to be forwarded, whereas
a packet that has seen several send/receive events is consid-
ered as well propagated and its chance to be forwarded is
lower. We call it inhibition, as it inhibits nodes from for-
warding over-sent/received packets. The second function is
spread control. It adapts the spread to the network state in
order to guarantee a minimum rate for the application when
the network scales. It is based on an aging mechanism that
decrements a packet TTL field locally based on the receive
events seen by the node. The third function is scheduling,
which decides which packet to deliver to MAC for transmis-
sion. It is likely that more than one packet are competing
for transmission at a node. These packets might belong to
different sources and might have seen different numbers of
send/receive events. In order to execute the inhibition, our
scheduler has to serve packets according to these numbers
send/receive events, and thus it can not be based on naive
policies such as First In First Out (FIFO). Moreover, our
scheduler considers the packet source Ids in order to achieve
source-based fairness. The fourth function is congestion con-
trol. It consists of adapting the application injection rate,
not only to avoid local buffer overflow, but it goes one step
further: If the injection rate is higher than the forwarding
capacity of the source neighbors, the source packets will be

accumulated in the neighbor buffers and dropped before be-
ing forwarded. Therefore, we adapt the injection rate to the
forwarding capacity in order to allow packets to propagate
in the network. The fifth function is buffer management,
which decides when to drop packets in order to keep space
in the buffer for the new incoming packets. In general, our
buffer management drops first the packet the most propa-
gated in the network. The sixth function consists of careful
use of the MAC broadcast. To compensate for the absence of
the mutual exclusion and the acknowledgment in the MAC
broadcast (see Sect. intro), we use two mechanisms: pseudo-
broadcast and presence indicator. The former implements a
CSMA/CA-based mutual exclusion. The latter returns true
if some neighbors were present around a node while it was
transmitting a packet. In this case, the node considers that
the transmission was successful and was not in the vacuum.

All these functions are achieved using only local informa-
tion to the node and do not need any knowledge about the
network topology. In the following, we describe in detail the
solutions we propose to achieve them. A pseudo-code of the
design is available online [1]. For ease of understanding, we
begin by defining the main variables used in our design and
the terminology that will be used in the explanation.

2.1 Variable and Terminology Definition
Every node maintains one epidemic buffer, used to store

received and locally originated packets, with the following
attributes:

• sendCount : how many times this packet was sent by
this node
• rcvCount : how many times this packet or a duplicate

was received by this node
• vRate (“virtual rate”): This attribute is derived from

sendCount and rcvCount , using the method described
in Sect. 2.2. It is the rate at which this packet would
be transmitted if it were alone in the epidemic buffer.
• age : combines hop count, real time age (true time

to live) and adaptive age, which reflects the amount
of competition this packet and its ancestors have en-
countered so far
• earliestSendTime and pendingSendConfirmation : see

Sect. 2.4 and Sect. 2.7

We call clone the set made of an original packet and its du-
plicates; all packets in the same clone have the same value
for source address (IP address) and the identification field.
When a packet is received, it is inserted into the epidemic
buffer. If this is the first time a packet of this clone is seen
by this node, a new entry is created, otherwise if the existing
entry is still present, it is overwritten (thus there is always at
most one packet per clone in the epidemic buffer). The at-
tributes are updated as explained later. We call self-packets
the packets originated by the node, and foreign-packets the
packets received from other nodes.

2.2 Inhibition
Inhibition mechanisms aim at preventing nodes from for-

warding over-sent or over-received packets in order to min-
imize redundancy. Different approaches to inhibition are
proposed in the literature. They differ in being adaptive or
not, and in the information they need about the topology
and neighbors. In [8], the authors propose a Gossip-based
inhibition mechanisms, where a node decides to forward a
packet with a fixed probability p and drop it with (1−p). It



needs information about the number of neighbors to find an
appropriate value of p, which is impractical in highly mobile
networks specially with short contact time. Further, this
inhibition mechanism is not adaptive, as it does not include
any mechanism to adapt p. In [9], the authors propose a
counter-based inhibition. It consists of discarding a packet
when its rcvCount reaches a maximum value, assuming that
it is well propagated and that forwarding it is redundant. It
is an adaptive mechanism. It allows a packet to be forwarded
at most one time, then it is discarded. If this transmission
fails because of collisions or because it was in the vacuum,
the packet will never be retransmitted.

Our inhibition mechanism is adaptive. It allows for for-
warding of packets many times to recover from collision or
transmitting in the vacuum, as we will see later in Sect. 3.1.2.
Note that forwarding packets many times is very useful in
highly mobile networks, as several transmissions of the same
packet occur in different locations and face different neigh-
bors, and thus, increase the packet spread without adding
redundancy.

With our mechanism, a packet in the epidemic buffer is
retransmitted with a probability that depends on its vRate ,
which we define as:

vRate ← R0a
rcvCount bsendCount

where R0 is the nominal rate in packets per second of the
MAC layer interface and a and b are unit-less constants less
than 1. Thus the virtual rate of a packet decreases exponen-
tially with any send/receive event of the same packet. The
scheduler (see Sect. 2.4) decides which packet is selected
next for transmission by the MAC layer; it serves packets
with rates not exceeding their virtual rates. Hence, a packet
in the epidemic buffer, which has seen many send/receive
events, is scheduled at a very low rate, and it is more likely
that it will be dropped by the buffer management (see Sect. 2.6)
mechanism before being transmitted.

2.3 Spread Control
We argued in the introduction that spread control is needed

to ensure that the transmission rate of any user is satisfac-
tory. Formally speaking, let λ be the user application rate
(generating new information to forward), FF the forwarding
factor, S the spread and R the available transmission rate
over the channel, which includes self and foreign packets .
In a symmetric network where self-packets are transmitted
only once and foreign-packets forwarded FF times we have:

λ + FF ∗ λ ∗ S = R⇔ λ =
R

1 + FF ∗ S
(1)

So the rate-spread trade-off is obvious.
A natural way to limit the spread is to use the classic

TTL, which is the method that comes by default with the
Internet Protocol (IP). When a packet is created by a source
and placed into the epidemic buffer, it receives a TTL value
equal to some positive constant maxTTL . When the packet
is accepted for transmission by the MAC layer, the TTL
field of the transmitted packet is equal to the value of the
TTL field in the packet in the epidemic buffer, minus 1.
The TTL field in the packet stored in the epidemic buffer is
unchanged.

When a packet created by some other node is received for
the first time at this node, the value of the TTL is screened.
If it is equal to 0, it cannot be retransmitted and the packet
is discarded. Otherwise (TTL≥ 1), the packet is stored in
the epidemic buffer, with TTL equal to the value present in

the received packet. When and if the packet is later accepted
for transmission by the MAC layer, the transmitted TTL
field is equal to the stored TTL minus 1, and the stored
TTL is unchanged.

A potential problem with the classic TTL is that it does
not adapt to the node connectivity. In a very dense network,
we should choose a very small value of maxTTL to limit the
number of hops and the spread. In contrast, a large value
of maxTTL is preferable in sparse networks.

We propose an aging-based spread control mechanism that
adapts itself to the node density and traffic load. With this
mechanism, the age attribute is inherited when a packet is
received for the first time and is equal to 0 for a newly cre-
ated clone for a self packet. The age stored in the epidemic
buffer is a floating point number. It increases depending
on the events affecting the packet and the state of the epi-
demic buffer. When transmitting a packet, the complement
to maxTTL(=255) of age , rounded to an integer, is written in
the IPv4 TTL field [resp.IPv6 hop count]. Similarly, when
a packet is received for the first time, its age is extracted
from the TTL/hop count field: age = maxTTL − TTL.

There are three processes that increase the age :

• (hop count): age is incremented by a constant amount
K0 whenever either this packet is transmitted or a du-
plicate is received.
• (real time age): age increases at a constant rate α =

32h−1. We assume that nodes have free running clocks;
there is no need for time synchronization. The con-
stant α is such that a packet lives at most 8 hours.
• (adaptive age): age of all packets stored in the epi-

demic buffer increases by an amount K1 every time a
packet (of an existing or new clone) is received. The
adaptive aging constant K1 is a (possibly non integer)
constant less than K0; its value will be discussed in
Sect. 3. For self-packets with sendCount == 0, this
process is valid up to a threshold that we call Self
Age Threshold (SAT). When the age reaches SAT, it
passes immediately to maxTTL and it will never be in-
cremented by K1 until the packet is transmitted. SAT
is computed through a density detection mechanism,
explained later in this section.

A packet is killed whenever its age is too large to be sent,
i.e. when age ≥ maxTTL + 1 (the +1 is due to rounding).
An exception is made for self-packets with sendCount ==
0, they are not discarded before being transmitted at least
once, even if their age exceeds maxTTL +1. This happens in
very congested networks where self-packets have to stay a
long time in the epidemic buffer before being transmitted.

When a packet is received for a clone that is present in the
epidemic buffer, the TTL of the received packet is ignored
and only the increase by K0 is applied to the age of the
packet already present in the epidemic buffer. This is to
limit the harm of any spurious malimanipulation of TTL by
cheaters [5].

The behavior of hop-count and real-age processes is intu-
itive, whereas the behavior of the adaptive age needs more
explanation. Let N be the number of neighbors a node has,
R0 the MAC nominal capacity in packets/s and γ the chan-
nel utilization. In case where each node is running a greedy
application (which always has a packet to send), the packet
reception rate can be approximated by τr = N

N+1
∗ γ ∗ R0,

assuming fairness in MAC layer. Thus, the adaptive age in-
creases with a rate equal to τ = K1 ∗ τr. As we will see in



Sect. 5, a numerical example could be: N = 240 (traffic jam),
R0 = 83packets/s (MAC rate = 1Mbps and packet size of
1500 bytes), γ = 0.7 and K1 = 0.1. As a result, τ = 5.8s−1.

That is, a packet can stay at most maxTTL
τ

= 44s in the
epidemic buffer before being rejected. Adding the impact
of other age components, a packet stay will never reach
maxTTL

τ
.

A density detection mechanism is implemented in order
to strictly limit the communication to one hop in very dense
networks. It consists of computing SAT as follows:

1. At the beginning: SAT ← SAT0 (SAT0 = 10 as com-
puted in Sect. 3.3):

2. Upon each reception, which is considered as indication
of high node density, SAT is decremented by K1 in
order to limit the number of hops:

SAT ← max(SAT0, SAT −K1)
3. Upon each transmission, which is considered as an in-

dication of a low node density, SAT is incremented by
SAT0 in order to allow more hops:

SAT ← min(maxTTL , SAT + SAT0)

We set SAT0 to 10, which corresponds approximately to a
maximal spread of 100 nodes (see Sect. 3.3). Thus, SAT
will be very close to one of two values in steady state, which
is reached in a few seconds. SAT is very close to SAT0

(=10) in a very dense network where the number of nodes
within transmission reach is larger than 100. Hence, a self
packet will be transmitted with age = maxTTL and thus, we
ensure only one-hop communication. In contrast, SAT is
very close to maxTTL in a sparse network that allows several
hops communication.

2.4 Scheduler
The scheduler decides which packet in the epidemic buffer

is selected for transmission (being passed to the MAC layer).
In order to ensure source-based fairness, the scheduler

serves packets per source IP address, using a processor shar-
ing approach. Furthermore, every packet should be served
at a rate not exceeding its vRate (see Sect. 2.2).

Every packet in the epidemic buffer has a derived attribute
earliestSendTime , equal to the last time the vRate of this
packet was modified, plus 1

vRate . At any time t, a packet
is said to be “eligible” if it has earliestSendTime ≤ t. El-
igible packets with the same source IP address are linked
in one FIFO per source. Each of these FIFOs has an at-
tribute sourceClaim , which keeps track of how much this
source can claim to be scheduled. It is initially 0 and is
decremented by 1 when this source is selected for transmis-
sion by the scheduler. It is incremented by 1 divided by the
number of sources in the epidemic buffer whenever a packet
is scheduled for transmission.

The scheduler issues a blocking send function to the MAC
layer that returns whenever the packet is accepted by the
MAC layer. When this method returns, the scheduler looks
for another packet to deliver to MAC. It selects the source
with the highest sourceClaim that has eligible packets (none-
empty FIFO). In case it does not find eligible packet, it waits
until one becomes available.

It can be seen that this algorithm allocates the trans-
mission opportunities according to a water-filling algorithm,
thus, it approximates an ideal fluid scheduler that would al-
locate rates to sources in a max-min fair way, subject to the
constraint that the rate of a source does not exceed the sum
of the vRates of the packets of this source.

2.5 Congestion Control
Our congestion control consists of adapting the applica-

tion injection rate to the network conditions.
SLEF allows the existence of at most σ self-packets in the

epidemic buffer (we set σ to 2). The application is allowed
to inject a new packet in the epidemic buffer in one of three
cases.

The first is when the number of self-packets in the epi-
demic buffer is less than σ. It happens either at the boot-
strap of the application or when a self-packet is dropped
because it has seen numerous send/receive events and its
age has reached maxTTL . Thus, we assume that this packet
has lived enough to proliferate in the network.

The second case is when the epidemic buffer contains σ
self-packets but, at least one of them has seen a duplicate
forwarded by a neighbor. Indeed, SLEF considers the re-
ceived duplicate as an implicit acknowledgment (Ack) and
that the neighborhood has enough capacity to propagate the
packet in the network. In this case, the acknowledged packet
is dropped when the application injects a new packet.

The third case is also when the epidemic buffer contains
σ self-packets but, this time, at least the sendCount of one of
them has reached 3, which is an indication that the packet
is received by some other node. This is to avoid that the
application is blocked for long time in case SLEF has not
received any implicit Ack for the self-packets existing in the
epidemic buffer. Indeed, it might happen that the implicit
Ack undergoes a collision and it is not received by the source.
Therefore, the source continues transmitting the packet, and
at the same time, inhibiting its neighborhood from forward-
ing it (see Sect. 2.2), and thus, it might never receive an
implicit Ack for this packet. Note that, the sendCount is not
incremented unless we are sure that, with high probability,
a transmission is received by other nodes (as explained later
in Sect. 2.7).

2.6 Buffer Management
The buffer management aims at cleaning the epidemic

buffer to save space for new incoming packets. The cleaning
process distinguishes between foreign and self-packets. A
foreign-packet is dropped when its age becomes larger than
maxTTL . For nodes with very limited buffer size, this may
not be sufficient. If an arriving packets requires space to be
freed, the foreign packet with the largest age is deleted.

As to a self-packet, it is dropped in one of three cases.
The first is when its age exceeds maxTTL and its sendCount is
strictly positive. The second is when it is implicitly ac-
knowledged and the epidemic buffer contains σ self-packets.
This packet is deleted when the application injects a new
packet. The third is similar to the second, except that the
sendCount of the packet reaches 3 instead of being acknowl-
edged.

Applying Little formula [4] on our age based buffer man-
agement, we find that the epidemic buffer size is upper
bounded by maxTTL +1

K1

. To understand this, assume K0 = 0
and a node starts receiving packets, all with age = 0. Thus,
this node starts dropping packets after receiving maxTTL +1

K1

packets as the age of the first packet received is equal now
to maxTTL +1. This node continues dropping packets with a
rate equal to the receiving rate and its epidemic buffer size
becomes constant equal to maxTTL +1

K1

.

2.7 Careful Use of MAC Broadcast
We assume that nodes have a MAC layer capable of receiv-



ing and sending packets in broadcast mode, at a rate that
depends on the network conditions (and is likely to be much
less than the peak transmission rate R0 used above). In
practice, if we use the IEEE 802.11 MAC broadcast, there
is a performance issue, as it does not use the RTS/CTS
exchange and collisions during transmission go undetected.
To avoid this issue, we use the pseudo-broadcast mode pro-
posed in [6], by which a packet is sent to the MAC address
of a neighbor (with RTS/CTS), but can be promiscuously
copied by all systems within range. This effectively solves
much of the performance issue, but may not always be ap-
plicable to our case, since we do not want nodes to spend
time discovering their neighbors’ MAC addresses. There-
fore, we use the following method. The MAC layer has a
node global MAC state information that says whether the
next packet will be sent in pseudo-broadcast, and if so, to
which MAC address, or in broadcast mode. The destination
MAC address in the pseudo-broadcast mode is the source
MAC address of the last received packet. As soon as the
node receives one packet, the MAC state is set to pseudo-
broadcast. The next packet is thus sent with an RTS. If no
CTS is received in response, the MAC layer backs off for
a random time (this is the standard operation of 802.11).
If during the back-off time a packet is received, the packet
is retransmitted (after expiration of the back-off timer) in
pseudo-broadcast mode to the MAC address of the newly
received packet. Else the MAC state moves to broadcast,
and the packet is re-transmitted in broadcast mode.

There remains one issue, however, where a node does not
know if a sent packet was received by another; this might
become a problem in the desert highway scenario, where a
node would repeatedly send a packet in the vacuum, until
it ages out. To avoid this, we use two heuristics when send-
ing in broadcast mode: (1) indication of neighbor presence,
and (2) implicit acknowledgment by reception of duplicate.
(1) consists in building a function around the MAC layer
that says whether, shortly before or after a packet trans-
mission in broadcast mode, the carrier is sensed busy. If
a packet is sent in the former case, or in pseudo-broadcast
mode (some neighbors are around) then sendCount is incre-
mented and a flag we call pendingSendConfirmation is set
to false. Of course, there is no guarantee that a packet
sent in these circumstances is actually received by any one,
but the rules for rate adaptation will make it likely for this
packet to be retransmitted soon if no duplicate is received
(in such a case vRate remains large). If in contrast a packet
is sent in the latter case (presumably because there is no one
around), the flag pendingSendConfirmation is set to true for
this packet, and the packet is rescheduled at a later date
with the same vRate . If a packet of the same clone is
received while pendingSendConfirmation is true, the pend-
ing transmission is considered successful. The condition
pendingSendConfirmation == true can be terminated either
by reception of a duplicate or by a subsequent transmis-
sion that returns an indication of presence or is in pseudo-
broadcast mode.

3. DESIGN TUNING
Through out this section, we derive simple mathemati-

cal equations that describe the behavior of our design and
show the interaction among its different components. This
analysis allows us to find ranges for our design parameters
(a,b,K0, K1, and SAT0) whitin which, the system performs
well in a wide range of settings. We wanted our analysis to

be very simple and intuitive for ease of understanding. Nev-
ertheless, the analysis allows for a deep understanding of the
impact of each parameter and the interaction among the dif-
ferent SLEF components, and delivers well-tuned parameter
ranges.

We consider only two extreme cases, very sparse and very
dense, where we find suitable ranges for the parameters. In
intermediate cases, SLEF is able to adapt itself without any
need to change its parameters. We validate its capacity to
adapt later through simulations (see Sect. 5).

In both scenarios, we assume that each node is running a
greedy application (which always has a packet to send) and
that the network is symmetric. It follows that:

1. The average stay durations of a given packet in each
epidemic buffer are the same.

2. All packets have the same average stay duration in a
given epidemic buffer.

These two points are ensured by the source-based fairness
delivered by the scheduler.

Before starting our analysis, we define our notations:

• R0: Nominal MAC rate [packets/s].
• γ: Channel utilization.
• N : Number of neighbors within the transmission range

of a source (excluding the source).
• S: Spread, including the source itself.
• λ: Application rate.
• H : Minimum number of hops in the absence of colli-

sion; neighbors within the transmission range are con-
sidered as one hop.
• R: MAC effective transmission rate [packets/s]. We

approximate it by:

R =
1

N + 1
γR0 (2)

• τ : Adaptive age increasing rate of a packet in the epi-
demic buffer caused by receive-events. We approxi-
mate it by:

τ =
N

N + 1
γR0K1 (3)

where ( N
N+1

γR0 = N ∗R) is the packet receiving rate.

It is clear that the τ unit is [age units/second].
• DF : Average delay a FIFO undergoes to be served

once. This delay is due to the competition among dif-
ferent FIFOs in the epidemic buffer.
• DM : Average delay a packet undergoes at MAC layer

due to the competition among nodes in accessing the
medium. We have:

DM =
1

R
(4)

• Hr: Required number of hops; the minimum that we
want to ensure in presence of collisions.
• Pc: Probability of collision on one side of a node in the

linear grid of the sparse scenario (see Sect. 3.1).

3.1 Sparse Scenario

W A BLM

One-hop nodes with 

respect to W

Transmission

range of W

Two-hop nodes with 

respect to W

Each node is connected only to its two closest neighbors: for

instance, node W is connected only to nodes L and A. Nodes

A and L are the one-hop nodes of W . Nodes M and B are the

two-hop nodes of W , and so on.

Figure 1: The linear grid considered in the sparse
scenario.



In this scenario, we consider the linear grid in Fig. 1, where
each node has only two nodes within transmission range, the
previous and the next nodes. As this is a sparse scenario,
SAT is equal to maxTTL and does not appear in the analysis
of this section.

In the following, we derive system equations according to
two requirements. The first is that we require H-hop broad-
cast in the absence of collision. The second is that we require
at least Hr hops (Hr < H) in presence of collision, where
packets are forwarded more than once in case of collision.
Then, we finish this section with an interpretation of the
obtained analysis and with a parameter tuning.

Before beginning the equation derivation according to the
two requirements, we show a general constraint that should
be respected in the remaining of this section. In order to
let packets propagate beyond the one-hop nodes, we should
have:

b < a (5)
To understand this, let us consider this example: when W
in Fig. 1 transmits a self-packet, if it is well received by A,
the vRates of this packet will be R0b and R0a at W and A
respectively. If b is larger than a, W retransmits the same
packet before A and the vRates become R0b

2 and R0a
2 at

W and A respectively, and so on. Thus, if Ineq. 5 is not
ensured, the first-hop nodes are inhibited by the source itself
and packets will never escape from them.

3.1.1 Reaching H Hops in the absence of Collision
To reach at least H hops, the age of a packet after (H-

1) hops should be smaller than maxTTL to be able to do the
last (Hth) hop. Thus, the following inequation should be
satisfied:

X1 + X2 + X3 < maxTTL (6)
where the left hand terms are as follows: X1 is the age increase
average of a packet during its stay in the epidemic buffer at
the self-node (the node generating this packet) before being
delivered for the first time to MAC for transmission. We
can write:

X1 ≤ σDF τ (7)
We do not consider the delay in MAC, DM , as the age increase
during that delay is not transmitted to the next nodes. X2

is the age increase average of a packet during its stay at for-
eign nodes (nodes that are not the source of this packet) of
the (H − 1) hops. We have:

X2 = (H − 1)(
1

R0a
+ DF )τ (8)

The delay at MAC layer (DM ) is not considered for the same
reason as above. X3 is the age increase due to the hop-count
component during (H − 1) hops. We have:

X3 = (H − 1)K0 (9)

In the optimal case and in the absence of collision, a node
receives packets from its spread, S, and forwards all of them,
except those belonging to the two farthest nodes in the
spread (as their packets should not go beyond this node),
once and only once. Thus, the number of FIFOs in this
node that have eligible packets and competing to be served
by the scheduler at a given time is upper bounded by (S−2).
Hence, we can write:

DF ≤
1

R
(S − 2) (10)

with

S ≥ 2H + 1

Plugging Ineq. 10 in Ineq. 7 and Ineq. 8, we obtain upper
bounds of X1 and X2. By Using Upper bounds of X1 and
X2, and assuming that we require only H hops (that is S =
2H + 1), we obtain an upper bound of the lower bound of
a, given K0 and K1. In this case we have:

(σ
1

R
(2H −1)+(H−1)[

1

R0a
+

1

R
(2H −1)])τ +(H −1)K0 < maxTTL

(11)

3.1.2 Reaching at Least Hr hops in the presence of
Collision

Consider the two successive neighbors A and B in Fig. 1.
A forwards a foreign packet for the first time to B. At the
beginning, the vRate is R1,0 = R0a. Recall that 1

vRate is
the time a packet waits to be eligible after the last update of
its vRate (due to a send/receive event on the same packet).
After forwarding, the vRate of the same packet at A is re-
duced to R1,1 = R0ab, whereas it is again R1,0 at B if it is
well received. B will forward the packet before that A for-
wards it for the second time, as B has larger vRate . When
A receives the same packet from B, it reduces its vRate to
R2,1 = R0a

2b.
In the absence of collisions, the simplest thing we can

do to avoid redundancy is to select b small enough (that is
R1,1 small enough) so that the packet dies (its age reaches
maxTTL ) before being forwarded for the second time by A.

When the probability of collision is high, the above con-
straint on b does not hold anymore: It is enough that one
collision occurs in one side of the source to stop propagat-
ing the packet beyond the collision place, which results in a
high reduction in the spread, as the probability of collision
is high even at the source level because of the hidden node,
a well known problem with CSMA/CA systems.

To solve this problem, we play with both, R1,1 and R2,1.
On one side, (1) we want R1,1 large enough to allow A to
forward again the packet if no duplicate is received from B,
with the constraint that B corresponds to a hop number less
or equal than the required number of hops, Hr, which is less
than H . On the other side, (2) we want R2,1 small enough
so that the packet dies before being forwarded for the third
time by A. In the following we develop these constraints on
R1,1 and R2,1 separately.

3.1.2.1 Constraint on R1,1.
In the following, we show corresponding equations assum-

ing that the packet escapes from the source on the side we
apply the equations and that the probability that two colli-
sions occur on the same packet on the same side of a node
is negligible. We write this condition as:

Y1 + Y2 + Y3 + Y4 < maxTTL (12)

where the left hand terms are as follows: Y1 is the age in-
crease average of a packet during its stay in the epidemic
buffer at the self-node until being delivered to MAC for
transmission for the first time. We consider only the first
transmission by a self-node. Indeed, if W is the self-node
and it transmits a self-packet, this transmission faces one of
three cases: (1) No collision on both sides and the packet is
well received by A and L. (2) A collision occurs on one side,
say L-side, then A receives well the packet and forwards it
later, which consists an implicit Ack for W , which will drop
the packet to allow the application to inject a new one (see
Sect. 2.5). We neglect the case where the implicit Ack un-
dergoes a collision from A to W , as this makes appear P 2

c in
the inequation (first, collision from W to L and, then, from



A to W ) and P 2
c is too small compared to Pc. (3) The self-

packet undergoes a collision on both side, which happens
with negligible probability. Thus, all retransmission possi-
bilities of self-packet are negligible. Therefore, we consider
only the first transmission. Similarly to X1, we have:

Y1 ≤ σ
1

R
(S − 2)τ (13)

The delay at MAC layer (DM ) is not considered for the same
reason as above. Y2 is the age increase average of a packet
during its stay until being delivered to MAC for transmission
the first time at foreign nodes of the (Hr − 1) hops. Thus,
Y2 consists of the delay because of the vRate , which is 1

R1,0
,

and DF . This latter is always upper bounded by (S − 2) 1

R
,

as the average length of FIFOs is 1. Indeed, our congestion
control mechanism together with the source-based fairness
of the scheduler ensure that the waiting time average of a
packet in the FIFO is less than or equal to the inter-arrival
time average of new packets: The application does not inject
a new packet unless the previous one is implicitly acknowl-
edged and all the FIFOs have the same scheduling share in
all nodes. Applying Little formula [4], we obtain a FIFOs
length average equal to 1. We can write:

Y2 ≤ (Hr − 1)(
1

R0a
+

1

R
(S − 2))τ (14)

Y3 is the age increase average of a packet during its stay
after being delivered to MAC for the first transmission at
foreign nodes of the (Hr − 1) hops until being delivered to
MAC for the second transmission, because of collision. We
can write:

Y3 ≤ Pc(Hr − 1)(
1

R0ab
+

1

R
(S − 2) +

1

R
)τ (15)

Note that Y3 considers DM that corresponds to the first
transmission. Y4 is the age increase due to the hop-count
component during (Hr − 1) hops. We have:

Y4 = K0 + (1 + Pc)(Hr − 2)K0 (16)

The first right-hand term corresponds to the transmission
by a self-node, it does not include Pc because we consider
only the first transmission (as discussed above). Finally, by
using upper bounds of Y1, Y2 and Y3 and plugging Ineq. 13,
Ineq. 14, Ineq. 15 and Ineq. 16 in Ineq. 12, this gives an upper
bound of the lower bound of b, when other parameters are
specified. Ineq. 12 becomes:

σ
1

R
(2H − 1)τ +

(Hr − 1)(
1

R0a
+

1

R
(2H − 1))τ +

Pc(Hr − 1)(
1

R0ab
+

1

R
(2H − 1) +

1

R
)τ +

K0 + (1 + Pc)(Hr − 2)K0 < maxTTL (17)

3.1.2.2 Constraint on R2,1.
If this constraint is satisfied for the one-hop nodes, it is

satisfied for farther nodes. Therefore, we consider only the
one-hop nodes in the following. We write this condition as:

Z1 + Z2 + Z3 + Z4 + Z5 + Z6 > maxTTL (18)

where the right-hand terms are as follows: Z1 is the age increase
average of a packet during its stay in the epidemic buffer at
the self-node (say W in Fig. 1) until being delivered to MAC
for transmission for the first time. We have:

Z1 = σDF τ (19)

Z2 is the age increase average of a packet during its stay in
the one-hop node (say A in Fig. 1) until being transmitted
for the first time by the same node. We have:

Z2 = (
1

R0a
+ DF + DM )τ (20)

Z3 is the age increase average of a packet during its stay in
the one-hop node (A) after being transmitted for the first
time at the one-hop node (A) until being transmitted for
the first time at the two-hop node (B in Fig. 1). We have:

Z3 = Z2 (21)

Z4 is the age increase average of a packet during its stay in
the one-hop node (A) after being transmitted for the first
time at the two-hop node B (and then received by the one-
hop node (A) that updates its vRate ) until being delivered
to MAC for transmission for the second time at the one-hop
node (A). We have:

Z4 = (
1

R0a2b
+ DF )τ (22)

Z5 is the age increase due to the hop-count component be-
cause of transmissions at self and one-hop nodes. We have:

Z5 = 2K0 (23)

Z6 is the age increase due to the hop-count component when
the one-hop node (A) receives the transmission of the two-
hop node (B). We have:

Z6 = K0 (24)

Plugging Ineq. 19 till Ineq. 24 in Ineq. 18 while neglecting
DF and DM , gives a lower bound of the upper bound of b
when other parameters are specified. That gives:

(
1

R0a
+

1

R0a
+

1

R0a2b
)τ + 3K0 > maxTTL (25)

3.1.3 Analysis Interpretation
In this section, we interpret the three main inequations

Ineq. 11, Ineq. 17 and Ineq. 25, and we show how they can
be used to find appropriate ranges for the parameters. Re-
placing τ and R in Ineq. 11, Ineq. 17 and Ineq. 25 by their
expressions in Eq. 2 and Eq. 3, we get respectively:

σNK1(2H − 1) +

(H − 1)[
γNK1

a(N + 1)
+ NK1(2H − 1)] +

(H − 1)K0 < maxTTL (26)

σNK1(2H − 1) +

(Hr − 1)[
γNK1

a(N + 1)
+ NK1(2H − 1)] +

Pc(Hr − 1)[
γNK1

ab(N + 1)
+ NK1(2H − 2)]τ +

K0 + (1 + Pc)(Hr − 2)K0 < maxTTL (27)

(
2

a
+

1

a2b
)

N

N + 1
γK1 + 3K0 > maxTTL (28)

We notice that Ineq. 26, Ineq. 27 and Ineq. 28 are inde-
pendent of R0, and thus this analysis is applicable to any
MAC layer with any nominal rate.

Ineq. 26 gives a lower bound of a in order to ensure H
hops in the absence of collisions. This inequation should
be combined with the constraint 0 ≤ a ≤ 1. Fig. 2-(a)
shows this bound according to H for different combinations
of K0 and K1. The asymptotes in Fig. 2-(a) correspond to
the maximum number of hops reachable for a given combi-
nation (K0, K1), which is a decreasing function of K0 and



0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Hop count: "H"

Lo
w

er
 b

ou
nd

 o
f "

a"

 K
0
 = 25

 K
1
 = 0.1

 K
0
 = 25

 K
1
 = 0.02

 K
0
 = 5

 K
1
 = 0.1

K
0
 = 5

K
1
 = 0.02 

0.02
0.04

0.06
0.08

0.1

5
10

15
20

25
0

2

4

6

8
x 10

−3

"K1""K0"

Lo
w

er
 b

ou
nd

 o
f "

a"

0.05
0.1

0.15
0.2

10
20

30

5

10

15

20

25

30

"K1""K0"

H
op

 c
ou

nt
: "

H
"

(a) (b) (c)

The lower bound of a is drawn according

to H for different combinations (K0, K1).

The asymtotes correspond to the maximal

value of H reachable for a given combina-

tion of (K0, K1).

The lower bound of a is drawn as a func-

tion of K0 and K1. H is set to 8, which is

reachable with the used ranges of K0 and

K1.

H is drawn as a function of K0 and K1

for a equal to 0.1 . This value of a cor-

responds to a H very close to the asym-

tote (see Fig. 2-(a)), which is the maxi-

mal H reachable for a given combination

of (K0, K1).

Figure 2: Relations among a, H, K0 and K1 based on Ineq. 26.

K1: when K0 increases, the maximum number of hops de-
creases, as it is limited by maxTTL

K0
, and when K1 increases,

τ increases and the packets age out faster. In Fig. 2-(b), we
apply Ineq. 26 and show the lower bound of a as a function
of K0 and K1. We set H to 8, which is reachable with the
shown ranges of K0 and K1. The lower bound of a is an
increasing function of K0 and K1. Indeed, with increasing
K0 and K1, a packet ages faster and we need to increase its
vRate in order to ensure the same number of hops.

From Fig. 2-(a), we notice that a = 0.1 corresponds to
a H very close to the asymptote with the used ranges of
K0 and K1. Thus, we fix a to 0.1 in the remaining of the
paper. Consequently, H is tuned through the 2 parameters
K0 and K1 and by applying Ineq. 26. This tuning is shown
in Fig. 2-(c).

Once parameters a, H,K0 and K1 are fixed, we apply
Ineq. 27 and Ineq. 28 to find lower and upper bounds of
b, respectively. Fig. 3 shows that these bounds are increas-
ing functions of K0 and K1. Also, as it is expected, these
bounds are more sensible to K1 than K0. Indeed, b is re-
lated to the stay duration of a packet in a node, and it is
K1 that increases the packet age during this stay.
3.2 Dense Scenario

Through this analysis, we aim at tuning SAT0. We want
to strictly limit the broadcast to one-hop when the number
of neighbors within the transmission range exceeds N∗. In
this case, a node transmits only self-packets and the appli-
cation rate in this case, λ∗, is equal to the transmission rate
R∗. Thus, the FIFO belonging to self-packets is served on
average each 1

R∗
seconds. During this time, the age increase

of a packet in the FIFO is 1

R∗
τ = N∗K1. Thus, we set SAT0

to N∗K1. If R > R∗, e.g N < N∗, SAT is incremented by
SAT0 = N∗K1 each 1

R
seconds, but decreased linearly dur-

ing this time by 1

R
τ = NK1 < N∗K1. Thus, SAT continues

increasing on average with a slope equal to (N∗

− N)K1R
until it reaches maxTTL (see Sect. 2.3). In contrast, if R < R∗,
e.g N > N∗, SAT is decremented more than incremented
and thus, SAT is kept very close to SAT0. The behavior of
SAT is shown in Fig. 4 for N > N∗ and N > N∗ where it
shows a very short transient phase. We require that N∗ is
equal to 100. Hence, we have: SAT0 = 100K1.

3.3 Default Values
In this section, we give default values to the SLEF param-

eters based on the above analysis. We set K0 to 25, as we

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

Time [s]

SA
T

SAT Behavor for N * = 100

N = 50

N = 150

Figure 4: SAT behavior according to the density
detection mechanism: N∗ = 100, K1 = 0.1 and SAT0 =
10. We assume 802.11 MAC layer with a nominal
rate of 1Mbps and a packet length of 1500 bytes.

want to allow at most 10 hops. We set a to 0.1, which corre-
sponds to a number of hops, H , very close to the maximum
reachable for a given combination (K0, K1) (see Fig. 2-(a)).
As to b, if it is too small, the second forwarding of a packet in
case of collision is largely delayed. In order to avoid this de-
lay, b should be very close to the upper bound in Fig. 3-(b).
We choose the value 0.01. K1 is set to 0.1, which is in accor-
dance with the selected value of b (see Fig. 3). Furthermore,
with K1 = 0.1, the maximum epidemic buffer size needed is
maxTTL

K1
= 2550 (see Sect. 2.6), which is a reasonable size.

Finally, for K1 = 0.1, SAT0 is equal to 10, as discussed in
Sect. 3.2. An application might need to change only K0

and K1 to adjust the spread-rate balance (see Sect. 4) while
other parameters are fixed.

4. SPREAD-RATE BALANCE
One of the main features of SLEF is to limit adaptively

the spread in order to keep some balance between rate and
spread (see Eq. 1). However, an application might need to
move this balance in favor of one or the other. For instance,
an application might have a very small rate but it requires
a very large spread. In order to adjust this balance, SLEF
offers to the application two degrees of freedom, which are
the two main parameters of the spread control function: K0

and K1. These two degrees play complementary roles: One
is dominant in some network settings, the other is dominant
in those settings just opposite.

K1 is related to the adaptive age component. This com-
ponent is incremented during the stay of a packet in the
epidemic buffer by K1 for any receive event. The longer the
packet stays before being transmitted (or forwarded), the
higher its adaptive age is and the less the spread is. Thus



0

0.1

0.2

5
10

15
20

25
0

1

2

3
x 10

−3

"K1""K0"

Lo
we

r b
ou

nd
 o

f "
b"

0

0.1

0.2

5
10

15
20

25
0

0.01

0.02

0.03

0.04

"K1""K0"

Up
pe

r b
ou

nd
 o

f "
b"

(a) (b)

Figure 3: Bounds on b drawn according to K0 and K1. These bounds are obtained through Ineq. 27 for (a)
and Ineq. 28 for (b). a = 0.1, H = 8 and Pc = 0.1 .

the effect of K1 is dominant when this stay is long. This
happens in two cases: (1) either the traffic load is very high
and the number of competing packets in the epidemic buffer
is very large, or/and (2) the network is dense and the num-
ber of nodes competing to access the medium is large. In
both cases, a packet transmission is delayed and the packet
might be dropped before being transmitted or, if transmit-
ted, it will have a large age that does not allow it to go very
far. Hence, the spread is limited by mainly the adaptive age.
Consequently, playing with K1 in these settings indeed has
an impact on the spread-rate balance.

In contrast, K0 is dominant in sparse networks, in partic-
ular with low traffic load. In this case, the spread is mainly
limited by the hop-count component of the age. That is,
the spread corresponds to a number of hops close to the
maximum reachable (maxTTL

K0
).

An application that has to adjust the spread-rate balance
according to its needs may proceed as follows: Specify the
number of hops it needs in a sparse network and set K0

accordingly (K0 ≤
maxTTL

number of hops needed
). Then, it has to

decrease or increase the default value of K1 in order to adjust
the balance in dense congested networks.

5. DESIGN VALIDATION
We validate our design through simulation. Our simu-

lations are carried out through JIST-SWANS [2], an open
source simulator for ad hoc networks. The MAC layer is
a very accurate implementation of 802.11b in DCF mode
with the basic rate of 1 Mbps, as we transmit in broadcast
(pseudo-broadcast). As for the radio, we use the capture
effect to approach the real WIFI cards, which all implement
it [7]. We consider fading channels with free space path-loss.

We applied SLEF to vehicular networks. We use an ex-
tension of JIST-SWANS called STRAW [3], which simulates
the vehicular traffic and provides a mobility model based on
the operation of the real vehicular traffic. We simulate vehi-
cles on an urban road with two lanes in each direction and a
speed limit of 80 Km/h. Results for other scenarios (static
and different mobility models) are omitted, as they show the
same behavior.

Throughout our simulations, we adopt the default values
set in Sect. 3.3, unless it is indicated elsewise. Our results
focus mainly on (1) the adaptation of the spread to the rate,
(2) the adaptation of the forwarding factor to the density,
(3) the need of the pseudo-broadcast and (4) the spread-rate
balance.

In order to cover these different aspects, we use the fol-
lowing metrics:

1. Rate: This is the application injection rate in packet/s.
We consider a packet size of 1500 bytes.

2. Spread: This is already defined in this paper. It is the
average number of nodes that receives a packet.

3. Forwarding factor: Again, this is already defined in
this paper. It is the number of times a node forward
a packet. We compute it as the number of duplicates
circulated in the network divided by the spread.

4. Channel utilization: We use this metric only with the
traffic jam (very dense network). It is approximated
by the receiving rate divided by the nominal transmis-
sion rate. Note that, the receiving rate considers only
successfully received packets. The channel utilization
should include the successful transmission rate. We
neglect this as the network is very dense and it is too
small compared to the receiving rate.

5.1 Adaptation of the Spread to the Rate

0.1 0.15 0.2 0.25 0.3
22

24

26

28

30

32

34

36

38

Rate [packets/s]

Sp
re

ad
 [v

eh
icl

es
]

Figure 5: SLEF adapts the spread to the rate. This
equivalent to an adaptive TTL. The curve corre-
sponds to the highway scenario with a vehicle den-
sity of 12.5 vehicles/Km.

In this scenario, we consider a fixed vehicle density of
12.5 vehicles/Km. The application is not greedy. It in-
jects packets with a fixed rate that ranges from 0.1 till
0.3 packets/s. This range is less than the maximal rate al-
lowed for this scenario by the congestion control mechanism
of SLEF, which is around 0.4 packets/s (obtained by simu-
lation). Fig. 5 shows the spread according to the rate. As it
is expected, SLEF adapts the spread to the traffic load: it
decreases the spread with increasing rate. This is equivalent
to adapting the TTL.

5.2 Adaptation of the Forwarding Factor to
the Density

An efficient inhibition mechanism reduces the forwarding
factor with increasing node density in order to limit redun-
dancy. This is ensured by SLEF and shown in Fig. 6, where
each node runs a greedy application and thus, it transmits
at the maximal rate allowed by the congestion control mech-
anism.

5.3 Pseudo-Broadcast



0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Vehicle Density [vehicles/Km]

Fo
rw

ar
din

g 
Fa

cto
r

SLEF adapts the forwarding factor to the node density in order

to mitigate redundancy. This is the achievement of the inhibition

function. The curve corresponds to the highway scenario with a

vehicles running greedy applications. Thus, the rate corresponds

to the maximal allowed by the congestion control mechanism that

SLEF implements.

Figure 6: Forwarding factor vs vehicle density.

Normal broadcast Pseudo-broadcast

Channel utilization 0.02 0.7

Table 1: Channel utilization in a traffic jam.

In order to show the need of pseudo-broadcast, we have
chosen a very challenging scenario: a traffic jam where each
vehicle has around 240 others within its transmission range
and runs a greedy application. The results are shown in
Table 1. The pseudo-broadcast solves very efficiently the
medium access problem. It achieves a channel utilization
of 0.7, whereas it is less than 0.02 with the normal MAC
broadcast, which does not implement a mutual exclusion
mechanism.

5.4 Spread-Rate Balance

0 0.1 0.2
102030

0

50

100

150

200

K
1

K
0

Sp
re

ad
 [v

eh
icl

es
]

(a)

0

0.1

0.2

10

20

0

0.05

0.1

0.15

0.2

K
1

K
0

Ra
te

 [p
ac

ke
ts

/s
]

(b)

Figure 7: Spread-rate balance: This balance is ad-
justed through K0 and K1. This is the highway sce-
nario with vehicle density of 12.5 vehicles/Km. Each
node runs a greedy application.

In this section, we validate what is discussed in Sect. 4
about adjusting the spread-rate balance by showing the im-
pact of K0 and K1 in a sample scenario. The scenario is the
highway with vehicle density of 12.5 vehicles/Km. Each
node runs a greedy application. The results are drawn in

Fig. 7. By increasing K0 and K1, the application increases
the rate on the expense of the spread.

6. CONCLUSIONS
We propose SLEF, a complete practical middleware for

multi-hop broadcast in ad hoc networks. It adapts itself to
the variability of the ad hoc network environments. This
includes the implementation of an adaptive TTL (through
the spread control), an adaptive forwarding factor (inhibi-
tion) and congestion control. In addition, SLEF achieves
buffer management, an efficient use of the MAC broadcast
and source-based fairness. All these functions are achieved
using only local information to the node and do not need
any knowledge about the network topology. We derive sim-
ple system equations in order to tune the SLEF parame-
ters, and we deliver default values for them. We validate
our design through simulations applied on different vehicu-
lar network scenarios ranging from very sparse (DTN like)
to very dense (traffic jam). SLEF shows a good adaptation
and succeeds in avoiding congestion collapse, even in the
extreme scenarios where other multi-hop broadcast schemes
fail. Finally, SLEF offers to the application two parameters
to adjust the spread-rate balance if it needs to depart from
the default values.

7. REFERENCES
[1] http://icawww1.epfl.ch/haggle/slef.html.

[2] Java in simulation time / scalable wireless ad hoc
network simulator , jist/swans,
http://jist.ece.cornell.edu/.

[3] Street random waypoint / vehicular mobility model
for network simulations , straw,
http://www.aqualab.cs.northwestern.edu/projects/straw/.

[4] J.-Y. L. Boudec. Performance evaluation.
http://ica1www.epfl.ch/perfeval/printMe/perf.pdf.

[5] A. El Fawal, J.-Y. Le Boudec, and K. Salamatian.
Vulnerabilities in Epidemic Forwarding. In The First
IEEE WoWMoM Workshop on Autonomic and
Opportunistic Communications (AOC2007), 2007.

[6] S. Katti, D. Katabi, W. Hu, H. Rahul, and
M. Medard. The importance of being opportunistic:
Practical network coding for wireless environments. In
Allerton conference, 2005.

[7] A. Kochut, A. Vasan, A. U. Shankar, and
A. Agrawala. Sniffing out the correct physical layer
capture model in 802.11b, berlin, germany. In IEEE
International Conference on Network Protocols (ICNP
04), pages 252– 261, October 2004.

[8] S.-D. Modiano, E. and G. Zussman. Maximizing
throughput in wireless networks via gossiping. In ACM
SIGMETRICS / IFIP Performance’06, June 2006.

[9] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu.
The broadcast storm problem in a mobile ad hoc
network. In Mobicom, Seattle, Washington, United
States, August 15 - 19, 1999, pages 151–162.

[10] T. Spyropoulos, K. Psounis, and C. Raghavendra.
Spray and focus: Efficient mobility-assisted routing for
heterogeneous and correlated mobility. In Proceedings
of IEEE PERCOM, on the International Workshop on
Intermittently Connected Mobile Ad hoc Networks
(ICMAN), March 2007.




