
A Framework to Support Multiple Reconfiguration
Strategies

Liliana Rosa
University of Lisbon

lrosa@lasige.di.fc.ul.pt

Luís Rodrigues
IST/INESC-ID
ler@ist.utl.pt

Antónia Lopes
University of Lisbon
mal@di.fc.ul.pt

ABSTRACT
Self-management is a key feature of autonomic systems. This
often demands the dynamic reconfiguration of a distributed
application. An important issue in the reconfiguration pro-
cess is the strategy that is used to coordinate the multiple
participants involved in the reconfiguration. This paper ad-
dresses the problem of providing support for multiple recon-
figuration strategies in autonomic systems that are designed
as self-reconfigurable service compositions. We decompose
existing strategies in two separate aspects — an orchestra-
tion protocol and a local reconfiguration procedure. This
separation allowed us to design a set of generic pluggable
components that can be integrated in concrete service com-
positions, in order to support different strategies. The strat-
egy selection is performed according to the semantics of each
reconfiguration. To illustrate our approach, we have imple-
mented an instance of these pluggable components for the
RAppia composition framework.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous

General Terms
Management, Dynamic Reconfiguration, Adaptation Strat-
egy

1. INTRODUCTION
Modular applications can be built from the composition of

many fine-grain services. This approach not only allows the
reuse of individual components in different applications but
also facilitates application adaptation to dynamic changes in
the user requirements, or in its operational envelope. The
support for dynamic adaptation is a key requirement to build
flexible autonomic systems, able to self-manage via runtime
reconfiguration.

The need for reconfiguration may emerge from different
sources, such as the user preferences or the execution con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Autonomics October 28-30, Rome, Italy
Copyright 2007 ACM ICST 978-963-9799-09-7 ...$5.00.

text. From this results that some aspects of reconfiguration
are related to the user, while others are tied to the execution
context, among others. Therefore, it is important to have a
separation between adaptation and functional concerns [10]
based on monitored changes in user preferences, execution
context, hardware, etc. Thus, monitoring and adaptation
can be greatly simplified if the issue of supporting multiple
reconfigurations is addressed at the middleware level.

In a distributed application, the dynamic reconfiguration
of participants may require coordination. For instance, if
an application reconfigures itself to use ciphered communi-
cation instead of plain text communication, all participants
must instantiate the required cipher components. We denote
by reconfiguration strategy the set of coordination rounds
and the local reconfiguration procedure required to perform
a reconfiguration.

Reconfiguration strategies play a key role in the devel-
opment of self-reconfigurable systems. Unfortunately, they
may be an important source of overhead in the system op-
eration. Also, the amount of coordination required highly
depends on the type of reconfiguration being performed. For
instance, in the previous example, one may be required to
stop the plain text traffic flow and install new communica-
tion components before restarting the (now ciphered) com-
munication. On the other hand, other classes of reconfig-
urations may be less demanding in terms of coordination.
For instance, the activation of an auditing component that
intercepts and logs certain interactions is a reconfiguration
procedure that can be applied locally to each node, with-
out coordination with the remaining nodes. In fact, many
reconfiguration strategies have been proposed in different
contexts [9, 23, 3, 21, 19].

We are interested in creating a framework that allows the
developer of an autonomic system to use predefined generic
components to instantiate the most appropriate strategy to
each particular reconfiguration, without having to (re)imple-
ment a customized solution for each case. With this goal in
mind, the paper makes the following contributions:

i) It proposes the decomposition of existing reconfigura-
tion strategies into two separate aspects — an orchestration
protocol and a local reconfiguration procedure. Further-
more, it identifies a number of relevant patterns for each
of these aspects that can be combined to obtain multiple
strategies.

ii) Based on the decomposition above, it identifies a set
of generic pluggable components that support the execution
of the identified strategies.

iii) It describes the implementation of pluggable com-

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AUTONOMICS 2007, 28-30 October 2007, Rome, Italy
Copyright © 2007 ICST 978-963-9799-09-7
DOI 10.4108/ICST.AUTONOMICS2007.2113

ponents in a concrete composition framework, namely the
RAppia system.

The rest of the paper is structured as follows. Section 2
describes the generic architecture in the context of which
our work fits. Section 3 presents our proposal of defining
strategies in terms of orchestration protocols and local re-
configuration procedures, and also identifies several recon-
figuration strategies defined in this manner. Section 4 pro-
poses a number of generic pluggable components that can be
embedded in the composition framework to support differ-
ent strategies. Moreover, we describe how these components
have been implemented in the RAppia framework. Related
work is addressed in Section 5 and the paper is concluded
in Section 6.

2. SYSTEM MODEL
Reconfiguration strategies are typically part of a broader

architecture to support autonomic behavior. In this section,
we briefly overview the system model where our work fits.

As illustrated in Figure 1, we assume that the system is
composed by a set of nodes that participate in a distributed
multi-party application. The application itself is obtained
by the composition of multiple services, more concretely,
the application is constructed by using one or more stacks of
services. Some of these services are responsible for the coor-
dination and communication aspects of a distributed appli-
cation (for instance, agreement and mutual exclusion), while
other services are responsible for interface aspects, etc. We
assume that the application autonomic behavior is achieved
through the dynamic adaptation of its stacks of services.

An application can be adapted through the combined exe-
cution of different kinds of actions: service parameter adap-
tation; exchange implementation of one, or more services in
place; and change the service stack configuration.

The reconfiguration process is controlled by an external
adaptation manager. The manager is a generic component
with an application-specific adaptation policy [17], and a set
of reconfiguration strategies. The manager controls the re-
configuration agents, present in each node. These agents are
responsible to apply locally reconfiguration actions, execut-
ing several commands received from the manager, such as
adding services, among many others.

In each node there are also context sensors. These sensors
acquire any relevant context information, such as user pref-
erences or available bandwidth [2]. Sensors can be generic

C
ontext Sensor

C
ontext Sensor

Node

Adaptation
Manager

Node

Policy

R
econfiguration A

gent

R
econfiguration A

gent

Application Application

Context
Monitor

Context Model

Strategies

Figure 1: System Model

or specific. The former can capture information made avail-
able by any of the services in the service stacks, while the
later is oriented to specific information, which may require
specific processing. The sensed information is delivered to
a context monitor that manages and interprets it in terms
of high-level concepts. The processed information is made
available to the adaptation manager.

When the adaptation manager receives relevant context
information, it starts the policy evaluation. This evalua-
tion determines if any reconfiguration is required. If so, the
manager plays an algorithm to choose the appropriated re-
configuration strategy. The strategy dictates mainly the co-
ordination and local reconfiguration concerns to be applied.
Based on that, the manager issues several commands to the
reconfiguration agents of the affected nodes. This paper fo-
cus on a set of generic reconfiguration strategies, and in the
architecture that allows the most adequate strategy to be
applied in each case.

3. RECONFIGURATION STRATEGIES
Reconfiguration strategies define how a reconfiguration

action is applied through nodes and how reconfiguration is
locally achieved in each node. In the context of the system
model presented in Section 2, a reconfiguration strategy can
be defined in terms of an orchestration protocol and a lo-
cal reconfiguration technique. The first defines coordination
among nodes, while the second describes how reconfigura-
tion is applied locally. The combination of different orches-
trations and local reconfigurations yields a large set of viable
strategies, that can be applied in several distinct contexts.

Different reconfiguration actions typically have different
coordination requirements. For instance, whereas the re-
served memory space for a caching service can be changed
in multiple nodes without requiring inter-node coordination,
the reconfiguration of the communication services used by
the nodes (by replacing TCP by UDP, for instance), needs
to be performed in a coordinated fashion, as communica-
tion would be impossible if each node is using a different
communication service.

Similarly, there are distinct ways of proceeding with the
local reconfiguration of a service composition, with different
costs and applicability constraints. For instance, changing
the timeout value of a failure detector service in a given ap-
plication can be performed on-the-fly, whereas replacing the
implementation of a complex service may require to place
the affected service(s) in a quiescent state, and even to cap-
ture and transfer part of the service’s state to the new im-
plementation.

Note also that the local reconfiguration technique is, to
some extent, independent of coordination adopted. The
need of reaching a quiescent state is also independent of
coordination requirements. Quiescence is often required in
situations that demand a strong coordination between par-
ticipants of the distributed application (s.a. the exchange
of the communication service), but can also be required in
a situation that does not need such coordination. For in-
stance, when a service implementation service is replaced by
another compatible implementation (e.g. to install a bug-fix
on-the-fly), it may not be necessary to coordinate the recon-
figuration in all nodes. However, in each node, it may be
necessary to put the service in a quiescent state to replace
it.

Therefore, we propose to define a reconfiguration strategy

k Orchestration
0 Uncoordinated
1 Single Sync
2 Double Sync

Table 1: Orchestrations

in terms of different combinations of distinct orchestrations
and local reconfiguration techniques, as described in detail
in the next paragraphs.

3.1 Orchestrations
An orchestration defines how nodes coordinate to perform

the distributed reconfiguration. Each orchestration depends
on the exchange of messages between the adaptation man-
ager and the local reconfiguration agents. The exchange
of messages allows the manager to communicate which re-
configuration needs to be performed and how, including
if coordination is required. The coordination between the
nodes involved in the reconfiguration works very much as a
synchronization barrier, where none of the agents proceeds
with further reconfiguration steps until every other agent
is ready. An orchestration can have zero, one, or multiple
synchronization points. A k-orchestration will enclose k syn-
chronization points. Each synchronization point is preceded
by an exchange of messages between the manager and in-
volved agents. Each exchange consists of the transmission
of a start-round(k) message by the manager to all agents and
the collection of round-done(k) messages sent back from the
agents to the manager.

From our experience, we have only identified three mean-
ingful orchestrations, with k = 0, k = 1, and k = 2. Al-
though so far we did not find any practical example of k-
orchestrations with values of k higher than 2, this does not
mean that they do not exist, thus we kept the generic for-
mulation. For easier reference, we have named the relevant
k-orchestrations as depicted in Table 1. Different sequences
of local reconfiguration steps can be performed at each round
of the these orchestrations, thus resulting in different recon-
figuration strategies.

3.2 Local Reconfiguration Techniques
A local reconfiguration technique is concerned with the

manner the reconfiguration is performed locally, namely the
local actions that have to be performed to achieve the en-
visaged reconfiguration of the local services stacks.

There are several approaches to local reconfiguration, each
offering different trade-offs. These trade-offs are related with
the main issues a reconfiguration presents, such as delays, or
resource consumption. The delays refer to message flow in-
terruption, due to changes in the services composition. The
delay caused by this interruption depends on the target ser-
vices, which may have to stop processing messages. Some
techniques cause a higher delay. For instance, this is the case
of the approach adopted in [23] which implies the interrup-
tion of the execution, at the expense of a buffer that accu-
mulates any messages produced by the application. Other
techniques aim at reducing the delay to a minimum, at the
expense of elaborated methods depending on specific com-
ponents. These components can be switches [3, 16] or multi-
plexers [9]. However, all these solutions are service-specific,
only applicable to the exchange of services, and just one ser-
vice at a time. The delay introduced is related either with

the switching, or the specific component addition/removal.
The current state of the art does not offer strategies that
do not introduce delays, since some sort of interruption al-
ways exist, either as a result of the addition of components,
switching, or forwarding issues.

In this paper, we describe three local reconfiguration tech-
niques: Direct, Stop-and-go, and Prepare-and-go. These
techniques cover the three essential manners to perform a
local reconfiguration in the composition of services. How-
ever, many variations and optimizations can be derived in
several techniques that are out of the scope of this paper.

The Direct technique can be applied to all reconfigura-
tion actions. A value can be set, services added, removed,
or exchanged directly. However, no guarantee is given about
time of occurrence, neither regarding the message flow. On
the other hand, the Stop-and-go approach forces a quies-
cent state in all the services on the affected service stack,
assuring that reconfiguration occurs without hanging mes-
sages and that services will not produce new messages while
reconfiguration is taking place. Moreover, the reconfigu-
ration start and end are controlled by the agent. As the
Direct technique, it can be applied to all reconfigurations,
but introducing a much higher delay. The Prepare-and-go
technique also offers control on reconfiguration occurrence,
and assures that no messages are lost or mis-handled. How-
ever, when compared to the latter, the introduced delay is
much smaller, at the expense of extending the reconfigura-
tion period, and using an auxiliary composition of services.
Nevertheless, this technique only applies to the exchange of
services. The three techniques are described in detail:

Direct: This technique is applied when a directive is re-
ceived from the manager, that includes all the required infor-
mation. The reconfiguration is executed promptly, without
any preparation. The reconfiguration agent waits until the
affected services finish handling the current messages to re-
move or exchange them. The adding of a service or tunning
of a parameter are executed immediately.

Stop-and-go: This technique requires a preparation phase,
in which all services from the composition are forced to
achieve a quiescent state, and stopped. Only after that,
the reconfiguration is applied. At the end, the services are
awakened. The new services start and the remaining ones re-
sume the execution. During the stop and start no messages
are handled and the execution is frozen.

Prepare-and-go: This technique also requires a prepa-
ration phase. The preparation relies on adding special com-
ponents, and creating an auxiliary channel with the new
services. Both old and new services are maintained, and the
special components are responsible for message forwarding
between the two compositions. When it is safe to remove the
old services, only the new ones are kept, which are added to
the original composition. Afterwards, both the special com-
ponents, and the auxiliary composition are removed. To add
and remove the special components, the Direct technique is
applied. Thus, the delay depends on that addition and re-
moval.

A local reconfiguration technique may have further con-
cerns related with the services that are being exchanged.
Among these concerns, there is the need of management of
the information that must survive reconfiguration. For in-
stance, when replacing a service implementation, the service
may have important information, such as state information,
as the identification of peers, or service static information,

as a timeout value. However, handling those concerns is only
possible when a technique assumes a preparation phase, pre-
vious to reconfiguration, what does not happen in the Direct
technique. Thus, the handling of service information is only
suitable to Stop-and-go and Prepare-and-go techniques, and
relies in the following directives:

StoreInfo This command captures any relevant informa-
tion from the service, that is not related with the ser-
vice state, and also loads it.

StoreState This command captures the internal state of a
service and also loads it. This requires that the service
achieves a quiescent state previously.

The following section describes how these directives and
techniques, combined with different orchestrations, give rise
to distinct strategies.

3.3 Strategies
As previously said, each strategy is a combination of an or-

chestration and a local reconfiguration technique. The sev-
eral orchestrations, combined with the different techniques
plus information handling commands allows the definition of
many strategies. In this section we only described the strate-
gies we found more relevant, without discussing their many
variations. The strategies are identified as relevant either
from the literature analysis, or from our own experience in
developing adaptive systems. These strategies, summarized
in Table 2, are the following:

3.3.1 Flash
This is the most lightweight strategy. Every node is re-

configured without concerns about other nodes, so no co-
ordination is used. Furthermore, service information is not
handled, thus it is neither captured, nor loaded. Although
few assurances are given by this strategy, it can be used to
apply any reconfiguration action, at its own risk.

Protocol : The strategy uses the Uncoordinated orchestra-
tion. Each reconfiguration agent executes the command im-
mediately as soon as it receives the start-round(0) message.
The reconfiguration success is signaled with a round-done(0)
message.

Delay cost : It is the time of performing the reconfiguration
action. If x is the duration of the reconfiguration, the cost
is x.

Examples: Many services have configurable parameters
that can be changed without any global or local synchro-
nization. For instance, in a service that caches data items,
the amount of space reserved for caching may be changed
locally, independently at each node, without stopping the
service. Other examples include changing timeout values,
and adding/removing logging services.

3.3.2 Interrupt
The purpose of this strategy is to reconfigure a service in

a globally safe state. For this purpose, the service is stopped
at all involved nodes before the reconfiguration takes place.
When the services have been stopped at every node, re-
configuration is performed. Finally, the services are only
restarted when all nodes have finished the local reconfigu-
ration actions. This strategy ensures that the reconfigura-
tion will occur at the same time in all nodes, and that no
messages generated previously to the reconfiguration will be

handled after. All reconfiguration actions can be applied
using this strategy.

Protocol : The strategy uses the Double Sync orchestra-
tion. The start-round(0) message indicates which prepara-
tory actions need to be performed by each reconfiguration
agent, such as the Capture command, if a service is go-
ing to be replaced by another service. Each agent starts
the preparation immediately by first creating the new ser-
vices (if any are to be created). Afterwards, it activates
the buffering, and forces quiescence. After quiescence is ob-
tained the service information can be captured. When all
nodes have completed these tasks, they reply to the manager
with a round-done(0) message. After the first synchroniza-
tion point, the start-round(1) message is sent, thriggering
the reconfiguration. After reconfiguration, if is an exchange
of service’s implementations, the previously captured infor-
mation is loaded in the new implementation. The reconfigu-
ration completion is signaled by sending the round-done(1)
message to the manager. Finally, when all nodes have per-
formed the reconfiguration, the services can be (re-)started
by sending a start-round(2) message to all affected nodes.
The success is signaled with the final round-done(2) mes-
sage.

Delay cost : It is the time when the quiescence is forced
until the service composition restart. If x is time to perform
the reconfiguration (adding/removing/exchanging/setting),
y is the time required to put the composition on a quiescent
state, z is the time necessary to capture, or load informa-
tion, and w is the time taken until completion, i.e., between
round-done(0) and start-round(1) or between round-done(1)
and start-round(2). The total cost is x + y + 2w[+2z].

Examples: Many services have to be added/removed/ex-
changed in a coordinated way, otherwise messages will be
lost, or mishandled. For example, this is the case of the
addition or removal of group communication services from
service compositions. Messages that are generated during
the use of such a service have to be delivered to it, oth-
erwise they will be inappropriately handled. Other exam-
ples include reconfiguration actions affecting ordering, and
cyphering services.

3.3.3 Non-Interrupt
The purpose of this strategy is to support services ex-

changes in several nodes without stopping any service ex-
ecution. For this purpose, two instances of a multiplexer
service are added to the service composition and an aux-
iliary channel is created with the new services (see Figure
2). In this way it is possible to switch from old services
implementation to the new one, without disturbing all the
services in the composition. During reconfiguration, events
are forwarded either through the main or auxiliary channels,
according to a forwarding algorithm. This ensures that ser-
vices message processing is not interrupted during the re-
configuration. The end of the local reconfiguration process
is detected by the multiplexer service, which signals it to the
reconfigurator.

Protocol : The strategy uses the Single Sync orchestration.
The start-round(0) message carries all the reconfiguration
information, including which service-state needs to be cap-
tured. The reconfigurator acts promptly when receives the
message and adds the special component using the Direct
technique. If any service state is required, it is retrieved
at this point. Afterwards, the reconfigurator creates the

Strategy Orchestration Preparation/Recovery L. R. T.
Flash Uncoordinated - Direct
Interrupt Double Sync [StoreState/Info] Stop-and-go
Non-Interrupt Single Sync [StoreInfo] Prepare-and-go

Table 2: Strategies

auxiliary channel with the new service implementations. If
there was any information captured, it is loaded. At the
completion of these tasks, the reconfigurator signals end of
preparation by sending a round-done(0) message and contin-
ues message processing. When all nodes have finished the
preparation, the manager issues a start-round(1) message.
At the arrival of this message, the reconfiguration agent ac-
tivates service tags on events, and the special component to
forward messages. Only when the special component detects
that old services can be removed, it signals the agent, which
removes the old services and sends a round-done(1) message
to the manager.

Delay cost : It is the time of adding the special compo-
nents, and removing them, at the end. The reconfiguration
itself can take as many time as necessary, but it does not
affect the final delay. If k is the time to add/remove the
component, total cost is 2k.

Examples: Some reconfigurations require coordination but
the longer the execution is interrupted, the worst. This is
the case of the exchange of total order [3, 16], that cannot
afford to interrupt execution for a comparably longer period
of time. Other examples include highly dependable services
with real-time constraints, such as a timely failure detector.

3.4 Choosing a Reconfiguration Strategy
Given that we have several reconfiguration strategies avail-

able, it is necessary to have mechanisms to choose the most
suited to each potential reconfiguration situation on the sys-
tem under development. First of all, the strategy must be
applicable to the specific reconfiguration action and target
services. Moreover, it must also be cost efficient. The strat-
egy selection process starts with searching the applicable
set of strategies. Each service defines a binary table that
describes which strategies can be used for a particular re-
configuration action. This table does not describe which are
the best suited strategies, but all the strategies that can be
applied, even if they offer better guaranties than necessary.
By crossing this action-strategy information from all the re-
configuration target services, the applicable strategies set is
built.

The next step in strategy selection, relies in a strategy or-
dering. This ordering can be cost oriented, based in resource
consumption, or introduced delay, among others. Based on
this ordering, the lowest cost strategy is chosen to be ap-
plied to the reconfiguration action. For example, we can
order the strategies described in this section, based on the
delay introduced, as follows: Flash < Non-Interrupt < In-
terrupt. Applying the selected strategy is achieved by using
a set of pluggable components that are described in the next
section.

4. GENERIC PLUGGABLE COMPONENTS
The decomposition of reconfiguration strategies in an or-

chestration and local reconfiguration components, as well as
the definition of protocols for adaptation control between the

adaptation manager and the adaptation agents, opens the
door to develop generic pluggable components that can be
added to a service composition to support multiple strate-
gies in the same framework. In this section, we present such
a set of generic pluggable components that can be added to
an application built as a composition of services in order to
facilitate autonomous behavior. These components are ei-
ther permanent or temporary. The permanent components
are always present in the composition, providing support
for the adaptation of the application services in the stack.
These components are the following:

• Context sensors able to extract from each node the in-
formation required to trigger reconfiguration policies.

• A buffering service that hides from selected application
services (for instance, the user interface) the fact that
some of the lower level services are being reconfigured.

• A channel reconfigurator service able to implement the
protocols defined in Section 3.1 and used by the dif-
ferent orchestrations to invoke services required by the
local reconfiguration techniques.

The temporary components are specific to a local recon-
figuration technique, being added before the reconfiguration
action, and removed at its completion. These components
are called multiplexers. A multiplexer service is one of the
special components described in Section 3.2, used in the
Prepare-and-go technique. Figure 2 illustrates how these
services are organized in the stack. As a proof of concept,
these components have been implemented using a particu-
lar service composition framework: RAppia [18]. Both the
main features of this framework and the detailed description
of the developed pluggable components are reported in the
following sections.

4.1 The RAppia Framework
We have selected the RAppia framework to build the proof

of concept of our architecture because it has been devel-
oped “in house”, but also because it has a number of fea-
tures particularly well suited for our goals. First of all,
it promotes the design of applications as compositions of
independent services. Being defined as compositions, they
can be adapted through the reconfiguration of this compo-
sition, namely through the addition, removal, or exchange
of services being used. Secondly, it supports channel config-
uration and activation via XML specifications. This eases
the adaptation manager design, as new configurations can
be sent to the reconfiguration agents using XML strings.
Also, it includes a library of multiple services, which allowed
us to build early prototypes for adaptation with minimal
coding effort. Services have been developed to build multi-
user object-oriented environments [22], distributed real-time
games [13], collaborative mobile applications [12], and data-
base replication application [15]. Lastly, but not less impor-
tant, it supplies the necessary runtime reconfiguration sup-
port, by adding or removing services to a stack of services.

Application

Reconfigurator

Context Sensor

Buffering

Main Channel

Auxiliary

Channel

Ctrl2CtxMonitor

Ctrl2AdptManager

Service X

Multiplexer Service

Service A1

Multiplexer Service

Service A2

Service B1 Service B2

Service Y

Figure 2: Pluggable Components

Note that it is not the purpose of our paper to discuss the
merits and weaknesses of the RAppia platform. Therefore,
the framework description only provides enough detail to al-
low the reader to understand how the pluggable components
that support multiple strategies can, in fact, be built in a
generic manner, using RAppia as a particular instantiation.
We believe that similar implementations could have been
developed for other frameworks.

RAppia is a framework that supports the implementation
and execution of modular applications built as compositions
of independent services. A channel is an instantiation of the
services of a composition. The same service can be shared by
several channels, thus being the same instance. The channel
abstraction allows to hide any details regarding the com-
positions configuration, its change, or the reconfiguration
process. The services communicate through events that can
flow either in up or down direction in the channel. Each
service describes which events are produced, accepted, or
required to its execution. From this results that an event
does not have to be subscribed by all the services in a com-
position. Thus, each event has a route and is only delivered
to the services that belong to it.

This framework enforces a methodology for programming
application services. Each service is coded as a set of event
handlers. An event handler receives an event, adds/removes
some header to/from the message associated with the event,
and forwards the event in the same channel. Note that some
services may temporarily store events in the session state,
for instance, to forward in the correct order messages that
are received out of order, or to assemble a message from dif-
ferent segments. Furthermore, our reconfiguration schemes
require the service implementation to support the following
functionalities:

i) Provide the context information that might be relevant
to express adaptation policies;

ii) Accept events that allow the relevant configuration pa-
rameters to be changed during runtime, for instance, by al-
lowing timeout values to be adjusted dynamically;

iii) Have the ability to achieve a quiescent state when
requested;

iv) Have the ability to store and load the service state
across different “incarnations” of a service instance, when a

channel is reconfigured.

4.2 Buffering Service
The buffering service purpose is to hide the reconfigura-

tion of services from the application, i.e. the non adaptable
application part. In particular, it hides the fact that the
communication needs to be temporarily interrupted to re-
configure a channel, by delaying any events. This is achieved
by having the buffering service to store all messages pro-
duced while the channel is being reconfigured. The buffer-
ing service is added to all channels that are used by the top
application service and is controlled by the reconfigurator
service.

We have implemented a generic buffering service that can
be used whenever reconfiguration has to be hidden from the
application. This buffering service is positioned right under
the application and either forwards messages, if inactive, or
delays them for the necessary time. This service is vital
for any major interruption, as happens in the Stop-and-go
technique.

4.3 Sensor Service
This service captures context information locally at each

node, and communicates it through a dedicated channel to
the context monitor. Sensors can capture information from
services in the composition by a request-answer approach to
the services; accept any asynchronous events launch by ser-
vices, or by the top application service (for example, denot-
ing user preferences); or capture specific information. The
first two cases can be handled by a generic sensor usable in
any scenario, while the last demands a specialized sensor.

The generic sensor service is shared by all monitored chan-
nels. The sensor issues a request for an information and ex-
pects an answer with the updated value. This information
can also be captured in a periodic manner. The sensor can
capture any information, as long as it is configured to do so,
or receives a query from the context monitor. Moreover, the
sensor also receives any traps generated either by services,
or the application, forwarding it to the context monitor.

It is also possible to build specialized sensors and use them
together with the generic sensor. For instance, assume that
some service does not provide average values on some con-
trol variable; it provides instantaneous values instead. It
would be possible to build a sensor that would make multi-
ple readings and send an average value back to the context
monitor. Although the average could be performed at the
monitor itself, the use of a specialized sensor such as this
may save network resources by reducing the number of data
that crosses the network.

To build the described generic sensor, services must be
ready to process the request event GetValue, which indicates
the information name, and reply with a ReplyValue event
containing the information. Moreover, the service has to be
prepared to generate a TrapIndication event asynchronously,
which notifies a change in a specific condition. All services
have to declare the information that can be read, and the
notifications they are able to generate.

4.4 Multiplexer Service
This service is added to a composition of services in pairs.

They work as a container for the old and new services, thus,
shared by the main target channel, and the auxiliary channel
created for reconfiguration purposes. The disposition of this

service is depicted in Figure 2. The top multiplexer service
intercepts events originated or forwarded by the top services,
while the lower multiplexer from lower services. When an
event is intercepted, the multiplexer decides to deliver it ei-
ther to old or new services, forwarding it to the original, or
auxiliary channel. This decision is based on event informa-
tion, namely the event origin. The multiplexer depends on
the reconfigurator to activate tagging in both old and new
services, so that this information is available. It is also the
multiplexer service that decides when the reconfiguration is
over. This depends on the target services, and information
collected by the multiplexer service. When the decision is
taken, the reconfigurator service is signaled.

The multiplexer service can be used with different target
services, consisting in a generic feature, with service-specific
configurable features. The multiplexer generic part is re-
lated to forwarding support and event subscription. The
configurable part regards the forwarding and the end of the
reconfiguration detection algorithm (which varies from ser-
vice to service). The forwarding approach is reusable and
determines how an event is redirected between the channels.
For example, in [16], the event is sent to both old and new
services (both channels); while on [9], an event handled by
old services is delivered to the original channel, while by
new services, to the auxiliary channel. The end algorithm
determines when it is safe to remove the old services.

4.5 Reconfigurator Service
The Reconfigurator Service is responsible for the dynamic

reconfiguration of the local service composition. This service
is shared by all channels, and communicates with the adap-
tation manager through a dedicated channel. The service
answers to commands received from the adaptation man-
ager. The commands available to be sent, in the different
rounds that make orchestrations, are the following:

• StoreState/Info: this command determines the cap-
ture of information, state or non-state, and the loading
in the end of the reconfiguration;

• Direct: this command dictates the execution of the
Direct local reconfiguration technique;

• Prepare-and-go: this command indicates to start the
Prepare-and-go technique;

• Stop-and-go: this command indicates to start the Stop-
and-go technique;

• Go: this command indicates the start of the reconfig-
uration;

• Resume: this command indicates the finalization of the
reconfiguration process, either by (re-)starting service
execution, or by removing unnecessary services.

One or several commands can be issued in a single mes-
sage. The reconfigurator service has knowledge on how to
perform the local reconfiguration techniques, capture/load
information, resume, and when to reply to the adaptation
manager. This reduces the exchange of control information,
and speeds the reconfiguration process. The commands used
in the different steps by each strategy are listed as follows:

Direct The start-round(0) message contains the Direct com-
mand.

Non-Interrupt The start-round(0) message includes the
Prepare-and-go command, as well as a StoreInfo com-
mand. The reconfigurator proceeds promptly by first
adding the multiplexer service, and creating the aux-
iliary channel. After, it triggers a GetInfo event that
crosses the channel in the up direction, from the bot-
tom most service to the reconfigurator. The SetInfo
event is forwarded via the auxiliary channel to the
new services, with the retrieved service state. This
event crosses the channel in the up direction. Only
when the reconfigurator receives this event, it sends
a round-done(0) to the manager. The start-round(1)
message includes the Go and Resume commands. In
response, the reconfigurator activates the multiplexer
service. When the multiplexer signals the end of the
reconfiguration, both the old services and the multi-
plexer are removed. A round-done(1) message is sent
to the manager.

Interrupt The start-round(0) message contains the Stop-
and-go command, as well as a StoreState/Info com-
mand. The reconfigurator proceeds immediately by
activating the buffering service, and sending a Stop
event in the down direction to the channel. This event
forces a quiescent state in all services. Afterwards, any
state or non-state information is captured by using a
GetInfo or GetState event in the up direction. The
reconfigurator sends a round-done(0) message. The
after received start-round(1) message carries the Go
command, which trigger the reconfiguration. At the
end of reconfiguration, the reconfigurator sends a Set-
Info, or SetState event, to load the captured informa-
tion. Then, a round-done(1) message is sent to the
manager. Finally, the start-round(2) message contain-
ing the Resume command is sent. The reconfigurator
(re-)starts the service composition, and deactivates the
buffering service. A round-done(2) message is sent.

4.6 Example
We used the pluggable components described in the pre-

vious sections for developing an adaptive messaging appli-
cation. This application, besides text messages, supports
cooperative drawing. Moreover, it can publish the location
of a user and show the locations of other users. The appli-
cation was designed as being composed by several services:
chat interface, aggregation, location, chat room, and com-
munication services. The chat interface service allows a user
to type messages, draw, and see the locations of other users.
Furthermore, it allows to choose location privacy settings.
The drawing produces a series of points that can be either
independent or connected (if they define a line). To reduce
the number of messages carrying draw information, the ag-
gregation service collects several points and aggregates them
in a single message. There are two implementations of the
aggregation service available: simple aggregation service, and
all aggregation service. The first aggregates points that are
part of the same line, allowing a gradual transmission of the
drawing. The later aggregates all points until a text message
is produced, grouping all points in a single message. The lo-
cation service publishes the user location if the user location
is currently defined to be public. Moreover, it collects lo-
cations of other users. The chat room service purpose is to
abstract the communication service used from the rest of
the application services. The communication service relays

the text and draw information to other users. Communica-
tion can be either point-to-point or group communication.
The group communication service is, in fact, a set of sev-
eral services that offer membership management and failure
detection support for a group of users.

Simple Agg.

P-to-P Chat Room

P-to-P Comm.

Messag. Appl.

Simple Agg.

Group Chat Room

 Group Comm.

Messag. Appl.

All Agg.

P-to-P Chat Room

P-to-P Comm.

Messag. Appl.

All Agg.

Group Chat Room

Group Comm.

Messag. Appl.

Messag. Appl.

Aggregation

Chat Room

Communication

Location

Figure 3: Possible compositions

Using the services described above, there are several pos-
sible compositions (see Figure 3). The goal is to use the
most efficient composition that satisfies the user require-
ments, by taking into consideration the operational envelope
conditions. Several important adaptation actions were iden-
tified: adding/removing the location service, changing the
communication service, and changing the aggregation ser-
vice. The first adaptation answers to changes in the user’s
preferences. When the user defines his/her location as pub-
lic or that he/she wants to see other users’ locations, the
location service is added. The service is removed when the
user changes his profile back to private location and shows
no interest in other users’ locations. The second adaptation
allows a richer communication support at the expense of a
higher delay in message transmission. Thus, the number
of participants determines the exchange of communication
service in use. The higher is the number, the better is the
rewarding of using the group communication service.

By adding the pluggable components previously described
in the service stacks of our application is possible to achieve
the adaptation goals just described. The last adaptation al-
lows to reduce the number of packets sent in the network
at the expense of delaying their delivery. The final service
composition, showing the pluggable components that sup-
port adaptation, is illustrated in Figure 4.

The location service does not keep any messages, nor has
state information. Moreover, it does not have to be present
in all nodes and, hence, it can be added or removed from a
local service composition do not requiring coordination with
the other nodes. As a consequence of these characteristics,
the Direct strategy should be used in these reconfiguration
actions as it has the lowest delay cost: x. Table 3 illustrates
the delay introduced in adding and removing this service in
the experiments we have conducted. All values were mea-
sured using a network of participants (the number depending

Aggregation

Chat Room

Communication

Messag. Appl.

Buffering S.

Generic Sensor Service

Reconfigurator Service

Location

Figure 4: Final composition

Direct strategy
Action Delay (in seconds)
Adding 0.0239
Removing 0.0236

Interrupt strategy
participants Delay (in seconds)
3 0.2476
4 0.3431
5 0.4256
6 0.5195
7 0.6132

Non-interrupt strategy
Action Delay (in seconds)
Adding 0.0416
Removing 0.0409

Table 3: Strategies’ induced delays

on the reconfiguration), executing in Pentium IV / 2.8GHz
machines with 1 Gb of memory. These machines were con-
nected through a 100Mbps Ethernet switch.

The communication service adaptation is far more com-
plex than the location service adaptation, since these ser-
vices cannot afford to lose messages. Moreover, the group
communication service has several features demanding that
a quiescent state is achieved before reconfiguration. In addi-
tion, the different communication services are not compat-
ible. Therefore, to exchange the communication services,
coordination of all the involved nodes is required. This ex-
change does not require any state or other information han-
dling.

With these requirements, the Interrupt strategy is the
most appropriated. The delay cost is x + y + 2w and the
different costs for a rising number of coordinated nodes is
depicted by Table 3. Further results show that the recon-
figuration time x, and the time to achieve a quiescent state
y remains closely the same, however, the waiting time be-
tween steps, w, increases with the number of participants.
This means that the coordination time rises with the number
of participants.

The remaining adaptation is the exchange of aggregation
services. This exchange has a low weight on the composition
of services. However, these services keep drawing informa-
tion. This information has to be processed before being ex-
changed and, hence, the Non-Interrupt strategy can be used
in this case. The delay cost is 2k, being k the necessary time

to add/remove the multiplexer service. Average values for
these costs are presented in Table 3.

5. RELATED WORK
Currently, dynamic reconfiguration is approached in two

distinct manners. One regards reconfiguration as part of
the functional concerns, while the other clearly separates
them. Using the first approach, we find several platforms.
One is the well known Odyssey platform [14], where both
the operating system and the application are responsible
for the adaptation: the first monitoring changes and imple-
menting resource allocation decisions, while the second de-
cides the best allocation of resources. Others, as Bayou [4]
concentrate the adaptation responsibility in the operating
system. Also, in the first approach, we can find network
level protocols [20, 8] that improve performance according to
their goals, by tunning specific parameters during runtime.
This reconfiguration relies on protocol’s performance self-
evaluation. The second approach is common on component-
based architectures [1, 5], and service composition frame-
works [3, 18], that choose to separate the functional and
reconfiguration concerns, improving flexibility and mainte-
nance easiness. The latter is applied in several areas [7, 6].

As previously stated, this separation of concerns approach
is commonly used mainly in two areas: component-based
and service composition frameworks. The first targets com-
ponent interaction: adding, removing, and changing inter-
actions between components; the second aims at network
level protocols: exchanging algorithms, and fine-tunning of
parameters.

The work described in this paper pursues a separation
of concerns approach to dynamic reconfiguration, targeting
services in general, both network, and application level; of-
fering not only fine-tunning of services, but also support to
add, remove, or exchange services during runtime.

In composition frameworks both approaches are followed.
From the several frameworks [11, 3, 24, 23] among many
others, only Ensemble [23] and Cactus [3] regard dynamic
reconfiguration. They offer different reconfiguration sophis-
tication. Ensemble relies in a vertical protocol composition
to offer a service, and runtime reconfiguration is achieved
by switching algorithms. The switch relies in a coordinator-
based orchestration, and a stop-and-go local reconfiguration
technique, thus using a single strategy for switching pro-
tocols. Cactus is a service composition framework, whose
dynamic reconfiguration relies in switching micro-protocols
(whose composition results in a service). Moreover, recon-
figuration can also be achieved by parameters tunning. The
framework offers monitoring and agreement features to sup-
port automatic dynamic reconfiguration. Since, system’s
global reconfiguration is expected, Cactus offers a single re-
configuration strategy based on inter-host global orchestra-
tion, and non-stop local reconfiguration technique.

This paper addresses a sophisticated dynamic reconfigu-
ration, in which several reconfiguration strategies are avail-
able, and is given support to use any of them, as well as
develop new strategies. This allows to choose the best strat-
egy for each reconfiguration, improving performance, and
addressing different needs.

6. CONCLUSION AND FUTURE WORK
This paper addresses a fundamental problem in the con-

struction of distributed autonomic systems: using the most
adequate strategy to apply a required reconfiguration. Sev-
eral strategies are described in this work, some of them were
already proposed in the literature. The collection of strate-
gies described in this work do not pretend to cover all possi-
ble ones, but to describe the more significant combinations
of orchestration and local reconfiguration technique.

Up to this date, this is the first architecture that allows
to use multiple strategies in the same framework, via the
implementation of a set of generic pluggable components.
These components can be added to an application built as a
composition of services to fit adaptation needs. To achieve
this goal we have proposed the decomposition of existing
strategies into orchestration and local reconfiguration as-
pects. For each aspect were defined protocols and interfaces
that allowed us to implement a generic reconfigurator com-
ponent. As a proof of concept we have implemented these
components in the RAppia framework, proving that many
aspects of the reconfiguration strategies can be handled with
a generic approach with all its advantages.

Moreover, being a distributed system, further work is re-
quired in the area of fault tolerance, namely the components
behavior when crashes or faults occur. It is important to ad-
dress these issues to ensure that the system will not be in-
definitely locked in reconfiguration when some fault occurs.

7. ACKNOWLEDGMENTS
The authors are grateful to the anonymous referees for

their comments on earlier version of the paper. This work
was partially funded by FCT project MICAS (POSI/EIA/
60692/2004) through POSI and FEDER.

8. REFERENCES
[1] T. Batista and N. Rodriguez. Dynamic reconfiguration

of component-based applications. In PDSE ’00:
Proceedings of the International Symposium on
Software Engineering for Parallel and Distributed
Systems, page 32, Washington, DC, USA, 2000. IEEE
Computer Society.

[2] G. Chen and D. Kotz. A survey of context-aware
mobile computing research. Technical report, Hanover,
NH, USA, 2000.

[3] W.-K. Chen, M. A. Hiltunen, and R. D. Schlichting.
Constructing adaptive software in distributed systems.
In ICDCS ’01: Proc. of the The 21st International
Conference on Distributed Computing Systems, page
635, Washington, DC, USA, 2001. IEEE.

[4] A. J. Demers, K. Petersen, M. J. Spreitzer, D. B.
Terry, M. M. Theimer, and B. B. Welch. The bayou
architecture: Support for data sharing among mobile
users. In Proceedings IEEE Workshop on Mobile
Computing Systems & Applications, pages 2–7, Santa
Cruz, California, 8-9 1994.

[5] H.Liu and M.Parashar. Component-based
programming model for autonomic applications. In
ICAC’04. IEEE Computer Society Press, 2004.

[6] F. Kon, F. Costa, G. Blair, and R. H. Campbell. The
case for reflective middleware. Commun. ACM,
45(6):33–38, 2002.

[7] J. Kramer and J. Magee. Analysing dynamic change
in software architectures: A case study. In CDS ’98:
Proceedings of the International Conference on

Configurable Distributed Systems, page 91,
Washington, DC, USA, 1998. IEEE Computer Society.

[8] Y. Kwon, Y. Fang, and H. Latchman. Improving
transport layer performance by using a novel mac
protocol with fast collision resolution in wireless lans.
In MSWiM ’02: Proc. of the 5th ACM international
workshop on Modeling analysis and simulation of
wireless and mobile systems. ACM Press, 2002.

[9] X. Liu, R. van Renesse, M. Bickford, C. Kreitz, and
R. Constable. Protocol switching: Exploiting
meta-properties. ICDCSW ’00: International
Conference on Distributed Computing Systems
Workshops, 00:0037, 2001.

[10] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and
B. H. C. Cheng. A taxonomy of compositional
adaptation. Technical Report MSU-CSE-04-17,
Department of Computer Science, Michigan State
University, East Lansing, Michigan, May 2004.

[11] S. Mishra, L. L. Peterson, and R. D. Schlichting.
Consul: A communication substrate for fault-tolerant
distributed programs. Technical Report TR 91-32,
Tucson, AZ (USA), 1991.

[12] J. Mocito, L. Rosa, N. Almeida, H. Miranda,
L. Rodrigues, and A. Lopes. Context adaptation of
the communication stack. International Journal of
Parallel, Emergent and Distributed Systems
(IJPEDS), 21(2):169–181, 2006.

[13] M. J. Monteiro, J. Pereira, and L. Rodrigues.
Integration of flight simulator 2002 with an epidemic
multicast protocol. In International Workshop on
Large-Scale Group Communication,(in conjuction with
The 22nd Symposium on Reliable Distributed
Systems), 2003.

[14] B. D. Noble and M. Satyanarayanan. Experience with
adaptive mobile applications in odyssey. Mob. Netw.
Appl., 4(4):245–254, 1999.

[15] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, ,
and P. Vicente. Strong replication in the globdata
middleware. In Proceedings of the Workshop on
Dependable Middleware-Based Systems, pages
G96–G104, Washington D.C., USA, June 2002. IEEE.
(Suplemental Volume of the 2002 Dependable Systems
and Networks Conference, DSN 2002).

[16] L. Rodrigues, J. Mocito, and N. Carvalho. From
spontaneous total order to uniform total order:
different degrees of optimistic delivery. In Proceedings
of the 21st ACM Symposium on Applied Computing
(SAC’06), Dijon, France, Apr. 2006. ACM.

[17] L. Rosa, A. Lopes, and L. Rodrigues. Policy-driven
adaptation of protocol stacks. In International
Conference in Autonomic Systems, Silicon Valley, CA,
USA, 2006. IEEE Computer Society.

[18] L. Rosa, L. Rodrigues, and A. Lopes. Appia to rappia:
Refactoring a protocol composition framework for
dynamic reconfiguration. DI/FCUL TR 07–4,
Department of Informatics, University of Lisbon,
March 2007.

[19] K. Rothermel and T. Helbig. An adaptive stream
synchronization protocol. In NOSSDAV ’95: Proc. of
the 5th International Workshop on Network and
Operating System Support for Digital Audio and
Video, London, UK, 1995. Springer-Verlag.

[20] P. Sudame and B. R. Badrinath. On providing
support for protocol adaptation in mobile wireless
networks. Mob. Netw. Appl., 6(1):43–55, 2001.

[21] B. Swaminathan and K. J. Goldman. Dynamic
reconfiguration with i/o abstraction. In SPDP ’95:
Proceedings of the 7th IEEE Symposium on Parallel
and Distributeed Processing, page 496, Washington,
DC, USA, 1995. IEEE Computer Society.

[22] S. Teixeira, P. Vicente, A. Pinto, H. Miranda,
L. Rodrigues, and A. Martins, J. Rito-Silva.
Configuring the communication middleware to
support multi-user object-oriented environments. In
Proceedings of the International Symposium on
Distributed Objects and Applications (DOA), pages
965–980, Irvine (CA), USA, Oct. 2002.

[23] R. van Renesse, K. Birman, M. Hayden, A. Vaysburd,
and D. Karr. Building adaptive systems using
ensemble. Softw. Pract. Exper., 28(9):963–979, 1998.

[24] R. van Renesse, K. P. Birman, and S. Maffeis. Horus:
a flexible group communication system. Commun.
ACM, 39(4):76–83, 1996.

