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ABSTRACT 

Node location information is essential for many applications in 

Autonomic Computing.  This paper presents and evaluates a new 

cooperative node localization scheme. We apply an efficient non-

linear data mapping technique, the Curvilinear Component 

Analysis (CCA), to produce accurate node position estimates 

employing only a small number of anchor nodes. Being a light-

weight neural network, CCA has the learning ability to self-

organize maps of nodes, and to project node coordinates with 

improved accuracy and efficiency. We present the distributed 

CCA-MAP scheme that derives node locations in either range-

based or range-free scenarios. Unlike other schemes, no further 

refinement is needed to improve the position estimates generated 

by the devised CCA projection method. Through extensive 

simulation studies, we evaluate the performance of our scheme for 

both regular and irregular networks of different configurations. 

Comparisons with other related localization schemes are also 

presented, demonstrating the improved location estimate accuracy 

and performance efficiency.   

Keywords 

Localization, nonlinear mapping, simulations, curvilinear 

component analysis. 

1. INTRODUCTION 
The vision behind autonomic computing is to reduce system 

management complexities to drive computing into a new era. We 

think that the most likely network architectures will have a high 

percentage of embedded, wireless computing/communication 

devices. One key piece of infrastructure support in such networks 

is localization. 

In pervasive networks, location information is essential to 

identify, for example, where sensor readings originated from and 

to track events and targets. Location information has numerous 

other applications such as support of context-based routing 

protocols, geographic routing protocols, location-aware services, 

and enhanced security protection mechanisms.  

As many devices will be embedded in real-world artifacts, 

localization solutions based on GPS or other external mechanisms 

will be problematic. Software-based solutions typically require 

nodes with known locations, called anchor nodes. To reduce the 

complexity of operating the network infrastructure, we are looking 

for solutions that do not require a high percentage of such anchor 

nodes.  

Similarly, ranging measurements will be utilized where 

appropriate to increase the distance reading accuracy, applying 

spread spectrum or UWB technologies [9]. However, distance 

measurements may not be relied on in all cases, as complex terrain 

can still impede the measurement accuracy.. The localization 

solution of interest here assumes thus the following 

characteristics: that it requires only a small number of anchor 

nodes to facilitate the deployment process, and that it achieves 

high levels of position accuracy with or without the assistance of 

range measurements.   

Recently, various localization schemes have been proposed 

in the literature. Localization algorithms based on 

Multidimensional Scaling (MDS) [11][23][24][25][27] are 

examples of such an approach for deriving sensor node locations, 

which can be computed in a distributed manner in either range-

based or range-free conditions with a small number of anchor 

nodes, (e.g., at least 3 or 4 anchor nodes in the 2D or 3D space). 

This class of algorithms also delivers higher node position 

accuracy (<20%r where r is the average radio signal radius) when 

compared with many other approaches. MDS is a non-linear 

mapping technique applying dimension reduction and data 

projection that transforms proximity information into a geometric 

embedding [2]. While preserving the distances between data 

points and reducing the data dimension from n to two (e.g., 2D 

space) or three (e.g., 3-D space) as required, MDS, similar as 

other non-linear reduction algorithms, incurs fairly high 

computational cost of )( 3nO and suffers quite often from local 

minima. As pointed out in [25], MDS is often good at finding the 

right general layout of the network, but not the precise locations 

of nodes. In [11][23][24][25][27], a refinement step using least-

square minimization over the results obtained from MDS was 

applied to achieve better location accuracy.     

In this paper, we apply an efficient non-linear mapping 

technique, the Curvilinear Component Analysis [5], to compute 

the location coordinates of sensor nodes and other network 

elements connected wirelessly. CCA is a self-organized neural 

network performing vector quantization and non-linear projection 

for dimensionality reduction of multidimensional data sets. Unlike 

general neural networks, CCA preserves the distances between the 
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data points of the input space when generating output data space, 

and exhibits much higher efficiency in its unfolding of the 

dimensions. The non-linear projection capability of CCA is 

similar in its goal to other nonlinear mapping methods, such as 

MDS [2] and Sammon's nonlinear mapping (NLM) [21], in that it 

minimizes a cost function based on interpoint distances in both 

input and output spaces. However, CCA outperforms these 

algorithms in several aspects, making it very useful for node 

localization. CCA overcomes fairly well the local minima problem 

and delivers much improved accuracy. In our experiments, CCA 

was found to map node coordinates with high accuracy without 

any additional refinement process. Secondly, CCA is more 

computationally efficient, with a cost of only O(N) per cycle 

compared to O(N2) of other non-linear reduction methods and 

thus results in a much faster data mapping process. In this paper 

we present a novel approach, applying CCA to localize wireless 

sensor nodes, and demonstrate the improved accuracy and 

efficiency compared with other solutions.  

  The rest of the paper is organized as follows: Section 2 

presents a brief overview of related work on localization, in 

particular in the area of Wireless Sensor Networks. Section 3 

discusses CCA and presents our localization scheme that applies 

CCA; Section 4 presents the performance results and 

comparisons; and Section 5 concludes the paper. 

2. RELATED WORK 
Various node localization schemes have been proposed in the 

literature [3][6][13][15][19][20][22][25]. Based on whether the 

algorithm uses absolute measurements of node distances or 

alignment angles in the localization process, the solutions can be 

classified as range-based [4][15][18][20][22] and range-free 

[3][10][13][16][23]. While range-based schemes use the absolute 

measurements in solving the location coordinates, range-free ones 

do not. It is generally true that range-based solutions often 

produce finer resolution results when the range errors are kept 

small. More accurate ranging technologies such as UWB [9] are 

found to offer promising measurement results. On the other hand, 

ranging techniques are very environment dependent, e.g., indoor 

vs. outdoor, path obstacles, etc., and require (additional) hardware 

cost. When measurements are not accurate, range errors may also 

have an extended impact when accumulated during the position 

calculations [16]. In our work, the latest ranging technologies may 

be explored to generate measurement results as accurately as 

possible; nevertheless a solution that can be flexibly applied in 

both range-based and range-free scenarios is our preferred choice.  

An important aspect of any localization scheme is its 

computing algorithm, which is the focus in this paper. Position 

computation often applies trilateration, triangulation, or 

multilateration [22]. In a straightforward way, direct reach of at 

least three anchor nodes is needed for a node to compute its 

location coordinates [10][15][22]. In computing the position 

using any of the above methods, algorithms often employ 

iterations [14][22], starting from the anchor nodes in the network 

and propagating their locations to all other free nodes, which use 

this information to calculate their positions. One of the problems 

of this approach is its low success ratio when the network 

connectivity level is not very high or when not enough well-

separated anchor nodes exist in the network. To localize all the 

nodes, these algorithms quite often require that 20-40% of the 

total nodes in the network be anchor nodes [13][16], unless 

anchor nodes can increase their signal range [10]. To solve the 

problem of requiring a large number of anchor nodes, some 

approaches apply limited flooding to allow nodes to “hear” 

anchor nodes multiple hops away, and to use an approximation of 

shortest distances over communication paths as the Euclidean 

distance [16]. However, such hop based distance approximation 

works rather poorly in anisotropic networks, introducing large 

position errors [13][16]. In many scenarios, they do not seem to 

significantly reduce the number of required anchor nodes 

[13][16]. High network connectivity levels required for the 

success of such algorithms also give rise to practical concerns, as 

dense neighborhoods often severely impede radio network 

throughputs. Additionally, the accumulated location errors also 

need to be well dealt with [14] to maintain the accuracy of 

position estimates. Among such schemes, the one proposed in 

[14] reported one of the best results, where the position estimation 

error can be reduced to about 5%r in more than 6 iterations when 

the network connectivity level (number of node neighbors) 

exceeds 16 and 10% of nodes are anchors.  

Cooperative localization schemes take a quite different 

approach, formulating the localization problem as a joint 

estimation problem. Instead of using only constraints between the 

sensor nodes and anchor nodes, these solutions consider all 

constraints on inter-node distances and apply optimization 

techniques to derive location coordinates. Algorithms based on 

rigidity theory are one example [8][19]. In [19], a heuristic is 

employed to create a well-spread, fold-free graph layout that 

resembles the desired network graph. Then a mass-spring model 

analogy is used to optimize the localization estimates using the 

minimum energy stage of the mass-spring model. Such an 

optimization problem is NP-hard and the heuristic needs further 

studies to prove its convergence [19]. In [8], the conditions 

required for networks to be localizable using rigidity theory were 

investigated and a subclass of the grounded graphs were identified 

which can be computed efficiently. However, the focus was to 

find the network formation that can be computed. The overall 

performance of the algorithm for different network formations 

was not well reported. In [11][23-25][27], connectivity constrains 

were used to calculate node positions applying multidimensional 

scaling (MDS). In [1][6], inter-node distance measurements are 

modeled as convex constraints, and linear programming and semi-

definite programming (SDP) methods were adopted to estimate 

the location of free nodes. These cooperative localization methods 

are often quite powerful as they require only a small number of 

anchor nodes and produce highly accurate results. However, such 

algorithms are often computationally intensive.  

The localization approach proposed in this paper belongs to 

the class of cooperative localization, making joint location 

estimation using global formulations of inter-node distance 

constraints. Compared with the existing cooperative algorithms, 

our approach delivers improved position accuracy and 

computational efficiency.       

3. DISTRIBUTED CCA LOCALIZATION 
We first briefly discuss here the non-linear mapping method of 

Curvilinear Component Analysis (CCA) [5]. 

3.1 Non-linear Projection Using CCA 

Given N input vectors { }Nixi ,...,1; =  where each vector ix  is 

of n dimensions, CCA looks for N output vectors 

{ }Niyi ,...,1; = , where each iy  is of s dimensions ( ns < ). 



Additionally, the distance between input vector ix  and jx is 

preserved between output pair iy and jy . That is, given the 

Euclidean distance between ix 's as: )( , jiij xxdX = and the 

corresponding distance in the output space ),( jiij yydY = , 

CCA pushes 
ijY  to match 

ijX  for each possible pair ( )ji,  while 

minimizing a cost function 

),()(
2

1 2
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            (1) 

where ),( yijYF λ is a weighing function, often chosen as a 

bounded and monotically decreasing function, in order to favor 

local topology conservation (such as that in neural networks of 

SOM (Self-Organizing Map)) [5]. Decreasing exponential, 

sigmoid, or Lorentz functions are all suitable choices for F.  

The computing efficiency of CCA arises from its 

minimization process of the cost function (1). Compared to other 

methods such as the stochastic gradient descent ( Ey ii −∇≈∆ ) 

or the steepest gradient descent where one vector iy is moved 

every time according to the sum of every other 
jy 's influence, 

CCA temporarily pins one iy and moves all the other jy around, 

without regard to interactions amongst the jy . This not only 

converges the computation much faster, but also increases the 

probability to escape from local minima of E [5]. The update for 

each cycle has the following simple expression: 
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Similar to stochastic gradient methods, )(tα decreases with 

time. This rule for update in each cycle is much lighter than 

stochastic gradient as only the distances from node i to the others 

need to be computed, instead of all the 2/)1( −NN  distances 

in both the input and output spaces. For an adaptation cycle of all 

nodes (except i), the complexity is only in O(N) instead of O(N2) 

as in most of the NLM algorithms.   

3.2 Mapping Node Coordinates  
From the above descriptions, the CCA algorithm preserves the 

distances between every two data points in the input data space 

while generating the output data set with each data point having a 

reduced dimension. The localization problem can then be 

formulized as the following: 

Given a distance matrix 
)( NND ×
of N nodes, find the 

coordinates of all the points to achieve: 
2

,

)(min ij

ji

ij pd −∑   for i,j=1,2,…N 

where  

- dij is the measured/known distance between node i and j, and 

- pij is the distance between node i and j computed using the 

calculated position coordinates of i and j.  

We take the distance matrix 
)( NND ×
of N nodes as the input data 

set, i.e., 
)()( NNNN Dx ×× = . Each vector in the input space is thus 

of N dimensions. The output data set contains the N vectors each 

reduced to a dimension of 2 (or 3). Without losing the generality 

of applicability to both 2D and 3D spaces, we take dimension of 2 

in the following discussions. Thus the output data set is denoted 

as )2( ×Ny which is in fact the coordinate matrix of the N nodes. 

We force the inter-vector distance in the input data space to 

be 
)( NNij DX ×= , even though 

)( NND ×
is not the real distance 

between vectors in the input data set )( NNx × . Nevertheless, the 

algorithm works well with such a forced distance value.  

In our CCA algorithm, a decreasing exponential function is 

selected as:
)(

),(
t

Y

YF
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ij e
λ

λ
−

= , where )(tλ also decreases with 

time. Then our CCA algorithm runs in the following two simple 

steps: 

(1) Set the initial output estimation of )2( ×Ny  using the mean 

values of the first two columns of the input data set )( NNx × , 

adjusted by a uniformly randomized standard deviation of the 

same column.  

(2) In each cycle, select node i and compute for each node j 

)( ij ≠ , the new )1( +ty j
from the current value of 

)(ty j using: 
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The following function (equation (4)) can be used to 

implement (i.e., using να = and νλ =  in (4) below) )(tα and 

)(tλ , though other similar functions can be selected instead: 
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where c is the number of total computing cycles, which is often 

also called the training length in CCA. Sample values for 

experiments can be chosen as: 5.0)0( =α , 100/)0()( αα =c , 

{ } 3,...,,max)0( 21 ×= Nstdstdstdλ  and 01.0)( =cλ , where 

istd  is the standard deviation for the ith column of the input data 

set 
)( NND ×

. 

Table 1 below illustrates the data dimension reduction power 

of CCA. Three types of random maps of 100, 200 and 300 nodes 

in a 1010 × square area are used in the computation. In the maps, 

all nodes are randomly scattered with the connectivity level of 

about 10. The input data matrices, i.e., the distance matrices are 

thus of sizes (100x100), (200x200) and (300x300). The output 

matrices are of size (100x2), (200x2) and (300x2), respectively, to 

conform to the point coordinates in the map of 100, 200 and 300 

nodes. The CCA algorithm was run using Matlab V7.2 on a 

Pentium® M processor of 1.60GHz with 1G RAM. More than 10 



maps of each size are computed for the experiments. The results 

show remarkable accuracy for relatively short execution times. 

The median errors in Table 1 record the average median error of 

the node coordinates obtained by the algorithm. Here we only 

study and verify the CCA algorithm for reducing the dimension of 

the distance matrix to obtain node coordinates. Practically, it is 

almost impossible to obtain the entire distance matrix in the 

network to perform such centralized computation. In the next 

subsection a distributed map algorithm will be applied with the 

CCA method, which is the more practical solution of our interest.  

 

Table 1: Experiments Using CCA to Compute Node 

Coordinates from Distance Matrix 
100 nodes (input data 

size 100x100) 

200 nodes (input 

data size 200x200) 

300 nodes (input data 

size 300x300) 

Time(s) 
Median 

Error (r) 

Time 

(s) 

Median 

Error (r) 
Time(s) 

Median 

Error (r) 

0.358 0.0141 0.685 0.0083 1.124 0.0011 

0.796 1.51e-6 1.035 0.74e-4 1.608 0.12e-4 

 

As explained before, CCA runs in iterations/cycles to reduce the 

data sets. The cost of each cycle is O(N). In Table 1 above, around 

12-20 cycles were applied for each input point/data vector. Thus 

CCA has a complexity of about )( 2NO in total running cost, 

compared to that of )( 3NO in typical NLM algorithms such as 

MDS and Sammon's. With the increase of the input data matrix 

size, the number of cycles required does not increase but often 

decreases instead to achieve the same resulting accuracy. 

However, the time spent in each cycle increases with the growing 

input data size. It should also be noted that when the number of 

cycles is too low, e.g., at 10 for the above cases in Table 1, though 

good results can still be obtained, local minima might be 

experienced. For example, using 10 cycles to run CCA on the 

maps of 300 nodes for ten times, the results all have median error 

<0.01r with most of them <0.001r (averaged across all scenarios). 

But out of the ten scenarios, one had a median error around 0.02r. 

As the computing time does not rise significantly with the 

expansion of the input data size (number of nodes), highly 

accurate node coordinates can be obtained using CCA with a 

moderate number of cycles.  CCA is thus very powerful in 

computing the node coordinates using the distance matrix.  

The distance matrix for large networks is often not available. 

Recently, Drineas et al. have proposed algorithms for distance 

matrix reconstruction for sensor network localization using 

singular value decomposition [7].  This may provide an option to 

obtain the distance matrix for the network. We however assume 

that the distance matrix of the network is unknown. Instead, a 

distributed map algorithm [23] is adapted in our scheme to 

compute the node coordinates in the network.  

3.3 Distributed Map Algorithm Using CCA 
Adopting steps similar to the distributed map algorithm of MDS-

MAP [24][25], we propose an alternative distributed map 

algorithm, the CCA-MAP algorithm. The CCA-MAP scheme, 

similar to MDS-MAP, builds local maps at possibly each node in 

the network and then patches them together to form a global map. 

Differently from MDS-MAP, CCA is employed in computing the 

node coordinates in the local map. Each node computes its local 

map using only the local information. If accurate ranging 

capability is available in the network, local distance between each 

pair of neighboring nodes is measured and known. Otherwise, 

only connectivity information is applied to assign a value of 1 to 

the edge between each neighboring pair of nodes. Then a distance 

matrix for all the nodes in the R hop neighborhood of node x can 

be constructed using the shortest distance matrix as 

approximation. Instead of a fixed R=2, as used in MDS-MAP 

algorithms [24][25], R is variable in CCA-MAP. CCA’s reduction 

technique can generate quite accurate results with a reasonably 

accurate distance matrix of a small size. In addition, a smaller 

matrix results in faster computation time. Therefore, we choose R 

to be 1 if the network is dense; otherwise we set R to 2. In the 

ranging-based scenarios, a one-hop neighborhood distance matrix 

of at least 1212 ×  produced good results. In the range-free cases, 

the distance matrix is considerably inaccurate using the hop count 

approximation. Thus a larger distance matrix assists in mapping to 

the node position coordinates using CCA. Therefore in the range-

based CCA-MAP algorithm, for any given node, if its one-hop 

neighborhood has more than 12 nodes, R = 1 can be chosen for 

improved performance. Otherwise, R = 2 is applied. In the range-

free CCA-MAP, where the local distance matrix is much less 

accurate due to the hop count approximation, we set R = 1 when 

the one-hop neighborhood has a very large size (above 30), 

otherwise R = 2 is chosen. The steps of CCA-MAP are thus as 

follows: 

(1) For each node x, neighbors within R hops are included in 

building its local map. Compute the shortest distance matrix 

of the local map and take it as the approximate distance 

matrix LD.  

(2) Each node applies the CCA algorithm using local distance 

matrix LD as both the input data set and the distance matrix 

of the input data set as described in the previous subsection. 

This generates the relative coordinates for each node in the 

local map of node x of its R hop neighbourhood.  

(3) Merge local maps.  

(4) Given sufficient anchor nodes (>=3 for 2D space and >=4 for 

3D), transform the merged map to an absolute map based on 

the absolute positions of anchors. 

In step 3, we apply a similar approach to that in MDS-MAP 

in merging local maps. Use a randomly selected node’s local map 

as the starting current map. Each time, the neighbor node whose 

local map shares the most nodes with the current map is selected 

to merge its local map into the current map. Two maps are 

merged/patched using the coordinates of their common nodes. To 

merge a new local map B into the current map A, a linear 

transformation (translation, reflection, orthogonal rotation, and 

scaling) is determined to ensure that the coordinates of the 

common nodes in map B after transformation best conform with 

those in current map A.  

In the CCA-MAP scheme, no refinement is applied as the 

results are often satisfactory without further optimization. It was 

found in the MDS-MAP algorithm [23][24][25] that the 

refinement process takes most of the computing time, which can 

be several orders of magnitude more expensive than MDS 

calculation. Therefore the computing cost is greatly reduced in 

CCA-MAP when not applying any of the extra optimization 

process.   

Computing of local maps can be distributed to each local 

node, or can be carried out at more powerful gateway nodes of 

each cluster should the sensor network have a hierarchical 

structure to relieve the resource-constrained sensor nodes from 



any of the computing and communication demands imposed by 

localization. The local maps can be merged in parallel in different 

parts of the network by selected nodes. There is no need for 

anchor nodes in patching the maps. When at least three anchor 

nodes are found in the patched map of a subnetwork, an absolute 

map of the subnetwork can be computed using the coordinates of 

the anchor nodes to obtain the absolute coordinate values of all 

the nodes in the map of the subnetwork. 

4. PERFORMANCE EVALUATIONS 
Three types of networks are selected for performance experiments 

and comparisons, as illustrated in Figure 1. In all three types of 

networks, the network area consists of a ii 1010 × square with 

1=i  set as the placement unit length.  The first networks models 

uniform random networks. 200 nodes are randomly placed inside 

the ii 1010 × square. The second network models irregular 

random networks. 160 nodes are randomly placed inside a C-

shaped area within the ii 1010 × square. The third network 

represents uniform grid networks. 100 nodes are placed according 

to a ii 1010 × grid with the placement error uniformly distributed 

in the range of [-20%i, 20%i]. For each network type, CCA-MAP 

was run on 10 randomly generated network examples. The 

experiments were run in Matlab V7.2 on a Pentium® M processor 

of 1.60GHz with 1G RAM.   

During the experiments, anchor nodes are randomly chosen. 

Several sets of differently positioned anchor nodes are selected for 

each network run and the average result is taken. Therefore, the 

results are not only generated for “well positioned” anchor nodes. 

We kept the number of anchor nodes to <= 5% of the total 

number of nodes in the network. The node that does the global 

network merge is also randomly selected. Both range-based and 

range-free options were investigated for all the network 

configurations. When using the range-free option, hop count is 

used as the distance matrix between a pair of nodes as described 

before. In the range-based scenarios, the range is modeled as the 

actual distance combined with Gaussian noise. Thus, the range 

measured between neighboring nodes is a random value drawn 

from a normal distribution with actual distance as mean and 

standard deviation of 5%.  

4.1 Random Uniform Networks 
CCA-MAP is applied to random uniform networks of 200 nodes 

as shown in Figure 1 (a) using 3, 6 and 10 anchor nodes in the 

network. The network connectivity level increases from 7 to 29, 

with radio range spanning from r=1.07i to 2.4i. It should be noted 

that even though a lower Connectivity Level (CL) such as CL=6 

is more favorable to optimize the radio throughput at the MAC 

layer [12], we did not test at such low connectivity levels because 

for this type of random network configuration of 200 nodes, the 

network is frequently not fully connected at CL=6. In fact, 

random placement of sensor nodes results in the neighborhood 

density being very uneven; a higher connectivity level is often 

needed for the network to be fully connected. 

In the range-based option, with an average of 5% 

measurement error on local distance between each pair of 

neighboring nodes, the coordinate’s estimation median errors are 

shown in Figure 2, which depicts the average error on computed 

coordinates as a function of connectivity level. At Connectivity 

Level (CL) CL=9, using 3 anchor nodes, the median error is 

0.097r. Around CL=12 to 14, the median error decreases to 0.05r. 

At CL=29, the median error is 0.01r. Increasing the number of 

anchor nodes improves the results, though not significantly. Using 

6 or 10 anchor nodes further decreases the median error to below 

0.01r at high connectivity levels (e.g., CL=29). As mentioned 

before, almost all localization schemes show improved 

performance when the sensor network has a high connectivity 

level. However, a large number of neighboring nodes may not be 

desirable in real deployment as it hampers the radio network 

throughput. Therefore we are not particularly interested in using 

high connectivity levels to produce better positioning results, but 

are more concerned with the performance at more moderate 

connectivity levels.  It is very appealing that CCA-MAP produces 

more accurate position estimates at relatively low connectivity 

levels compared with most of the existing methods, as discussed 

below.  
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Figure 1: Three example-networks: (a) random uniform 

network of 200 nodes; (b) random C-shaped network of 160 

nodes; (c) grid uniform network of 100 nodes 
 

Figure 3 shows the effects of increased range errors on the 

localization results produced by CCA-MAP. When the range error 

increases, so do the errors on the node position estimates. It can 

also be seen that CCA-MAP sustains its performance quite well 

under the increased range errors.   

Using only the connectivity information in range-free 

scenarios, the localization results for the same set of random 

networks are presented in Figure 4. Without ranging capabilities, 

the performance is degraded as expected. Using 3 anchor nodes, 

CCA-MAP achieves a median error of position estimation of 



0.17r at a connectivity level (CL) of 12. At CL=19 the median 

error decreases to 0.15r and to 0.12r at CL=29. Increasing the 

number of anchors improves the results especially for low 

connectivity levels. However, the difference between using 6 

anchor nodes (3% of total nodes) and 10 anchor nodes (5% of 

total nodes) is not significant when CL increases to more than 10. 

For example, at CL=12, 6 anchor nodes produce a median error of 

0.1438r while 10 anchor nodes generate coordinates with a 

median error of 0.1407r. At CL=29, 10 anchor nodes can reduce 

the median error to 0.094r while 6 anchor nodes result in an error 

of 0.10r. 
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Figure 2: Results of CCA-MAP on random uniform networks 

of 200 nodes with 5% error on local distance measurements 
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Figure 3: Effect of range errors on the position estimation for 

random uniform networks of 200 nodes 

 

Figure 5 compares CCA-MAP with one of the best MDS 

algorithms, MDS-MAP(P,R), using range-based option where 5% 

local measurement error is assumed. Both algorithms work fairly 

well for this type of network using the range-based option, 

providing position estimation with less than 10%r of median error 

for most cases. CCA-MAP outperforms MDS-MAP(P,R) by 

about 1-2% lower position estimation error in most cases. The 

improvement of CCA-MAP compared to MDS-MAP(P,R) is 

considerable (about 5%) in the low connectivity area, e.g., when 

CL < 10. MDS-MAP(P,R) applies an additional refinement 

process using non-linear optimization which can be very costly, 

e.g., about 50 seconds are needed for refining both local maps and 

the global map for the network of 200 nodes. CCA-MAP on the 

other hand can achieve better position accuracy without this 

refinement process. CCA calculation of local maps on each node 

takes only a few hundred milliseconds. The computational 

overhead of CCA-MAP is thus much lower.   
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Figure 4: Results of CCA-MAP on random uniform networks 

of 200 nodes using connectivity information only 

 

Figure 6 compares the performance between CCA-MAP and 

MDS-MAP(P,R) for range-free cases, where the node coordinates 

were calculated using only the network connectivity information. 

CCA-MAP shows more improvement compared with MDS-

MAP(P,R) when fewer anchor nodes are employed in the 

network, and when the connectivity levels are low.  

4.2 Random C-shaped Networks 
The random irregular networks used in the experiments 

consist of 160 nodes scattered in an irregular area in the shape of 

a C, as shown in Figure 1 (b). Random irregular networks of 

anisotropic topology are particularly challenging for node position 

estimations as the anisotropic topology breaks the approximation 

of inter-node distances. Previous methods reported very poor 

results on such a topology [16]. In our experiments, the network 

connectivity level increases from 9 to 24, with radio range 

spanning from r=1.28i to 2.36i. Again, the connectivity levels 

were selected to ensure that the networks are connected. The 

performance results are illustrated in Figure 7. 
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Figure 5: Comparison between range-based CCA-MAP and 

MDS-MAP(P,R) on random 200 node networks with 5% local 

measurement error 
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Figure 6: Comparison of range-free CCA-MAP and MDS-

MAP(P,R) on random 200 node networks   

Using only connectivity information in the range-free option, the 

median error of node locations is below 20%r in the best cases, 

when 3 or 6 anchor nodes are deployed in the network. In some 

cases, the extended radio range even increases the estimation 

errors. With increased radio range and connectivity level, more 

nodes are included in the local map while more of them use the 

sum of the distances over multiple hops to approximate their true 

distance. In the irregular C-shaped area, certain corner nodes 

make such approximations more erroneous. This then introduces 

the additional errors to the position estimation. 

With ranging capability (Fig. 7(b)), the position estimation 

median error can be contained under 10%r when connectivity 

level is at about 12.5, using 3 or 6 anchor nodes in the network. 

More anchor nodes do not improve significantly the performance.  

Compared with the MDS-MAP(P,R) algorithm, CCA-MAP 

improves considerably the position estimation accuracy, 

especially when the connectivity level is low. Figure 8 and Figure 

9 present the comparison of CCA-MAP and MDS-MAP(P,R) for 

both the range-free option, where only the connectivity 

information is applied, and the range-based option, where 5% 

local distance measurement error is assumed. For both range-

based and range-free options, CCA-MAP outperforms MDS-

MAP(P,R), especially in the lower connectivity range. 
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Figure 7: CCA-MAP on C-shaped random networks of 160 

nodes 
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Figure 8:  Comparison between CCA-MAP and MDS-

MAP(P,R) over random irregular C-shaped networks of 160 

nodes using range-free option 
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Figure 9: Comparison between CCA-MAP and MDS-

MAP(P,R) over random irregular C-shaped networks of 160 

nodes using range-based option with 5% local measurement 

error 

4.3 Grid Uniform Networks  
The performance results for grid networks that consist of 100 

nodes with node placement error uniformly distributed in [-20%i, 

20%i] as shown in Figure 1 (c) are illustrated in Figure 10. The 

connectivity levels in the networks increase from 4.5 to 7.5, with 

radio radius spanning from 1.336i to 1.86i. Using connectivity 

information only, at CL=5.5, the median error is less than 10%r 

using 3 anchor nodes. Using 6 anchor nodes brings about 1%r 

performance improvement, except when connectivity level is very 

low, e.g., CL=4.5. With ranging capability measuring local 

distance between neighboring nodes, the median errors are under 

10%r when CL=4.5 and approach 1%r at CL=7.5 using merely 3 

anchor nodes (Fig. 10(b)). More anchor nodes do not improve 

significantly the performance in the range-based scheme. The 

comparisons between CCA-MAP and MDS-MAP(P,R) over the 

grid networks are summarized in Figure 11 and Figure 12. 
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Figure 10: CCA-MAP performances on grid networks of 100 

nodes with 10% placement errors 

 

In range-free scenarios, using connectivity information only, both 

CCA-MAP and MDS-MAP(P,R) achieve good position estimates 

for the nodes. CCA-MAP outperforms MDS-MAP(P,R) when CL 

increases from 5 to 7.5. Again the improvement seems to be more 

pronounced when fewer anchor nodes are used. This is also true 

for the range-based cases where the local distances between 

neighboring nodes are known with an average of 5% measurement 

error. 
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Figure 11: Comparison of CCA-MAP and MDS-MAP(P,R) 

for grid networks of 100 nodes using range-free option 
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Figure 12: Comparison of CCA-MAP and MDS-MAP(P,R) 

for grid networks of 100 nodes using range-based option with 

5% local distance measurement error 

5. CONCLUSION  
We have devised the CCA-MAP algorithm using an efficient non-

linear reduction technique CCA to obtain wireless node 

coordinates. Our CCA-MAP scheme requires only a small number 

of anchor nodes to translate node coordinates to absolute values, 

and can be applied in either range-based or range-free scenarios. 

The simulation results were compared with another highly 

accurate solution, MDS-MAP(P,R). In all the network 

configurations simulated where ranging capability is employed, 

the CCA-MAP algorithm can achieve accurate node position 

estimates with an average error of less than 10%r at relatively low 

network connectivity levels. Using connectivity information only, 

CCA-MAP can also contain the position estimate error to within 



20%r. Compared with MDS-MAP(P,R), CCA-MAP achieves 

better position estimate results in most scenarios. The proposed 

approach is very promising for autonomic applications which 

require a high degree of accuracy for nodes’ positions but having 

only a small number of anchor nodes in the network. We are 

currently studying the characteristics of the algorithm for more 

varieties of irregular network configurations and refining the 

algorithm parameters to handle better the anisotropic network 

topologies. 
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